Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40.685
Filter
1.
Hum Brain Mapp ; 45(8): e26719, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38826009

ABSTRACT

Gilles de la Tourette syndrome (GTS) is a disorder characterised by motor and vocal tics, which may represent habitual actions as a result of enhanced learning of associations between stimuli and responses (S-R). In this study, we investigated how adults with GTS and healthy controls (HC) learn two types of regularities in a sequence: statistics (non-adjacent probabilities) and rules (predefined order). Participants completed a visuomotor sequence learning task while EEG was recorded. To understand the neurophysiological underpinnings of these regularities in GTS, multivariate pattern analyses on the temporally decomposed EEG signal as well as sLORETA source localisation method were conducted. We found that people with GTS showed superior statistical learning but comparable rule-based learning compared to HC participants. Adults with GTS had different neural representations for both statistics and rules than HC adults; specifically, adults with GTS maintained the regularity representations longer and had more overlap between them than HCs. Moreover, over different time scales, distinct fronto-parietal structures contribute to statistical learning in the GTS and HC groups. We propose that hyper-learning in GTS is a consequence of the altered sensitivity to encode complex statistics, which might lead to habitual actions.


Subject(s)
Electroencephalography , Tourette Syndrome , Humans , Tourette Syndrome/physiopathology , Male , Adult , Female , Young Adult , Learning/physiology , Psychomotor Performance/physiology , Middle Aged , Probability Learning
2.
PLoS One ; 19(5): e0302872, 2024.
Article in English | MEDLINE | ID: mdl-38768134

ABSTRACT

Whether a saccade is accurate and has reached the target cannot be evaluated during its execution, but relies on post-saccadic feedback. If the eye has missed the target object, a secondary corrective saccade has to be made to align the fovea with the target. If a systematic post-saccadic error occurs, adaptive changes to the oculomotor behavior are made, such as shortening or lengthening the saccade amplitude. Systematic post-saccadic errors are typically attributed internally to erroneous motor commands. The corresponding adaptive changes to the motor command reduce the error and the need for secondary corrective saccades, and, in doing so, restore accuracy and efficiency. However, adaptive changes to the oculomotor behavior also occur if a change in saccade amplitude is beneficial for task performance, or if it is rewarded. Oculomotor learning thus is more complex than reducing a post-saccadic position error. In the current study, we used a novel oculomotor learning paradigm and investigated whether human participants are able to adapt their oculomotor behavior to improve task performance even when they attribute the error externally. The task was to indicate the intended target object among several objects to a simulated human-machine interface by making eye movements. The participants were informed that the system itself could make errors. The decoding process depended on a distorted landing point of the saccade, resulting in decoding errors. Two different types of visual feedback were added to the post-saccadic scene and we compared how participants used the different feedback types to adjust their oculomotor behavior to avoid errors. We found that task performance improved over time, regardless of the type of feedback. Thus, error feedback from the simulated human-machine interface was used for post-saccadic error evaluation. This indicates that 1) artificial visual feedback signals and 2) externally caused errors might drive adaptive changes to oculomotor behavior.


Subject(s)
Saccades , Humans , Saccades/physiology , Adult , Male , Female , Eye Movements/physiology , Young Adult , Psychomotor Performance/physiology , Learning/physiology
3.
Exp Brain Res ; 242(6): 1517-1531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722346

ABSTRACT

Cerebellar strokes induce coordination disorders that can affect activities of daily living. Evidence-based neurorehabilitation programs are founded on motor learning principles. The cerebellum is a key neural structure in motor learning. It is unknown whether and how well chronic cerebellar stroke individuals (CCSIs) can learn to coordinate their upper limbs through bimanual motor skill learning. The aim was to determine whether CCSIs could achieve bimanual skill learning through a serious game with the REAplan® robot and to compare CCSIs with healthy individuals (HIs). Over three consecutive days, sixteen CCSIs and eighteen HIs were trained on an asymmetric bimanual coordination task ("CIRCUIT" game) with the REAplan® robot, allowing quantification of speed, accuracy and coordination. The primary outcomes were the bimanual speed/accuracy trade-off (BiSAT) and bimanual coordination factor (BiCo). They were also evaluated on a bimanual REACHING task on Days 1 and 3. Correlation analyses between the robotic outcomes and clinical scale scores were computed. Throughout the sessions, BiSAT and BiCo improved during the CIRCUIT task in both HIs and CCSIs. On Day 3, HIs and CCSIs showed generalization of BiSAT, BiCo and transferred to the REACHING task. There was no significant between-group difference in progression. Four CCSIs and two HIs were categorized as "poor learners" according to BiSAT and/or BiCo. Increasing age correlated with reduced BiSAT but not BiCo progression. Over three days of training, HIs and CCSIs improved, retained, generalized and transferred a coordinated bimanual skill. There was no between-group difference, suggesting plastic compensation in CCSIs. Clinical trial NCT04642599 approved the 24th of November 2020.


