Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 550
Filter
1.
Biomolecules ; 13(10)2023 09 27.
Article in English | MEDLINE | ID: mdl-37892138

ABSTRACT

Tryptophan hydroxylase 2 (TPH2) is the key and rate-limiting enzyme of serotonin (5-HT) synthesis in the mammalian brain. The 1473G mutation in the Tph2 gene decreases TPH2 activity in the mouse brain by twofold. (R)-2-amino-6-(1R, 2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin-4(3H)-one (BH4) is a pharmacological chaperone for aromatic amino acid hydroxylases. In the present study, chaperone effects of BH4 on the mutant C1473G TPH2 were investigated in vitro and in vivo. In vitro BH4 increased the thermal stability (T50 value) of mutant and wild-type TPH2 molecules. At the same time, neither chronic (twice per day for 7 days) intraperitoneal injection of 48.3 mg/kg of BH4 nor a single intraventricular administration of 60 µg of the drug altered the mutant TPH2 activity in the brain of Balb/c mice. This result indicates that although BH4 shows a chaperone effect in vitro, it is unable to increase the activity of mutant TPH2 in vivo.


Subject(s)
Brain , Tryptophan Hydroxylase , Mice , Animals , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism , Mice, Inbred C57BL , Brain/metabolism , Pterins/metabolism , Mice, Inbred BALB C , Mammals/metabolism
2.
Syst Biol ; 72(6): 1247-1261, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37561391

ABSTRACT

Convergent evolution is defined as the independent evolution of similar phenotypes in different lineages. Its existence underscores the importance of external selection pressures in evolutionary history, revealing how functionally similar adaptations can evolve in response to persistent ecological challenges through a diversity of evolutionary routes. However, many examples of convergence, particularly among closely related species, involve parallel changes in the same genes or developmental pathways, raising the possibility that homology at deeper mechanistic levels is an important facilitator of phenotypic convergence. Using the genus Ranitomeya, a young, color-diverse radiation of Neotropical poison frogs, we set out to 1) provide a phylogenetic framework for this group, 2) leverage this framework to determine if color phenotypes are convergent, and 3) to characterize the underlying coloration mechanisms to test whether color convergence occurred through the same or different physical mechanisms. We generated a phylogeny for Ranitomeya using ultraconserved elements and investigated the physical mechanisms underlying bright coloration, focusing on skin pigments. Using phylogenetic comparative methods, we identified several instances of color convergence, involving several gains and losses of carotenoid and pterin pigments. We also found a compelling example of nonparallel convergence, where, in one lineage, red coloration evolved through the red pterin pigment drosopterin, and in another lineage through red ketocarotenoids. Additionally, in another lineage, "reddish" coloration evolved predominantly through structural color mechanisms. Our study demonstrates that, even within a radiation of closely related species, convergent evolution can occur through both parallel and nonparallel mechanisms, challenging the assumption that similar phenotypes among close relatives evolve through the same mechanisms.


Subject(s)
Poison Frogs , Poisons , Animals , Phylogeny , Pigmentation/genetics , Anura , Pterins/metabolism , Biological Evolution
3.
Article in English | MEDLINE | ID: mdl-37437837

ABSTRACT

Various aspects of folate and tetrahydrobiopterin (BH4) metabolism disturbances have been detected in patients with schizophrenia.Data were obtained that disturbances in the pterins (folates and BH4) metabolism can be associated with oxidative stress and inflammation, but has not yet been confirmed in clinical studies in schizophrenia. Within the framework of this study, a correlation and factor analysis of biochemical markersof pterin metabolism, inflammation and redox imbalance in patients with schizophrenia was performed in order to test the hypothesis of the single etiopathogenetic node, including the studied biochemical processes. Methods: 125 patients with schizophrenia and 95 healthy volunteers were randomly selected and evaluated with a biochemical examination of BH4, folate, B12, homocysteine, C-reactive protein, interleukin-6, reduced glutathione levels in the blood serum; activity of superoxide dismutase and catalase - in erythrocytes; malondialdehyde - in blood plasma. All patients underwent an examination using standardized psychopathology rating scales. Spearman rank coefficient (ρ) with Benjamini-Hochberg correction was used for the correlation analysis. The principal components analysis (PCA) was used as a factor analysis. Results: Significant correlations were found within groups of pterin metabolism, inflammatory markers and redox-imbalance, and also between separate inflammation, oxidative stress and markers of pterin metabolism. The performed factor analysis made it possible to distinguish two components: 1 - pterin metabolism, 2 - oxidativeinflammatory markers. Despite the weak statistical associations and, possibly, functional relationships between pterin metabolism and oxidative/inflammation markers, each of the components has its own clinical correlates and, probably, a separate contribution to the pathology of schizophrenia.


