Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.692
Filter
1.
J Cancer Res Ther ; 20(2): 570-577, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38687926

ABSTRACT

OBJECTIVE: This study aimed to investigate BVD-523 (ulixertinib), an adenosine triphosphate (ATP)-dependent extracellular signal-regulated kinases 1/2 inhibitor, for its antitumor potential in thyroid cancer. MATERIALS AND METHODS: Ten thyroid cancer cell lines known to carry mitogen-activated protein kinase (MAPK)-activated mutations, including v-Raf murine sarcoma viral oncogene homolog B (BRAF) and rat sarcoma virus (RAS) mutations, were examined. Cells were exposed to a 10-fold concentration gradient ranging from 0 to 3000 nM for 5 days. The half-inhibitory concentration was determined using the Cell Counting Kit-8 assay. Following BVD-523 treatment, cell cycle analysis was conducted using flow cytometry. In addition, the impact of BVD-523 on extracellular signal-regulated kinase (ERK)- dependent ribosomal S6 kinase (RSK) activation and the expression of cell cycle markers were assessed through western blot analysis. RESULTS: BVD-523 significantly inhibited thyroid cancer cell proliferation and induced G1/S cell cycle arrest dose-dependently. Notably, cell lines carrying MAPK mutations, especially those with the BRAF V600E mutation, exhibited heightened sensitivity to BVD-523's antitumor effects. Furthermore, BVD-523 suppressed cyclin D1 and phosphorylated retinoblastoma protein expression, and it robustly increased p27 levels in an RSK-independent manner. CONCLUSION: This study reveals the potent antitumor activity of BVD-523 against thyroid cancer cells bearing MAPK-activating mutations, offering promise for treating aggressive forms of thyroid cancer.


Subject(s)
Aminopyridines , Cell Proliferation , Pyrroles , Thyroid Neoplasms , Humans , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Pteridines/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mutation , MAP Kinase Signaling System/drug effects
2.
Eur J Pharmacol ; 972: 176558, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38614382

ABSTRACT

Inhibitors of polo-like kinase (PLK) are currently being evaluated as anticancer drugs. However, the molecular mechanism of PLK inhibitor-induced cell death is not fully understood. In this study, we found that GW843682X and BI2536, two inhibitors of PLK1, significantly induced cell death in multiple type cells. The induction of cell death was related to the preferring expression of PLK1. However, in human umbilical vascular endothelial cells (HUVEC) and human colorectal carcinoma cells, which expressed higher levels of both PLK1 and PLK2, PLK1 inhibitors induced very low levels of cell death. Clinical analysis reveals PLK1 presence in 26 of 30 NPC tumor tissues. In in vivo NPC lung metastasis nude mouse models, PLK1 inhibitors decreased NPC progress. Mechanistically, the PLK1 inhibitor did not activate p53, and the cell death was not reversed by p53 inhibition. Moreover, PLK1 inhibitor-induced cell death was PARP- and caspase-independent. Although PLK1 inhibitors induced down-regulation of calpain inhibitor calpastatin and calpain was activated by PLK1 inhibition, calpain blocking did not reverse cell death induced by PLK1 inhibitors, suggesting the non-involvement of calpain. Surprisingly, we found that PLK1 inhibitors induced the activation of proteasome, and the treatment of cells with PLK1 inhibitors reduced the levels of ubiquitinated proteins. And proteasome inhibitors reversed cell death induced by PLK1 inhibitors in various cell types in which PLK1 was preferentially expressed. Moreover, PLK1 inhibition reversed the degradation of proteins including p53, caspase 8, PARP and calpastatin. These results suggest that the activation of proteasome is critical for cell death induced by PLK1 inhibition.