Subject(s)
Learning , Motor Skills , Stroke Rehabilitation , Stroke , Adult , Aged , Female , Humans , Male , Middle Aged , Cerebellar Diseases/physiopathology , Cerebellar Diseases/rehabilitation , Cerebellum/physiopathology , Cerebellum/physiology , Chronic Disease , Learning/physiology , Motor Skills/physiology , Psychomotor Performance/physiology , Robotics , Stroke/physiopathology , Stroke Rehabilitation/methods , Prospective Studies , Adolescent , Aged, 80 and over
4.
PLoS One ; 19(5): e0302838, 2024.
Article in English | MEDLINE | ID: mdl-38753863

ABSTRACT

When older adults step over obstacles during multitasking, their performance is impaired; the impairment results from central and/or sensory interference. The purpose was to determine if sensory interference alters performance under low levels of cognitive, temporal, and gait demand, and if the change in performance is different for younger versus older adults. Participants included 17 younger adults (20.9±1.9 years) and 14 older adults (69.7±5.4 years). The concurrent task was a single, simple reaction time (RT) task: depress button in response to light cue. The gait task was stepping over an obstacle (8 m walkway) in three conditions: (1) no sensory interference (no RT task), (2) low sensory interference (light cue on obstacle, allowed concurrent foveation of cue and obstacle), or (3) high sensory interference (light cue away from obstacle, prevented concurrent foveation of cue and obstacle). When standing, the light cue location was not relevant (no sensory interference). An interaction (sensory interference by task, p<0.01) indicated that RT was longer for high sensory interference during walking, but RT was not altered for standing, confirming that sensory interference increased RT during obstacle approach. An interaction (sensory interference by age, p<0.01) was observed for foot placement before the obstacle: With high sensory interference, younger adults placed the trail foot closer to the obstacle while older adults placed it farther back from the obstacle. The change increases the likelihood of tripping with the trail foot for younger adults, but with the lead limb for older adults. Recovery from a lead limb trip is more difficult due to shorter time for corrective actions. Overall, visual sensory interference impaired both RT and gait behavior with low levels of multitask demand. Changes in foot placement increased trip risk for both ages, but for different limbs, reducing the likelihood of balance recovery in older adults.


Subject(s)
Gait , Reaction Time , Humans , Aged , Male , Female , Reaction Time/physiology , Young Adult , Gait/physiology , Adult , Psychomotor Performance/physiology , Aging/physiology , Cues , Walking/physiology , Middle Aged , Age Factors
5.
Elife ; 122024 May 13.
Article in English | MEDLINE | ID: mdl-38738986

ABSTRACT

Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal's control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject's control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.


Subject(s)
Behavior, Animal , Animals , Humans , Male , Behavior, Animal/physiology , Female , Psychomotor Performance/physiology , Adult , Postural Balance/physiology , Young Adult , Macaca mulatta
6.
J Neuroeng Rehabil ; 21(1): 70, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702813