Subject(s)
Biochemical Phenomena , Schizophrenia , Humans , Oxidative Stress , Pterins/metabolism , Inflammation , Folic Acid , Biomarkers/metabolism
4.
Chemistry ; 29(29): e202300519, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36929221

ABSTRACT

Unconjugated pterins are ubiquitous molecules that participate in countless enzymatic processes and are potentially involved in the photosensitization of singlet oxygen, amino acids, and nucleotides. Following electronic excitation with UV-A light, some of these pterins degrade, producing hydrogen peroxide as the main side product. This process, which is known to take place in vivo, contributes to oxidative stress and melanocyte destruction in vitiligo. In this work, we present for the first time mechanistic insight into the formation of transient triplet species that simultaneously trigger Type I and Type II photosensitizing processes and the initiation of degradation processes. Our calculations reveal that photodegradation of 6-biopterin, which accumulates in the skin of vitiligo patients, leads to 6-formylpterin through a retro-aldol reaction, and subsequently to 6-carboxypterin through a water-mediated aldehyde oxidation. Additionally, we show that the changes in the photosensitizing potential of these systems with pH come from the modulation of their excited-state redox potentials.


Subject(s)
Vitiligo , Humans , Photolysis , Photosensitizing Agents/chemistry , Pterins/chemistry , Pterins/metabolism , Oxidation-Reduction
5.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36499560

ABSTRACT

Pterins are an inseparable part of living organisms. Pterins participate in metabolic reactions mostly as tetrahydropterins. Dihydropterins are usually intermediates of these reactions, whereas oxidized pterins can be biomarkers of diseases. In this review, we analyze the available data on the quantum chemistry of unconjugated pterins as well as their photonics. This gives a comprehensive overview about the electronic structure of pterins and offers some benefits for biomedicine applications: (1) one can affect the enzymatic reactions of aromatic amino acid hydroxylases, NO synthases, and alkylglycerol monooxygenase through UV irradiation of H4pterins since UV provokes electron donor reactions of H4pterins; (2) the emission properties of H2pterins and oxidized pterins can be used in fluorescence diagnostics; (3) two-photon absorption (TPA) should be used in such pterin-related infrared therapy because single-photon absorption in the UV range is inefficient and scatters in vivo; (4) one can affect pathogen organisms through TPA excitation of H4pterin cofactors, such as the molybdenum cofactor, leading to its detachment from proteins and subsequent oxidation; (5) metal nanostructures can be used for the UV-vis, fluorescence, and Raman spectroscopy detection of pterin biomarkers. Therefore, we investigated both the biochemistry and physical chemistry of pterins and suggested some potential prospects for pterin-related biomedicine.


Subject(s)
Metalloproteins , Pterins , Molecular Structure , Pterins/metabolism , Pteridines/chemistry , Coenzymes/metabolism , Metalloproteins/metabolism , Oxidation-Reduction
6.
PLoS One ; 17(12): e0277770, 2022.
Article in English | MEDLINE | ID: mdl-36508422

ABSTRACT

The Ricin toxin A chain (RTA), which depurinates an adenine base at a specific region of the ribosome leading to death, has two adjacent specificity pockets in its active site. Based on this structural information, many attempts have been made to develop small-molecule RTA inhibitors that simultaneously block the two pockets. However, no attempt has been successful. In the present study, we synthesized pterin-7-carboxamides with tripeptide pendants and found that one of them interacts with both pockets simultaneously to exhibit good RTA inhibitory activity. X-ray crystallographic analysis of the RTA crystal with the new inhibitor revealed that the conformational change of Tyr80 is an important factor that allows the inhibitors to plug the two pockets simultaneously.