Subject(s)
Cell Cycle Proteins , Cell Death , Polo-Like Kinase 1 , Proteasome Endopeptidase Complex , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Humans , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Animals , Proteasome Endopeptidase Complex/metabolism , Cell Death/drug effects , Mice , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Mice, Nude , Pteridines/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Calpain/antagonists & inhibitors , Calpain/metabolism , Enzyme Activation/drug effects , Xenograft Model Antitumor Assays , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/pharmacology
3.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119731, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631442

ABSTRACT

Molybdenum cofactor (Moco) biosynthesis is a complex process that involves the coordinated function of several proteins. In the recent years it has become evident that the availability of Fe-S clusters play an important role for the biosynthesis of Moco. First, the MoaA protein binds two [4Fe-4S] clusters per monomer. Second, the expression of the moaABCDE and moeAB operons is regulated by FNR, which senses the availability of oxygen via a functional [4Fe-4S] cluster. Finally, the conversion of cyclic pyranopterin monophosphate to molybdopterin requires the availability of the L-cysteine desulfurase IscS, which is an enzyme involved in the transfer of sulfur to various acceptor proteins with a main role in the assembly of Fe-S clusters. In this review, we dissect the dependence of the production of active molybdoenzymes in detail, starting from the regulation of gene expression and further explaining sulfur delivery and Fe-S cluster insertion into target enzymes. Further, Fe-S cluster assembly is also linked to iron availability. While the abundance of selected molybdoenzymes is largely decreased under iron-limiting conditions, we explain that the expression of the genes is dependent on an active FNR protein. FNR is a very important transcription factor that represents the master-switch for the expression of target genes in response to anaerobiosis. Moco biosynthesis is further directly dependent on the presence of ArcA and also on an active Fur protein.


Subject(s)
Coenzymes , Iron-Sulfur Proteins , Metalloproteins , Molybdenum Cofactors , Pteridines , Metalloproteins/metabolism , Metalloproteins/genetics , Metalloproteins/biosynthesis , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics , Coenzymes/metabolism , Coenzymes/biosynthesis , Coenzymes/genetics , Pteridines/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Iron/metabolism , Sulfur/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Carbon-Sulfur Lyases/metabolism , Carbon-Sulfur Lyases/genetics , Gene Expression Regulation, Bacterial , Operon , Isomerases
4.
Sci Rep ; 14(1): 9440, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658799

ABSTRACT

Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.


Subject(s)
Melanins , Pteridines , Ribosomal Protein S6 Kinases, 90-kDa , Signal Transduction , alpha-MSH , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Melanins/biosynthesis , Melanins/metabolism , Animals , alpha-MSH/metabolism , alpha-MSH/pharmacology , Mice , Cell Line, Tumor , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Ultraviolet Rays , Morpholines/pharmacology , Chromones/pharmacology , Nitriles/pharmacology , Butadienes/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Melanoma, Experimental/metabolism , Melanogenesis
5.
Ecotoxicol Environ Saf ; 274: 116177, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38461573

ABSTRACT

Triphenyltin (TPT) is a typical persistent organic pollutant whose occurrence in coral reef ecosystems may threaten the survival of reef fishes. In this study, a brightly colored representative reef fish, Amphiprion ocellaris was used to explore the effects of TPT at environmental levels (1, 10, and 100 ng/L) on skin pigment synthesis. After the fish were exposed to TPT for 60 days, the skin became darker, owing to an increase in the relative area of black stripes, a decrease in orange color values while an increase in brown color values, and an increase in the number of melanocytes in the orange part of the skin tissues. To explore the mechanisms by which TPT induces darker body coloration, the enzymatic activity and gene expression levels of the members of melanocortin system that affect melanin synthesis were evaluated. Leptin levels and lepr expression were found to be increased after TPT exposure, which likely contributed to the increase found in pomc expression and α-melanocyte-stimulating hormone (α-MSH) levels. Then Tyr activity and mc1r, tyr, tyrp1, mitf, and dct were upregulated, ultimately increasing melanin levels. Importantly, RT-qPCR results were consistent with the transcriptome analysis of trends in lepr and pomc expression. Because the orange color values decreased, pterin levels and the pteridine metabolic pathway were also evaluated. The results showed that TPT induced BH4 levels and spr, xdh, and gch1 expression associated with pteridine synthesis decreased, ultimately decreasing the colored pterin content (sepiapterin). We conclude that TPT exposure interferes with the melanocortin system and pteridine metabolic pathway to increase melanin and decrease colored pterin levels, leading to darker body coloration in A. ocellaris. Given the importance of body coloration for the survival and reproduction of reef fishes, studies on the effects of pollutants (others alongside TPT) on body coloration are of high priority.