ABSTRACT

Despite its rich history of success in controlling powered prostheses and emerging commercial interests in ubiquitous computing, myoelectric control continues to suffer from a lack of robustness. In particular, EMG-based systems often degrade over prolonged use resulting in tedious recalibration sessions, user frustration, and device abandonment. Unsupervised adaptation is one proposed solution that updates a model's parameters over time based on its own predictions during real-time use to maintain robustness without requiring additional user input or dedicated recalibration. However, these strategies can actually accelerate performance deterioration when they begin to classify (and thus adapt) incorrectly, defeating their own purpose. To overcome these limitations, we propose a novel adaptive learning strategy, Context-Informed Incremental Learning (CIIL), that leverages in situ context to better inform the prediction of pseudo-labels. In this work, we evaluate these CIIL strategies in an online target acquisition task for two use cases: (1) when there is a lack of training data and (2) when a drastic and enduring alteration in the input space has occurred. A total of 32 participants were evaluated across the two experiments. The results show that the CIIL strategies significantly outperform the current state-of-the-art unsupervised high-confidence adaptation and outperform models trained with the conventional screen-guided training approach, even after a 45-degree electrode shift (p < 0.05). Consequently, CIIL has substantial implications for the future of myoelectric control, potentially reducing the training burden while bolstering model robustness, and leading to improved real-time control.


Subject(s)
Electromyography , Humans , Male , Adult , Female , Young Adult , Learning/physiology , Artificial Limbs , Machine Learning , Psychomotor Performance/physiology
7.
Cognition ; 248: 105803, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703619

ABSTRACT

Feedback evaluation can affect behavioural continuation or discontinuation, and is essential for cognitive and motor skill learning. One critical factor that influences feedback evaluation is participants' internal estimation of self-performance. Previous research has shown that two event-related potential components, the Feedback-Related Negativity (FRN) and the P3, are related to feedback evaluation. In the present study, we used a time estimation task and EEG recordings to test the influence of feedback and performance on participants' decisions, and the sensitivity of the FRN and P3 components to those factors. In the experiment, participants were asked to reproduce the total duration of an intermittently presented visual stimulus. Feedback was given after every response, and participants had then to decide whether to retry the same trial and try to earn reward points, or to move on to the next trial. Results showed that both performance and feedback influenced participants' decision on whether to retry the ongoing trial. In line with previous studies, the FRN showed larger amplitude in response to negative than to positive feedback. Moreover, our results were also in agreement with previous works showing the relationship between the amplitude of the FRN and the size of feedback-related prediction error (PE), and provide further insight in how PE size influences participants' decisions on whether or not to retry a task. Specifically, we found that the larger the FRN, the more likely participants were to base their decision on their performance - choosing to retry the current trial after good performance or to move on to the next trial after poor performance, regardless of the feedback received. Conversely, the smaller the FRN, the more likely participants were to base their decision on the feedback received.


Subject(s)
Decision Making , Electroencephalography , Feedback, Psychological , Psychomotor Performance , Humans , Male , Female , Young Adult , Adult , Decision Making/physiology , Feedback, Psychological/physiology , Psychomotor Performance/physiology , Evoked Potentials/physiology , Reward , Event-Related Potentials, P300/physiology
8.
J Neuroeng Rehabil ; 21(1): 78, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745322

ABSTRACT

BACKGROUND: Mirror therapy (MT) has been shown to be effective for motor recovery of the upper limb after a stroke. The cerebral mechanisms of mirror therapy involve the precuneus, premotor cortex and primary motor cortex. Activation of the precuneus could be a marker of this effectiveness. MT has some limitations and video therapy (VT) tools are being developed to optimise MT. While the clinical superiority of these new tools remains to be demonstrated, comparing the cerebral mechanisms of these different modalities will provide a better understanding of the related neuroplasticity mechanisms. METHODS: Thirty-three right-handed healthy individuals were included in this study. Participants were equipped with a near-infrared spectroscopy headset covering the precuneus, the premotor cortex and the primary motor cortex of each hemisphere. Each participant performed 3 tasks: a MT task (right hand movement and left visual feedback), a VT task (left visual feedback only) and a control task (right hand movement only). Perception of illusion was rated for MT and VT by asking participants to rate the intensity using a visual analogue scale. The aim of this study was to compare brain activation during MT and VT. We also evaluated the correlation between the precuneus activation and the illusion quality of the visual mirrored feedback. RESULTS: We found a greater activation of the precuneus contralateral to the visual feedback during VT than during MT. We also showed that activation of primary motor cortex and premotor cortex contralateral to visual feedback was more extensive in VT than in MT. Illusion perception was not correlated with precuneus activation. CONCLUSION: VT led to greater activation of a parieto-frontal network than MT. This could result from a greater focus on visual feedback and a reduction in interhemispheric inhibition in VT because of the absence of an associated motor task. These results suggest that VT could promote neuroplasticity mechanisms in people with brain lesions more efficiently than MT. CLINICAL TRIAL REGISTRATION: NCT04738851.


