Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
Elife ; 82019 10 08.
Article in English | MEDLINE | ID: mdl-31591963

ABSTRACT

Unrelated genes establish head-to-tail polarity in embryos of different fly species, raising the question of how they evolve this function. We show that in moth flies (Clogmia, Lutzomyia), a maternal transcript isoform of odd-paired (Zic) is localized in the anterior egg and adopted the role of anterior determinant without essential protein change. Additionally, Clogmia lost maternal germ plasm, which contributes to embryo polarity in fruit flies (Drosophila). In culicine (Culex, Aedes) and anopheline mosquitoes (Anopheles), embryo polarity rests on a previously unnamed zinc finger gene (cucoid), or pangolin (dTcf), respectively. These genes also localize an alternative transcript isoform at the anterior egg pole. Basal-branching crane flies (Nephrotoma) also enrich maternal pangolin transcript at the anterior egg pole, suggesting that pangolin functioned as ancestral axis determinant in flies. In conclusion, flies evolved an unexpected diversity of anterior determinants, and alternative transcript isoforms with distinct expression can adopt fundamentally distinct developmental roles.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Insect Proteins/biosynthesis , Protein Isoforms/biosynthesis , Psychodidae/embryology , Transcription, Genetic , Animals , Embryo, Nonmammalian , Embryonic Development
2.
Parasit Vectors ; 9: 222, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27098567

ABSTRACT

BACKGROUND: Lutzomyia longipalpis is the main vector of visceral leishmaniasis in Latin America. Sandfly immune responses are poorly understood. In previous work we showed that these vector insects respond to bacterial infections by modulating a defensin gene expression and activate the Imd pathway in response to Leishmania infection. Aspects of innate immune pathways in insects (including mosquito vectors of human diseases) have been revealed by studying insect cell lines, and we have previously demonstrated antiviral responses in the L. longipalpis embryonic cell line LL5. METHODS: The expression patterns of antimicrobial peptides (AMPs) and transcription factors were evaluated after silencing the repressors of the Toll pathway (cactus) and Imd pathway (caspar). AMPs and transcription factor expression patterns were also evaluated after challenge with heat-killed bacteria, heat-killed yeast, or live Leishmania. RESULTS: These studies showed that LL5 cells have active Toll and Imd pathways, since they displayed an increased expression of AMP genes following silencing of the repressors cactus and caspar, respectively. These pathways were also activated by challenges with bacteria, yeast and Leishmania infantum chagasi. CONCLUSIONS: We demonstrated that L. longipalpis LL5 embryonic cells respond to immune stimuli and are therefore a good model to study the immunological pathways of this important vector of leishmaniasis.


Subject(s)
Bacteria/immunology , Insect Proteins/immunology , Insect Vectors/immunology , Leishmania infantum/immunology , Psychodidae/immunology , Toll-Like Receptors/immunology , Yeasts/immunology , Animals , Cell Line , Humans , Insect Proteins/genetics , Insect Vectors/embryology , Insect Vectors/microbiology , Insect Vectors/parasitology , Leishmania infantum/physiology , Leishmaniasis, Visceral , Psychodidae/embryology , Psychodidae/microbiology , Psychodidae/parasitology , Toll-Like Receptors/genetics , Yeasts/physiology
3.
Mem Inst Oswaldo Cruz ; 102(4): 509-15, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17607496

ABSTRACT

Visceral leishmaniasis (VL) is a serious tropical disease that affects approximately 500 thousand people worldwide every year. In the Americas, VL is caused by the parasite Leishmania (Leishmania) infantum chagasi mainly transmitted by the bite of the sand fly vector Lutzomyia longipalpis. Despite recent advances in the study of interaction between Leishmania and sand flies, very little is known about sand fly protein expression profiles. Understanding how the expression of proteins may be affected by blood feeding and/or presence of parasite in the vector's midgut might allow us to devise new strategies for controlling the spread of leishmaniasis. In this work, we report the characterization of a vacuolar ATPase subunit C from L. longipalpis by screening of a midgut cDNA library with a 220 bp fragment identified by means of differential display reverse transcriptase-polymerase chain reaction analysis. The expression of the gene varies along insect development and is upregulated in males and bloodfed L. longipalpis, compared to unfed flies.


Subject(s)
Feeding Behavior/physiology , Insect Vectors/genetics , Psychodidae/genetics , Vacuolar Proton-Translocating ATPases/genetics , Animals , Base Sequence , Blotting, Southern , Cloning, Molecular , Cricetinae , Digestive System/enzymology , Digestive System/parasitology , Insect Vectors/embryology , Insect Vectors/enzymology , Leishmaniasis, Visceral/transmission , Male , Molecular Sequence Data , Protein Subunits , Psychodidae/embryology , Psychodidae/enzymology , Reverse Transcriptase Polymerase Chain Reaction , Vacuolar Proton-Translocating ATPases/metabolism
4.
Mem. Inst. Oswaldo Cruz ; 102(4): 509-515, June 2007. ilus
Article in English | LILACS | ID: lil-454806

ABSTRACT

Visceral leishmaniasis (VL) is a serious tropical disease that affects approximately 500 thousand people worldwide every year. In the Americas, VL is caused by the parasite Leishmania (Leishmania) infantum chagasi mainly transmitted by the bite of the sand fly vector Lutzomyia longipalpis. Despite recent advances in the study of interaction between Leishmania and sand flies, very little is known about sand fly protein expression profiles. Understanding how the expression of proteins may be affected by blood feeding and/or presence of parasite in the vector's midgut might allow us to devise new strategies for controlling the spread of leishmaniasis. In this work, we report the characterization of a vacuolar ATPase subunit C from L. longipalpis by screening of a midgut cDNA library with a 220 bp fragment identified by means of differential display reverse transcriptase-polymerase chain reaction analysis. The expression of the gene varies along insect development and is upregulated in males and bloodfed L. longipalpis, compared to unfed flies.