Subject(s)
Melanocortins , Organotin Compounds , Perciformes , Animals , Pro-Opiomelanocortin , Ecosystem , Melanins/genetics , Pteridines , Fishes/genetics , Perciformes/genetics , Pterins , Metabolic Networks and Pathways
6.
Mol Biol Evol ; 41(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38466135

ABSTRACT

In the animal kingdom, sexually dimorphic color variation is a widespread phenomenon that significantly influences survival and reproductive success. However, the genetic underpinnings of this variation remain inadequately understood. Our investigation into sexually dimorphic color variation in the desert-dwelling Guinan population of the toad-headed agamid lizard (Phrynocephalus putjatai) utilized a multidisciplinary approach, encompassing phenotypic, ultrastructural, biochemical, genomic analyses, and behavioral experiments. Our findings unveil the association between distinct skin colorations and varying levels of carotenoid and pteridine pigments. The red coloration in males is determined by a genomic region on chromosome 14, housing four pigmentation genes: BCO2 and three 6-pyruvoyltetrahydropterin synthases. A Guinan population-specific nonsynonymous single nucleotide polymorphism in BCO2 is predicted to alter the electrostatic potential within the binding domain of the BCO2-ß-carotene complex, influencing their interaction. Additionally, the gene MAP7 on chromosome 2 emerges as a potential contributor to the blue coloration in subadults and adult females. Sex-specific expression patterns point to steroid hormone-associated genes (SULT2B1 and SRD5A2) as potential upstream regulators influencing sexually dimorphic coloration. Visual modeling and field experiments support the potential selective advantages of vibrant coloration in desert environments. This implies that natural selection, potentially coupled with assortative mating, might have played a role in fixing color alleles, contributing to prevalence in the local desert habitat. This study provides novel insights into the genetic basis of carotenoid and pteridine-based color variation, shedding light on the evolution of sexually dimorphic coloration in animals. Moreover, it advances our understanding of the driving forces behind such intricate coloration patterns.


Subject(s)
Lizards , Skin Pigmentation , Animals , Female , Male , Lizards/genetics , Carotenoids/metabolism , Pteridines , Reproduction , Pigmentation/genetics , Color
7.
J Pharm Biomed Anal ; 243: 116072, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38437786

ABSTRACT

AIM: Type 1 diabetes (T1D) and its complications are known to be associated with oxidative stress. Pteridine derivatives and indoleamine 2,3-dioxygenase (IDO) activity can be used as biomarkers in the evaluation of oxidative stress. In this study, our aim is to compare the concentrations of serum and urinary pteridine derivatives, as well as serum IDO activity, in children and adolescents diagnosed with T1D and those in a healthy control group. METHOD: A cross-sectional study was performed and included 93 patients with T1D and 71 healthy children. Serum and urine biopterin, neopterin, monapterin, pterin, isoxanthopterin, and pterin-6-carboxylic acid (6PTC) and serum tryptophan and kynurenine levels were analyzed and compared with healthy controls. High-performance liquid chromatography was used for the analysis of pteridine derivatives, tryptophan, and kynurenine. Xanthine oxidase (XO) activity, a marker of oxidative stress, was defined by measurement of serum and urine isoxanthopterin. As an indicator of indolamine 2,3-dioxygenase (IDO) activity, the ratio of serum kynurenine/tryptophan was used. RESULTS: Serum isoxanthopterin and tryptophan concentrations were increased, and serum 6PTC concentration was decreased in children with T1D (p=0.01, p=0.021, p<0.001, respectively). In children with T1D, IDO activity was not different from healthy controls (p>0.05). Serum neopterin level and duration of diabetes were weakly correlated (p=0.045, r=0.209); urine neopterin/creatinine and isoxanthopterin/creatinine levels were weakly correlated with HbA1c levels (p=0.005, r=0.305; p=0.021, r=0.249, respectively). Urine pterin/creatinine level negatively correlated with body mass index-SDS. (p=0.015, r=-0.208). CONCLUSION: We found for the first time that isoxanthopterin levels increased and 6PTC levels decreased in children and adolescents with T1D. Elevated isoxanthopterin levels suggest that the XO activity is increased in TID. Increased XO activity may be an indicator of vascular complications reflecting T1D-related endothelial dysfunction.