Subject(s)
Feedback, Sensory , Motor Cortex , Spectroscopy, Near-Infrared , Adult , Female , Humans , Male , Young Adult , Brain/physiology , Brain/diagnostic imaging , Feedback, Sensory/physiology , Motor Cortex/physiology , Motor Cortex/diagnostic imaging , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Psychomotor Performance/physiology , Spectroscopy, Near-Infrared/methods
9.
Sci Rep ; 14(1): 10421, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38710897

ABSTRACT

Humans move their hands toward precise positions, a skill supported by the coordination of multiple joint movements, even in the presence of inherent redundancy. However, it remains unclear how the central nervous system learns the relationship between redundant joint movements and hand positions when starting from scratch. To address this question, a virtual-arm reaching task was performed in which participants were required to move a cursor corresponding to the hand of a virtual arm to a target. The joint angles of the virtual arm were determined by the heights of the participants' fingers. The results demonstrated that the participants moved the cursor to the target straighter and faster in the late phase than they did in the initial phase of learning. This improvement was accompanied by a reduction in the amount of angular changes in the virtual limb joint, predominantly characterized by an increased reliance on the virtual shoulder joint as opposed to the virtual wrist joint. These findings suggest that the central nervous system selects a combination of multijoint movements that minimize motor effort while learning novel upper-limb kinematics.


Subject(s)
Arm , Learning , Movement , Humans , Biomechanical Phenomena , Arm/physiology , Male , Learning/physiology , Female , Movement/physiology , Adult , Young Adult , Psychomotor Performance/physiology , Wrist Joint/physiology
10.
Dev Psychobiol ; 66(5): e22503, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38807263

ABSTRACT

Williams syndrome (WS) and Down syndrome (DS) are two neurodevelopmental disorders with distinct genetic origins characterized by mild to moderate intellectual disability. Individuals with WS or DS exhibit impaired hippocampus-dependent place learning and enhanced striatum-dependent spatial response learning. Here, we used the Weather Prediction Task (WPT), which can be solved using hippocampus- or striatum-dependent learning strategies, to determine whether individuals with WS or DS exhibit similar profiles outside the spatial domain. Only 10% of individuals with WS or DS solved the WPT. We further assessed whether a concurrent memory task could promote reliance on procedural learning to solve the WPT in individuals with WS but found that the concurrent task did not improve performance. To understand how the probabilistic cue-outcome associations influences WPT performance, and whether individuals with WS or DS can ignore distractors, we assessed performance using a visual learning task with differing reward contingencies, and a modified WPT with unpredictive cues. Both probabilistic feedback and distractors negatively impacted the performance of individuals with WS or DS. These findings are consistent with deficits in hippocampus-dependent learning and executive functions, and reveal the importance of congruent feedback and the minimization of distractors to optimize learning in these two populations.


Subject(s)
Down Syndrome , Weather , Williams Syndrome , Down Syndrome/physiopathology , Humans , Williams Syndrome/physiopathology , Male , Female , Adult , Young Adult , Adolescent , Executive Function/physiology , Child , Learning/physiology , Psychomotor Performance/physiology , Reward
11.
Neuroimage ; 294: 120638, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719153

ABSTRACT

It has been found that mind wandering can impair motor control. However, it remains unclear whether the impact of mind wandering on motor control is modulated by movement difficulty and its associated neural mechanisms. To address this issue, we manipulated movement difficulty using handedness and finger dexterity separately in two signal-response tasks with identical experiment designs, in which right-handed participants performed key-pressing and key-releasing movements with the specified fingers, and they had to intermittently report whether their attention was "On task" or "Off task." Key-releasing with the right index finger (RI) had a faster reaction time and stronger contralateral delta-theta (1-7 Hz) functional connectivity than with the left index (LI) in Experiment 1, and mind wandering only reduced the contralateral delta-theta functional connectivity and midfrontal delta-theta activity for key-releasing with RI. Key-pressing with right index and middle fingers (RIR) had a faster reaction time and stronger midfrontal delta-theta activity than with right index and ring fingers (RIR) in Experiment 2, and mind wandering only reduced the midfrontal delta-theta activity for key-pressing with RIM. Theta oscillations are vital in motor control. These findings suggest that mind wandering only impairs the motor control of relatively simple movements without affecting the difficult ones. It supports the notion that mind wandering competes for executive resources with the primary task. Moreover, the quantity of executive resources recruited for a task and how these resources are allocated is contingent upon the task difficulty, which may determine whether mind wandering would interfere with motor control.