Subject(s)
Ricin , Ricin/chemistry , Pterins/metabolism , Catalytic Domain , Crystallography, X-Ray , Ribosomes/metabolism
7.
Arch Biochem Biophys ; 729: 109378, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-35995215

ABSTRACT

Phenylalanine hydroxylase (PheH) is a pterin-dependent, mononuclear nonheme iron(II) oxygenase that uses the oxidative power of O2 to hydroxylate phenylalanine to form tyrosine. PheH is a member of a superfamily of O2-activating enzymes that utilizes a common metal binding motif: the 2-His-1-carboxylate facial triad. Like most members of this superfamily, binding of substrates to PheH results in a reorganization of its active site to allow O2 activation. Exploring the energetics of each step before O2 activation can provide mechanistic insight into the initial steps that support the highly specific O2 activation pathway carried out by this metalloenzyme. Here the thermal stability of PheH and its substrate complexes were investigated under an anaerobic environment by using differential scanning calorimetry. In context with known binding constants for PheH, a thermodynamic cycle associated with iron(II), tetrahydrobiopterin (BH4), and phenylalanine binding to the active site was generated, showing a distinctive cooperativity between the binding of BH4 and Phe. The addition of phenylalanine and BH4 to PheH·Fe increased the stability of this enzyme (ΔTm of 8.5 (±0.7) °C with an associated δΔH of 43.0 (±2.9) kcal/mol). The thermodynamic data presented here gives insight into the complicated interactions between metal center, cofactor, and substrate, and how this interplay sets the stage for highly specific, oxidative C-H activation in this enzyme.


Subject(s)
Metalloproteins , Phenylalanine Hydroxylase , Biopterins/analogs & derivatives , Chromobacterium , Ferrous Compounds , Iron/metabolism , Kinetics , Metalloproteins/metabolism , Phenylalanine/metabolism , Phenylalanine Hydroxylase/chemistry , Phenylalanine Hydroxylase/metabolism , Pterins/chemistry , Pterins/metabolism , Thermodynamics , Tyrosine
8.
Clin Chim Acta ; 534: 167-172, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35926683

ABSTRACT

OBJECTIVES: Sepiapterin reductase deficiency (SRD) causes central nervous system symptoms due to dopamine and serotonin depletion because sepiapterin reductase plays an important role in tetrahydrobiopterin biosynthesis. SRD cannot be detected by newborn screening because of the absent hyperphenylalaninemia. To diagnose SRD biochemically, confirmation of reduced monoamine metabolites and elevated sepiapterin in the cerebrospinal fluid (CSF) has been considered necessary, because a past study showed no elevation of urine sepiapterin. Recently, however, the elevation of urine sepiapterin in SRD was reported. METHODS: We developed a fast method to measure sepiapterin and creatinine simultaneously using high-performance liquid chromatography with fluorescence and ultraviolet detection. Urine sepiapterin and creatinine were measured in three SRD patients, two SRD carriers, four SRD siblings, and 103 non-SRD patients. RESULTS: In the three SRD cases, concentrations of urine sepiapterin were 1086, 914, and 575 µmol/mol creatinine (upper limit: 101.7 µmol/mol creatinine), and were markedly higher than those in other groups. CSF sepiapterin concentration was also measured in one SRD case and it was 4.1 nmol/L (upper limit: 0.5 nmol/L). CONCLUSIONS: The simultaneous determination of urine sepiapterin and creatinine appears helpful for the diagnosis of SRD. This assay system can also be used to measure sepiapterin in the CSF.


Subject(s)
Dystonia , Pterins , Creatinine , Dystonia/diagnosis , Humans , Infant, Newborn , Metabolism, Inborn Errors , Psychomotor Disorders , Pterins/metabolism
9.
Mol Microbiol ; 116(4): 1216-1231, 2021 10.
Article in English | MEDLINE | ID: mdl-34494331