Subject(s)
Diabetes Mellitus, Type 1 , Tryptophan , Xanthopterin , Child , Adolescent , Humans , Kynurenine/metabolism , Neopterin , Creatinine , Cross-Sectional Studies , Pteridines
8.
Sci Rep ; 13(1): 22171, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092798

ABSTRACT

Three types of luminescence have been reported in living organisms: bioluminescence (BL), ultraweak chemiluminescence and biofluorescence (FL). In millipedes, both BL and FL have been reported in Motyxia sequoiae and related Xystodesmidae species. Noteworthy, when walking at night with a UV lantern at the Biological Station of Highlands, I found three blue-fluorescent millipedes (Deltotaria brimleii, Deltotoria sp and Euryus orestes) that also displayed phosphorescence after turning off the UV source. The phosphorescence of the cuticle was in the green region (λmax = 525 nm). The phosphorescence remained associated with cuticle and pellets, but frozen fluorescent supernatants, also displayed phosphorescence. The fluorescent compounds extracted from the cuticles in water and methanol and separated by TLC, displayed fluorescence spectra similar to that of 6-pteridine carboxylic acid. In contrast to Motyxia sequoiae cuticle extracts, no bioluminescence was found in Deltatoria and Euryus extracts  in the presence of MgATP, but weak green chemiluminescence was detected with H2O2 and superoxide. The spectral overlapping of phosphorescence of these millipedes with the bioluminescence of Motyxia (~ 507 nm) and the intimate association of both types of luminescence with the cuticles, raises the possibility that bioluminescence in Motyxia may arise from chemiluminescence reactions preferentially generating triplet excited states instead of singlet states.


Subject(s)
Arthropods , Hydrogen Peroxide , Animals , Fluorescence , Luminescence , Pteridines
9.
Molecules ; 28(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38005256

ABSTRACT

The parasites Trypanosoma brucei (Tb) and Leishmania major (Lm) cause the tropical diseases sleeping sickness, nagana, and cutaneous leishmaniasis. Every year, millions of humans, as well as animals, living in tropical to subtropical climates fall victim to these illnesses' health threats. The parasites' frequent drug resistance and widely spread natural reservoirs heavily impede disease prevention and treatment. Due to pteridine auxotrophy, trypanosomatid parasites have developed a peculiar enzyme system consisting of dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) to support cell survival. Extending our previous studies, we conducted a comparative study of the T. brucei (TbDHFR, TbPTR1) and L. major (LmDHFR, LmPTR1) enzymes to identify lead structures with a dual inhibitory effect. A pharmacophore-based in silico screening of three natural product databases (approximately 4880 compounds) was performed to preselect possible inhibitors. Building on the in silico results, the inhibitory potential of promising compounds was verified in vitro against the recombinant DHFR and PTR1 of both parasites using spectrophotometric enzyme assays. Twelve compounds were identified as dual inhibitors against the Tb enzymes (0.2 µM < IC50 < 85.1 µM) and ten against the respective Lm enzymes (0.6 µM < IC50 < 84.5 µM). These highly promising results may represent the starting point for the future development of new leads and drugs utilizing the trypanosomatid pteridine metabolism as a target.


Subject(s)
Leishmania major , Trypanosoma brucei brucei , Trypanosomiasis, African , Humans , Animals , Tetrahydrofolate Dehydrogenase/metabolism , Pteridines/chemistry , Trypanosomiasis, African/drug therapy
10.
Int J Mol Sci ; 24(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37895036