Subject(s)
Attention , Psychomotor Performance , Reaction Time , Humans , Male , Female , Young Adult , Attention/physiology , Adult , Psychomotor Performance/physiology , Reaction Time/physiology , Movement/physiology , Functional Laterality/physiology , Fingers/physiology , Magnetic Resonance Imaging , Brain/physiology
12.
Exp Brain Res ; 242(6): 1253-1265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691137

ABSTRACT

We examined whether the alpha-band coherence between the T7-Fz (verbal analytical-motor planning) brain areas were related to superior performance in sports. We searched for related papers across eight databases: ProQuest Central, ProQuest Psychology Journals, PsycARTICLES, PsycINFO, SPORTDiscus, MEDLINE, Scopus, and Web of Science using relevant keywords (i.e., EEG AND sports AND coherence). Seven studies, with a total of 194 participants, met our inclusion criteria and were shortlisted for statistical analysis. We compared EEG coherence data for both within-subject and between-subject experimental designs. Our analysis revealed that athletes had lower coherence in the T7-Fz brain pathway for alpha- band activation (Hedges' g = - 0.54; p = 0.03) when performing better. Theoretically, these results corroborate the notion that athletes become more "neurally efficient" as the verbal and motor areas of their brains function more independently, i.e., the neural efficiency hypothesis. Accordingly, athletes who can limit verbal interference are more likely to perform a sporting task successfully.


Subject(s)
Alpha Rhythm , Athletic Performance , Humans , Alpha Rhythm/physiology , Athletic Performance/physiology , Brain/physiology , Electroencephalography/methods , Psychomotor Performance/physiology
13.
Hum Brain Mapp ; 45(8): e26716, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38798117

ABSTRACT

Acute psychosocial stress affects learning, memory, and attention, but the evidence for the influence of stress on the neural processes supporting cognitive control remains mixed. We investigated how acute psychosocial stress influences performance and neural processing during the Go/NoGo task-an established cognitive control task. The experimental group underwent the Trier Social Stress Test (TSST) acute stress induction, whereas the control group completed personality questionnaires. Then, participants completed a functional magnetic resonance imaging (fMRI) Go/NoGo task, with self-report, blood pressure and salivary cortisol measurements of induced stress taken intermittently throughout the experimental session. The TSST was successful in eliciting a stress response, as indicated by significant Stress > Control between-group differences in subjective stress ratings and systolic blood pressure. We did not identify significant differences in cortisol levels, however. The stress induction also impacted subsequent Go/NoGo task performance, with participants who underwent the TSST making fewer commission errors on trials requiring the most inhibitory control (NoGo Green) relative to the control group, suggesting increased vigilance. Univariate analysis of fMRI task-evoked brain activity revealed no differences between stress and control groups for any region. However, using multivariate pattern analysis, stress and control groups were reliably differentiated by activation patterns contrasting the most demanding NoGo trials (i.e., NoGo Green trials) versus baseline in the medial intraparietal area (mIPA, affiliated with the dorsal attention network) and subregions of the cerebellum (affiliated with the default mode network). These results align with prior reports linking the mIPA and the cerebellum to visuomotor coordination, a function central to cognitive control processes underlying goal-directed behavior. This suggests that stressor-induced hypervigilance may produce a facilitative effect on response inhibition which is represented neurally by the activation patterns of cognitive control regions.