Subject(s)
Animals , Male , Cricetinae , Feeding Behavior/physiology , Insect Vectors/genetics , Psychodidae/genetics , Vacuolar Proton-Translocating ATPases/genetics , Base Sequence , Blotting, Southern , Cloning, Molecular , Digestive System/enzymology , Digestive System/parasitology , Insect Vectors/embryology , Insect Vectors/enzymology , Leishmaniasis, Visceral/transmission , Molecular Sequence Data , Protein Subunits , Psychodidae/embryology , Psychodidae/enzymology , Reverse Transcriptase Polymerase Chain Reaction , Vacuolar Proton-Translocating ATPases/metabolism
5.
Dev Genes Evol ; 209(3): 145-54, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10079357

ABSTRACT

To obtain a clearer understanding of the evolutionary transition between short- and long-germ modes of embryogenesis in insects, we studied the expression of two gap genes hunchback (hb) and Krüppel (Kr) as well as the pair-rule gene even-skipped (eve) in the dipteran Clogmia albipunctata (Nematocera, Psychodidae). This species has features of both short- and long-germ mode of embryogenesis. In Clogmia hb expression deviates from that known in Drosophila in two main respects: (1) it shows an extended dorsal domain that is linked to the large serosa anlage, and (2) it shows a terminal expression in the proctodeal region. These expression patterns are reminiscent of the hb expression pattern in the beetle Tribolium, which has a short germ mode of embryogenesis. Krüppel expression, on the other hand, was found to be rather similar to the Drosophila expression, both at early and late stages. eve expression starts with six stripes formed at blastoderm stage, while the seventh is only formed after the onset of gastrulation and germband extension. Surprisingly, no segmental secondary Eve stripes could be observed in Clogmia although such segmental stripes are known from higher dipterans, beetles and hymenopterans. We therefore also studied another nematoceran, Coboldia, to address this question and found that some segmental stripes form by intercalation as in Drosophila, although belatedly. Our results suggest that Clogmia embryogenesis, both with respect to morphological and molecular characteristics represents an intermediate between the long-germ mode known from higher dipterans such as Drosophila, and the short-germ mode found in more ancestral insects.


Subject(s)
Bacterial Proteins , Drosophila Proteins , Genes, Insect , Psychodidae/embryology , Psychodidae/genetics , Repressor Proteins , Amino Acid Sequence , Animals , Body Patterning/genetics , DNA-Binding Proteins/genetics , Drosophila/embryology , Drosophila/genetics , Female , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Insect Proteins/genetics , Kruppel-Like Transcription Factors , Molecular Sequence Data , Phylogeny , Sequence Homology, Amino Acid , Species Specificity , Time Factors , Transcription Factors/genetics
6.
Mem. Inst. Oswaldo Cruz ; 93(1): 71-9, Jan.-Feb. 1998. ilus, tab
Article in English | LILACS | ID: lil-201997

ABSTRACT

The morphology of the spiracles of fourth instar larva in eight sandfly species were examined by light and scanning electron microscopy. Species studied were: Lutzomyia longipalpis (Lutz & Neiva) L. ovallesi (Ortiz), L. youngi Feliciangeli & Murillo, L. evansi (Nuñez-Tovar), L. trinidadensis (Newstead), L. migonei (França), L. absonodonta Feliciangeli, and L. venezuelensis (Floch & Abonnenc). In larvae of all eight species both thoracic and abdominal spiracles are located at the top of a globular bulge. Their structure consists of a spiracular plate with a sclerotized central portion and a rose-like peripheral portion. The latter has circularly arranged papillae, separated from each other by elongated septa. Each papilla is longitudinally crossed by a fine cleft dividing it into two identical parts. The taxonomic and adaptative value of spiracular morphology is discussed.


Subject(s)
Animals , Larva/anatomy & histology , Psychodidae/embryology , Microscopy, Electron
7.
Mem. Inst. Oswaldo Cruz ; 92(6): 733-7, Nov.-Dec. 1997. ilus, tab
Article in English | LILACS | ID: lil-197208

ABSTRACT

To determine the influence of physical factors on oviposition of Lutzomyia migonei (Diptera: Psychodidae) under laboratory conditions, two sets of experiments were performed. The first test was to determine the influence of the size of pots on oviposition. Gravid flies were placed individually or in groups in different oviposition pots. The number of eggs laid, oviposition time and survival of gravid females were observed. In the second experiment, the influence of irregular surfaces on oviposition was studied. The results suggested that physical space was not an important factor in the oviposition behavior of L. migonei and that the flies showed a preference to oviposit on irregular horizontal surface in response to thigmotropic behavior.


Subject(s)
Animals , Oviposition/physiology , Psychodidae/embryology
8.
Mem. Inst. Oswaldo Cruz ; 92(2): 197-203, Mar.-Apr. 1997. ilus
Article in English | LILACS | ID: lil-184969

ABSTRACT

The morphology and chaetotaxy of the first instar of Lutzomyia (Lutzomyia) longipalpis are described based on observations made under scanning electron microscope. Because three-dimensional images were studied, some terminological changes are proposed to give a more realistic description of the position of the setae. On the larval body, the pairs of setae have the following number: 9 on the head, 12 on the prothorax, 8 on the meso- and metathorax, 6 on the first to eighth abdominal segments, and 8 on the ninth abdominal segment.


Subject(s)
Animals , Larva/ultrastructure , Psychodidae/embryology , Microscopy, Electron
SELECTION OF CITATIONS
SEARCH DETAIL
...