ABSTRACT

Red coloration is considered an economically important trait in some fish species, including spotted scat, a marine aquaculture fish. Erythrophores are gradually covered by melanophores from the embryonic stage. Despite studies of black spot formation and melanophore coloration in the species, little is known about erythrophore development, which is responsible for red coloration. 1-phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to inhibit melanogenesis and contribute to the visualization of embryonic development. In this study, spotted scat embryos were treated with 0.003% PTU from 0 to 72 h post fertilization (hpf) to inhibit melanin. Erythrophores were clearly observed during the embryonic stage from 14 to 72 hpf, showing an initial increase (14 to 36 hpf), followed by a gradual decrease (36 to 72 hpf). The number and size of erythrophores at 36 hpf were larger than those at 24 and 72 hpf. At 36 hpf, LC-MS and absorbance spectrophotometry revealed that the carotenoid content was eight times higher than the pteridine content, and ß-carotene and lutein were the main pigments related to red coloration in spotted scat larvae. Compared with their expression in the normal hatching group, rlbp1b, rbp1.1, and rpe65a related to retinol metabolism and soat2 and apoa1 related to steroid hormone biosynthesis and steroid biosynthesis were significantly up-regulated in the PTU group, and rh2 associated with phototransduction was significantly down-regulated. By qRT-PCR, the expression levels of genes involved in carotenoid metabolism (scarb1, plin6, plin2, apoda, bco1, and rep65a), pteridine synthesis (gch2), and chromatophore differentiation (slc2a15b and csf1ra) were significantly higher at 36 hpf than at 24 hpf and 72 hpf, except for bco1. These gene expression profiles were consistent with the developmental changes of erythrophores. These findings provide insights into pigment cell differentiation and gene function in the regulation of red coloration and contribute to selective breeding programs for ornamental aquatic animals.


Subject(s)
Fishes , Gene Expression Profiling , Animals , Larva/genetics , Fishes/genetics , Carotenoids , Pteridines , Steroids
11.
Metab Brain Dis ; 38(8): 2645-2651, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37688715

ABSTRACT

Inflammation is thought to be involved in the pathogenesis of autism spectrum disorder (ASD). Pteridine metabolites are biomarkers of inflammation that increase on immune system activation. In this study, we investigated the urinary pteridine metabolites in ASD patients as a possible biomarker for immune activation and inflammation. This observational, cross-sectional, prospective study collected urine samples from 212 patients with ASD and 68 age- and sex-matched healthy individuals. Urine neopterin (NE) and biopterin (BIO) levels were measured. Patients who had chronic disorders, active infection at the time of sampling, or high C-reactive protein levels were excluded. The urine NE and BIO concentrations were determined by high-performance liquid chromatography. The ratios of both NE and BIO to creatinine (CRE) were used to standardise the measurements. The NE/CRE and NE/BIO levels were significantly higher in ASD patients than controls. Univariate and multivariate models revealed a significant increase in NE/CRE and NE/BIO in ASD patients. There was a significant relationship between the NE/BIO [average area under the curve (AUC) = 0.717; range: 0.637-0.797] and NE/CRE (average AUC = 0.756; range: 0.684-0.828) ratios, which distinguished individuals with ASD from controls. The elevated NE/CRE and NE/BIO ratios suggest that inflammation and T cell-mediated immunity are involved in the pathophysiology of autism. NE/BIO could serve as a diagnostic inflammatory marker in the pathogenesis of ASD.


Subject(s)
Autism Spectrum Disorder , Biopterins , Humans , Neopterin , Cross-Sectional Studies , Prospective Studies , Pteridines/urine , Biomarkers/urine , Inflammation
12.
Commun Biol ; 6(1): 801, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37532778

ABSTRACT

Molybdenum (Mo) as essential micronutrient for plants, acts as active component of molybdenum cofactor (Moco). Core metabolic processes like nitrate assimilation or abscisic-acid biosynthesis rely on Moco-dependent enzymes. Although a family of molybdate transport proteins (MOT1) is known to date in Arabidopsis, molybdate homeostasis remained unclear. Here we report a second family of molybdate transporters (MOT2) playing key roles in molybdate distribution and usage. KO phenotype-analyses, cellular and organ-specific localization, and connection to Moco-biosynthesis enzymes via protein-protein interaction suggest involvement in cellular import of molybdate in leaves and reproductive organs. Furthermore, we detected a glutathione-molybdate complex, which reveals how vacuolar storage is maintained. A putative Golgi S-adenosyl-methionine transport function was reported recently for the MOT2-family. Here, we propose a moonlighting function, since clear evidence of molybdate transport was found in a yeast-system. Our characterization of the MOT2-family and the detection of a glutathione-molybdate complex unveil the plant-wide way of molybdate.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Molybdenum/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Pteridines , Homeostasis
13.
Protein Sci ; 32(9): e4753, 2023 09.
Article in English | MEDLINE | ID: mdl-37572332