Subject(s)
Inhibition, Psychological , Magnetic Resonance Imaging , Stress, Psychological , Humans , Stress, Psychological/physiopathology , Stress, Psychological/diagnostic imaging , Male , Female , Adult , Young Adult , Executive Function/physiology , Hydrocortisone/metabolism , Psychomotor Performance/physiology
14.
Sci Rep ; 14(1): 10011, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693174

ABSTRACT

Interacting with the environment often requires the integration of visual and haptic information. Notably, perceiving external objects depends on how our brain binds sensory inputs into a unitary experience. The feedback provided by objects when we interact (through our movements) with them might then influence our perception. In VR, the interaction with an object can be dissociated by the size of the object itself by means of 'colliders' (interactive spaces surrounding the objects). The present study investigates possible after-effects in size discrimination for virtual objects after exposure to a prolonged interaction characterized by visual and haptic incongruencies. A total of 96 participants participated in this virtual reality study. Participants were distributed into four groups, in which they were required to perform a size discrimination task between two cubes before and after 15 min of a visuomotor task involving the interaction with the same virtual cubes. Each group interacted with a different cube where the visual (normal vs. small collider) and the virtual cube's haptic (vibration vs. no vibration) features were manipulated. The quality of interaction (number of touches and trials performed) was used as a dependent variable to investigate the performance in the visuomotor task. To measure bias in size perception, we compared changes in point of subjective equality (PSE) before and after the task in the four groups. The results showed that a small visual collider decreased manipulation performance, regardless of the presence or not of the haptic signal. However, change in PSE was found only in the group exposed to the small visual collider with haptic feedback, leading to increased perception of the cube size. This after-effect was absent in the only visual incongruency condition, suggesting that haptic information and multisensory integration played a crucial role in inducing perceptual changes. The results are discussed considering the recent findings in visual-haptic integration during multisensory information processing in real and virtual environments.


Subject(s)
Virtual Reality , Visual Perception , Humans , Male , Female , Adult , Visual Perception/physiology , Young Adult , Psychomotor Performance/physiology , Touch Perception/physiology , Size Perception/physiology
15.
Sci Rep ; 14(1): 10788, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734783

ABSTRACT

Prior research has shown that the sensorimotor cortical oscillations are uncharacteristic in persons with cerebral palsy (CP); however, it is unknown if these altered cortical oscillations have an impact on adaptive sensorimotor control. This investigation evaluated the cortical dynamics when the motor action needs to be changed "on-the-fly". Adults with CP and neurotypical controls completed a sensorimotor task that required either proactive or reactive control while undergoing magnetoencephalography (MEG). When compared with the controls, the adults with CP had a weaker beta (18-24 Hz) event-related desynchronization (ERD), post-movement beta rebound (PMBR, 16-20 Hz) and theta (4-6 Hz) event-related synchronization (ERS) in the sensorimotor cortices. In agreement with normative work, the controls exhibited differences in the strength of the sensorimotor gamma (66-84 Hz) ERS during proactive compared to reactive trials, but similar condition-wise changes were not seen in adults with CP. Lastly, the adults with CP who had a stronger theta ERS tended to have better hand dexterity, as indicated by the Box and Blocks Test and Purdue Pegboard Test. These results may suggest that alterations in the theta and gamma cortical oscillations play a role in the altered hand dexterity and uncharacteristic adaptive sensorimotor control noted in adults with CP.


Subject(s)
Cerebral Palsy , Magnetoencephalography , Sensorimotor Cortex , Humans , Adult , Male , Female , Cerebral Palsy/physiopathology , Sensorimotor Cortex/physiopathology , Sensorimotor Cortex/physiology , Young Adult , Psychomotor Performance/physiology , Adaptation, Physiological , Case-Control Studies
16.
J Neuroeng Rehabil ; 21(1): 80, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755606

ABSTRACT

BACKGROUND: Individuals with a moderate-to-severe traumatic brain injury (m/sTBI), despite experiencing good locomotor recovery six months post-injury, face challenges in adapting their locomotion to the environment. They also present with altered cognitive functions, which may impact dual-task walking abilities. Whether they present collision avoidance strategies with moving pedestrians that are altered under dual-task conditions, however, remains unclear. This study aimed to compare between individuals with m/sTBI and age-matched control individuals: (1), the locomotor and cognitive costs associated with the concurrent performance of circumventing approaching virtual pedestrians (VRPs) while attending to an auditory-based cognitive task and; (2) gaze behaviour associated with the VRP circumvention task in single and dual-task conditions. METHODOLOGY: Twelve individuals with m/sTBI (age = 43.3 ± 9.5 yrs; >6 mo. post injury) and 12 healthy controls (CTLs) (age = 41.8 ± 8.3 yrs) were assessed while walking in a virtual subway station viewed in a head-mounted display. They performed a collision avoidance task with VRPs, as well as auditory-based cognitive tasks (pitch discrimination and auditory Stroop), both under single and dual-task conditions. Dual-task cost (DTC) for onset distance of trajectory deviation, minimum distance from the VRP, maximum lateral deviation, walking speed, gaze fixations and cognitive task accuracy were contrasted between groups using generalized estimating equations. RESULTS: In contrast to CTLs who showed locomotor DTCs only, individuals with m/sTBI displayed both locomotor and cognitive DTCs. While both groups walked slower under dual-task conditions, only individuals with m/sTBI failed to modify their onset distance of trajectory deviation and maintained smaller minimum distances and smaller maximum lateral deviation compared to single-task walking. Both groups showed shorter gaze fixations on the approaching VRP under dual-task conditions, but this reduction was less pronounced in the individuals with m/sTBI. A reduction in cognitive task accuracy under dual-task conditions was found in the m/sTBI group only. CONCLUSION: Individuals with m/sTBI present altered locomotor and gaze behaviours, as well as altered cognitive performances, when executing a collision avoidance task involving moving pedestrians in dual-task conditions. Potential mechanisms explaining those alterations are discussed. Present findings highlight the compromised complex walking abilities in individuals with m/sTBI who otherwise present a good locomotor recovery.


Subject(s)
Brain Injuries, Traumatic , Pedestrians , Virtual Reality , Humans , Male , Adult , Female , Brain Injuries, Traumatic/rehabilitation , Brain Injuries, Traumatic/psychology , Brain Injuries, Traumatic/physiopathology , Middle Aged , Psychomotor Performance/physiology , Walking/physiology , Cognition/physiology , Avoidance Learning , Attention/physiology
17.
PLoS One ; 19(5): e0300786, 2024.
Article in English | MEDLINE | ID: mdl-38748663

ABSTRACT

Cognitive Arousal, frequently elicited by environmental stressors that exceed personal coping resources, manifests in measurable physiological markers, notably in galvanic skin responses. This effect is prominent in cognitive tasks such as composition, where fluctuations in these biomarkers correlate with individual expressiveness. It is crucial to understand the nexus between cognitive arousal and expressiveness. However, there has not been a concrete study that investigates this inter-relation concurrently. Addressing this, we introduce an innovative methodology for simultaneous monitoring of these elements. Our strategy employs Bayesian analysis in a multi-state filtering format to dissect psychomotor performance (captured through typing speed), galvanic skin response or skin conductance (SC), and heart rate variability (HRV). This integrative analysis facilitates the quantification of expressive behavior and arousal states. At the core, we deploy a state-space model connecting one latent psychological arousal condition to neural activities impacting sweating (inferred through SC responses) and another latent state to expressive behavior during typing. These states are concurrently evaluated with model parameters using an expectation-maximization algorithms approach. Assessments using both computer-simulated data and experimental data substantiate the validity of our approach. Outcomes display distinguishable latent state patterns in expressive typing and arousal across different computer software used in office management, offering profound implications for Human-Computer Interaction (HCI) and productivity analysis. This research marks a significant advancement in decoding human productivity dynamics, with extensive repercussions for optimizing performance in telecommuting scenarios.


Subject(s)
Arousal , Bayes Theorem , Cognition , Galvanic Skin Response , Heart Rate , Humans , Arousal/physiology , Galvanic Skin Response/physiology , Heart Rate/physiology , Cognition/physiology , Male , Female , Adult , Psychomotor Performance/physiology , Teleworking , Efficiency/physiology , Algorithms , Young Adult
18.
Cogn Sci ; 48(5): e13454, 2024 May.
Article in English | MEDLINE | ID: mdl-38773755