ABSTRACT

Within the cell, the trace element molybdenum (Mo) is only biologically active when complexed either within the nitrogenase-specific FeMo cofactor or within the molybdenum cofactor (Moco). Moco consists of an organic part, called molybdopterin (MPT) and an inorganic part, that is, the Mo-center. The enzyme which catalyzes the Mo-center formation is the molybdenum insertase (Mo-insertase). Mo-insertases consist of two functional domains called G- and E-domain. The G-domain catalyzes the formation of adenylated MPT (MPT-AMP), which is the substrate for the E-domain, that catalyzes the actual molybdate insertion reaction. Though the functions of E- and G-domain have been elucidated to great structural and mechanistic detail, their combined function is poorly characterized. In this work, we describe a structural model of the eukaryotic Mo-insertase Cnx1 complex that was generated based on cross-linking mass spectrometry combined with computational modeling. We revealed Cnx1 to form an asymmetric hexameric complex which allows the E- and G-domain active sites to align in a catalytic productive orientation toward each other.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Metalloproteins , Arabidopsis Proteins/chemistry , Calnexin/chemistry , Calnexin/metabolism , Arabidopsis/chemistry , Molybdenum/metabolism , Coenzymes/chemistry , Metalloproteins/chemistry , Pteridines/chemistry
14.
Molecules ; 28(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37513211

ABSTRACT

Mo/W-containing formate dehydrogenases (FDH) catalyzes the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active sites. The metal-containing FDHs are members of the dimethylsulfoxide reductase family of mononuclear molybdenum cofactor (Moco)- or tungsten cofactor (Wco)-containing enzymes. In these enzymes, the active site in the oxidized state comprises a Mo or W atom present in the bis-Moco, which is coordinated by the two dithiolene groups from the two MGD moieties, a protein-derived SeCys or Cys, and a sixth ligand that is now accepted as being a sulfido group. SeCys-containing enzymes have a generally higher turnover number than Cys-containing enzymes. The analogous chemical properties of W and Mo, the similar active sites of W- and Mo-containing enzymes, and the fact that W can replace Mo in some enzymes have led to the conclusion that Mo- and W-containing FDHs have the same reaction mechanism. Details of the catalytic mechanism of metal-containing formate dehydrogenases are still not completely understood and have been discussed here.


Subject(s)
Formate Dehydrogenases , Metalloproteins , Formate Dehydrogenases/metabolism , Oxidation-Reduction , Metalloproteins/chemistry , Molybdenum/chemistry , Catalytic Domain , Pteridines/chemistry , Coenzymes/chemistry
15.
Eur J Med Chem ; 253: 115333, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37031526

ABSTRACT

In accordance with WHO statistics, leishmaniasis is one of the top neglected tropical diseases, affecting around 700 000 to one million people per year. To that end, a new series of coumarin-1,2,3-triazole hybrid compounds was designed and synthesized. All new compounds exerted higher activity than miltefosine against L. major promastigotes and amastigotes. Seven compounds showed single digit micromolar IC50 values whereas three compounds (13c, 14b and 14c) displayed submicromolar potencies. A mechanistic study to elucidate the antifolate-dependent activity of these compounds revealed that folic and folinic acids abrogated their antileishmanial effects. These compounds exhibited high safety margins in normal VERO cells, expressed as high selectivity indices. Docking simulation studies on the folate pathway enzymes pteridine reductase and DHFR-TS imparted strong theoretical support to the observed biological activities. Besides, docking experiments on human DHFR revealed minimal binding interactions thereby highlighting the selectivity of these compounds. Predicted in silico physicochemical and pharmacokinetic parameters were adequate. In view of this, the structural characteristics of these compounds demonstrated their suitability as antileishmanial lead compounds.


Subject(s)
Antiprotozoal Agents , Leishmania , Animals , Humans , Chlorocebus aethiops , Coumarins/chemistry , Pteridines/pharmacology , Triazoles/pharmacology , Triazoles/chemistry , Vero Cells
16.
Anal Bioanal Chem ; 415(12): 2249-2260, 2023 May.
Article in English | MEDLINE | ID: mdl-36920495

ABSTRACT

In this work, we design and synthesize 2,2'-(7,9-dimethyl-2,4,6,8-tetraoxo-6,7,8,9-tetrahydropyrimido[5,4-g]pteridine-1,3(2H,4H)-diyl)bis(N,N-bis(2-chloroethyl)acetamide) (PT-MCA) as a novel DNA intercalator and potential antitumor agent. Electrochemical analysis reveals the redox process of PT-MCA on the electrode surface. The bioelectrochemical sensors are obtained by modifying the surface of GCE with calf thymus DNA (ctDNA), poly (dG), poly (dA), and G-quadruplex, respectively. The DNA oxidative damage induced by PT-MCA is investigated by comparing the peak intensity change of dGuo and dAdo and monitoring the peaks of the oxidation products of guanine and/or adenine (8-oxoGua and/or 2,8-oxoAde). UV-vis absorption and fluorescence spectra and gel electrophoresis are further employed to understand the intercalation of PT-MCA into DNA base pairs. Moreover, PT-MCA is proved to exhibit stronger anti-proliferation activity than mitoxantrone against both 4T1 and B16-F10 cancer cells. At last, the oxidative damage of PT-MCA toward ctDNA is not interfered by the coexistence of ions and also can be detected in real serums.


Subject(s)
Antineoplastic Agents , Pteridines , DNA/genetics , Antineoplastic Agents/pharmacology , Adenine , Oxidative Stress , DNA Damage
17.
J Biol Chem ; 299(1): 102736, 2023 01.
Article in English | MEDLINE | ID: mdl-36423681

ABSTRACT

Molybdenum cofactor (Moco) is a prosthetic group necessary for the activity of four unique enzymes, including the essential sulfite oxidase (SUOX-1). Moco is required for life; humans with inactivating mutations in the genes encoding Moco-biosynthetic enzymes display Moco deficiency, a rare and lethal inborn error of metabolism. Despite its importance to human health, little is known about how Moco moves among and between cells, tissues, and organisms. The prevailing view is that cells that require Moco must synthesize Moco de novo. Although, the nematode Caenorhabditis elegans appears to be an exception to this rule and has emerged as a valuable system for understanding fundamental Moco biology. C. elegans has the seemingly unique capacity to both synthesize its own Moco as well as acquire Moco from its microbial diet. However, the relative contribution of Moco from the diet or endogenous synthesis has not been rigorously evaluated or quantified biochemically. We genetically removed dietary or endogenous Moco sources in C. elegans and biochemically determined their impact on animal Moco content and SUOX-1 activity. We demonstrate that dietary Moco deficiency dramatically reduces both animal Moco content and SUOX-1 activity. Furthermore, these biochemical deficiencies have physiological consequences; we show that dietary Moco deficiency alone causes sensitivity to sulfite, the toxic substrate of SUOX-1. Altogether, this work establishes the biochemical consequences of depleting dietary Moco or endogenous Moco synthesis in C. elegans and quantifies the surprising contribution of the diet to maintaining Moco homeostasis in C. elegans.


Subject(s)
Metalloproteins , Molybdenum Cofactors , Sulfite Oxidase , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Diet , Metalloproteins/genetics , Metalloproteins/metabolism , Molybdenum/metabolism , Molybdenum Cofactors/metabolism , Pteridines/metabolism , Sulfite Oxidase/genetics , Sulfite Oxidase/metabolism
18.
Article in English | MEDLINE | ID: mdl-36400267

ABSTRACT

6-pyruvoyl-tetrahydropterin synthase (PTPS) is the second key enzyme of the pteridine biosynthetic pathway and it plays vital roles in fish body color formation. In this study, Ccptps of koi carp (Cyprinus carpio L.) was cloned, identified and characterized. The full-length cDNA of Ccptps was 1140 bp and encodes for 139 amino acids. Multiple alignments revealed that the amino acids sequence of CcPTPS shared the highest identity to that of C. carpio, and Ccptps was clustered with cyprinid fishes in phylogenetic tree. Liver tissues of koi carp exhibited the highest expression of Ccptps, followed by muscle and skin tissues. During early developmental stages, the expression of Ccptps declined from 2 dph to 4 dph, and increased from 4 dph to 12 dph. The expressions of Ccptps in three color-related tissues (skin, scale and caudal fin) of whole red (WR) koi carp were significantly higher than that of whole while (WW) koi carp. Immunohistochemistry results of skin tissues showed that CcPTPS was mainly located in epidermis, stratum compactum of dermis and muscle layer, with the signal intensities in stratum compactum and muscle layer were stronger in WR koi carp compared to WW koi carp. Co-expressions of CcPTPS, CcSPR and CcXDH were detected in skin tissues of WW and WR koi carps, with CcPTPS exhibited stronger signal intensity compared to CcSPR and CcXDH. These findings imply that Ccptps is potentially involved in koi carp body color formation through the pteridine synthesis pathway.