ABSTRACT

Open-ended tasks can be decomposed into the three levels of Newell's Cognitive Band: the Unit-Task level, the Operation level, and the Deliberate-Act level. We analyzed the video game Co-op Space Fortress at these levels, reporting both the match of a cognitive model to subject behavior and the use of electroencephalogram (EEG) to track subject cognition. The Unit Task level in this game involves coordinating with a partner to kill a fortress. At this highest level of the Cognitive Band, there is a good match between subject behavior and the model. The EEG signals were also strong enough to track when Unit Tasks succeeded or failed. The intermediate Operation level in this task involves legs of flight to achieve a kill. The EEG signals associated with these operations are much weaker than the signals associated with the Unit Tasks. Still, it was possible to reconstruct subject play with much better than chance success. There were significant differences in the leg behavior of subjects and models. Model behavior did not provide a good basis for interpreting a subject's behavior at this level. At the lowest Deliberate-Act level, we observed overlapping key actions, which the model did not display. Such overlapping key actions also frustrated efforts to identify EEG signals of motor actions. We conclude that the Unit-task level is the appropriate level both for understanding open-ended tasks and for using EEG to track the performance of open-ended tasks.


Subject(s)
Cognition , Electroencephalography , Humans , Cognition/physiology , Male , Video Games , Female , Adult , Psychomotor Performance/physiology , Young Adult
19.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38771245

ABSTRACT

Arterial spin-labeled perfusion and blood oxygenation level-dependent functional MRI are indispensable tools for noninvasive human brain imaging in clinical and cognitive neuroscience, yet concerns persist regarding the reliability and reproducibility of functional MRI findings. The circadian rhythm is known to play a significant role in physiological and psychological responses, leading to variability in brain function at different times of the day. Despite this, test-retest reliability of brain function across different times of the day remains poorly understood. This study examined the test-retest reliability of six repeated cerebral blood flow measurements using arterial spin-labeled perfusion imaging both at resting-state and during the psychomotor vigilance test, as well as task-induced cerebral blood flow changes in a cohort of 38 healthy participants over a full day. The results demonstrated excellent test-retest reliability for absolute cerebral blood flow measurements at rest and during the psychomotor vigilance test throughout the day. However, task-induced cerebral blood flow changes exhibited poor reliability across various brain regions and networks. Furthermore, reliability declined over longer time intervals within the day, particularly during nighttime scans compared to daytime scans. These findings highlight the superior reliability of absolute cerebral blood flow compared to task-induced cerebral blood flow changes and emphasize the importance of controlling time-of-day effects to enhance the reliability and reproducibility of future brain imaging studies.


Subject(s)
Brain , Cerebrovascular Circulation , Magnetic Resonance Imaging , Rest , Humans , Male , Female , Adult , Cerebrovascular Circulation/physiology , Reproducibility of Results , Rest/physiology , Brain/diagnostic imaging , Brain/physiology , Brain/blood supply , Young Adult , Magnetic Resonance Imaging/methods , Perfusion Imaging/methods , Psychomotor Performance/physiology , Circadian Rhythm/physiology , Arousal/physiology
20.
Sci Rep ; 14(1): 11817, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783047

ABSTRACT

We assessed lifespan development of multitasking in a sample of 187 individuals aged 8-82 years. Participants performed a visuo-spatial working memory (VSWM) task together with either postural control or reaction time (RT) tasks. Using criterion-referenced testing we individually adjusted difficulty levels for the VSWM task to control for single-task differences. Age-differences in single-task performances followed U-shaped patterns with young adults outperforming children and older adults. Multitasking manipulations yielded robust performance decrements in VSWM, postural control and RT tasks. Presumably due to our adjustment of VSWM challenges, costs in this task were small and similar across age groups suggesting that age-differential costs found in earlier studies largely reflected differences already present during single-task performance. Age-differences in multitasking costs for concurrent tasks depended on specific combinations. For VSWM and RT task combinations increases in RT were the smallest for children but pronounced in adults highlighting the role of cognitive control processes. Stabilogram diffusion analysis of postural control demonstrated that long-term control mechanisms were affected by concurrent VSWM demands. This interference was pronounced in older adults supporting concepts of compensation or increased cognitive involvement in sensorimotor processes at older age. Our study demonstrates how a lifespan approach can delineate the explanatory scope of models of human multitasking.


Subject(s)
Memory, Short-Term , Reaction Time , Humans , Aged , Adult , Adolescent , Child , Female , Male , Aged, 80 and over , Reaction Time/physiology , Middle Aged , Young Adult , Memory, Short-Term/physiology , Postural Balance/physiology , Psychomotor Performance/physiology , Multitasking Behavior/physiology , Task Performance and Analysis , Aging/physiology , Longevity/physiology , Cognition/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...