Subject(s)
Carps , Fish Diseases , Animals , Carps/genetics , Phylogeny , DNA, Complementary , Amino Acids , Pteridines
19.
Article in English | MEDLINE | ID: mdl-36089162

ABSTRACT

INTRODUCTION: Pteridines, such as neopterin, biopterin, and tetrahydrobiopterin (BH4), may be involved in depression pathophysiology owing to their links to immune-inflammatory response, oxidative and nitrosative stress, and monoaminergic transmission. Nonetheless, studies assessing pteridines in depression are inconsistent. We conducted a systematic review and meta-analysis of observational studies comparing blood pteridine concentrations between subjects with depression and healthy controls (HCs). METHODS: We searched Embase, MEDLINE, and PsycInfo for articles indexed through November 2021. Study quality was appraised, evaluating age and gender comparability between groups, sample representativeness, and methods to assess depression. Random-effects meta-analyses were carried out, generating pooled standardized mean differences (SMDs). Heterogeneity across studies was estimated using the I2 statistic. RESULTS: Twenty-four studies, involving 3075 subjects, were included. Individuals with depression showed blood neopterin concentrations higher than HCs (k = 19; SMD = 0.36; p < 0.001) with moderate heterogeneity across studies (I2 = 58.2%). No moderating role of age, gender, or type of blood sample was found. Sensitivity analyses showed no impact of inconsistency and quality of studies on findings. Neopterin concentrations were higher among individuals with major depressive disorder compared to HCs (SMD = 0.44; p < 0.001). This held true also when considering only drug-free subjects (SMD = 0.68; p = 0.003). No differences in biopterin concentrations were found between subjects with depression and HCs (k = 5; SMD = -0.35; p = 0.086), though this result was limited by inconsistency of findings (I2 = 77.9%) and quality of studies. Finally, no sufficient data were available for a meta-analysis on BH4. CONCLUSIONS: As a whole, our work partly supports the hypothesis of an imbalance of pteridine metabolism in depression.


Subject(s)
Depression , Depressive Disorder, Major , Humans , Neopterin , Biopterins , Pteridines
20.
Wien Med Wochenschr ; 173(5-6): 152-157, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36178637

ABSTRACT

BI2536 is potent inhibitor of polo-like kinases PLK1, 2, and 3. The inhibition of PLKs in nucleated cells induces apoptosis by perturbing the cell cycle with consequent engagement of mitotic catastrophe. BI2536 is being tested as chemotherapy in various phase I/II/III clinical trials. Erythrocytes do not have a nucleus; however, they may undergo programmed suicide with characteristic hallmarks including cell shrinkage and phosphatidylserine translocation to the cell surface. This particular death is baptized eryptosis. Our study explored whether BI2536 induces eryptosis. We used flow cytometry to access death in red blood cells. We analyzed the cellular volume, the intracellular calcium concentration, the cell surface phosphatidylserine exposure, and the ceramide abundance. In addition, we analyzed the effect of BI2536 on hemolysis. Our investigation showed that after 48 h of incubation with PLK inhibitor BI2536, erythrocytes lost volume and were positive for annexin­V without any effect on hemolysis. Cells also showed an abundance of ceramide and an increase of intracellular calcium. All these finding suggest that BI2536 provokes eryptosis in red blood cells, ostensibly in part due to Ca2+ entry and ceramide accumulation.


Subject(s)
Erythrocytes , Protein Serine-Threonine Kinases , Pteridines , Protein Serine-Threonine Kinases/antagonists & inhibitors , Humans , Erythrocytes/chemistry , Erythrocytes/cytology , Erythrocytes/drug effects , Eryptosis/drug effects , Pteridines/pharmacology , Ceramides/analysis , Calcium/analysis , Hemolysis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...