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections (UTIs). Successful urinary tract colonization requires appropriate expression of virulence factors in response to host environmental cues, such as limited oxygen and iron availability. Hemolysin is a pore-forming toxin, and its expression correlates with the severity of UPEC infection. Previously, we showed that hemolysin expression is enhanced under anaerobic conditions; however, the genetic basis and regulatory mechanisms involved remain undefined. Here, a transposon-based forward screen identified bis-molybdopterin guanine dinucleotide cofactor (bis-MGD) biosynthesis as an important factor for a full transcription of hemolysin under anaerobiosis but not under aerobiosis. bis-MGD positively influences hemolysin transcription via c3566-c3568, an operon immediately upstream of and cotranscribed with hlyCABD. Furthermore, suppressor mutation analysis identified the nitrogen regulator NtrC as a direct repressor of c3566-c3568-hlyCABD expression, and intact bis-MGD biosynthesis downregulated ntrC expression, thus at least partially explaining the positive role of bis-MGD in modulating hemolysin expression. Finally, bis-MGD is involved in hemolysin-mediated uroepithelial cell death and contributes to the competitive fitness of UPEC in a murine model of UTI. Collectively, our data establish that bis-MGD biosynthesis plays a crucial role in UPEC fitness in vivo, thus providing a potential target for combatting UTIs.


Subject(s)
Escherichia coli Infections/microbiology , Guanine Nucleotides/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Pterins/metabolism , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , Anaerobiosis , Animals , Cell Death , Cell Line , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Mice , Mice, Inbred CBA , Mutagenesis, Insertional , Operon , PII Nitrogen Regulatory Proteins/metabolism , Transcription Factors/metabolism , Transcriptome , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
10.
Biochemistry ; 60(46): 3497-3506, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34266238

ABSTRACT

Two major subclasses of mononuclear non-heme ferrous enzymes use two electron-donating organic cofactors (α-ketoglutarate or pterin) to activate O2 to form FeIV═O intermediates that further react with their substrates through hydrogen atom abstraction or electrophilic aromatic substitution. New spectroscopic methodologies have been developed, enabling the study of the active sites in these enzymes and their oxygen intermediates. Coupled to electronic structure calculations, the results of these spectroscopies provide fundamental insight into mechanism. This Perspective summarizes the results of these studies in elucidating the mechanism of dioxygen activation to form the FeIV═O intermediate and the geometric and electronic structure of this intermediate that enables its high reactivity and selectivity in product formation.


Subject(s)
Cysteine Dioxygenase/metabolism , Electron Transport Complex III/metabolism , Iron/metabolism , Ketoglutaric Acids/metabolism , Oxygen/metabolism , Catalytic Domain , Cysteine Dioxygenase/chemistry , Electron Transport Complex III/chemistry , Ketoglutaric Acids/chemistry , Pterins/metabolism , Superoxides/metabolism
11.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33876764

ABSTRACT

The pterin-dependent nonheme iron enzymes hydroxylate aromatic amino acids to perform the biosynthesis of neurotransmitters to maintain proper brain function. These enzymes activate oxygen using a pterin cofactor and an aromatic amino acid substrate bound to the FeII active site to form a highly reactive FeIV = O species that initiates substrate oxidation. In this study, using tryptophan hydroxylase, we have kinetically generated a pre-FeIV = O intermediate and characterized its structure as a FeII-peroxy-pterin species using absorption, Mössbauer, resonance Raman, and nuclear resonance vibrational spectroscopies. From parallel characterization of the pterin cofactor and tryptophan substrate-bound ternary FeII active site before the O2 reaction (including magnetic circular dichroism spectroscopy), these studies both experimentally define the mechanism of FeIV = O formation and demonstrate that the carbonyl functional group on the pterin is directly coordinated to the FeII site in both the ternary complex and the peroxo intermediate. Reaction coordinate calculations predict a 14 kcal/mol reduction in the oxygen activation barrier due to the direct binding of the pterin carbonyl to the FeII site, as this interaction provides an orbital pathway for efficient electron transfer from the pterin cofactor to the iron center. This direct coordination of the pterin cofactor enables the biological function of the pterin-dependent hydroxylases and demonstrates a unified mechanism for oxygen activation by the cofactor-dependent nonheme iron enzymes.


Subject(s)
Iron/metabolism , Neurotransmitter Agents/biosynthesis , Nuclear Proteins/metabolism , Pterins/chemistry , Zinc Finger Protein Gli2/metabolism , Humans , Iron/chemistry , Nuclear Proteins/chemistry , Oxygen/metabolism , Pterins/metabolism , Tryptophan/chemistry , Tryptophan/metabolism , Zinc Finger Protein Gli2/chemistry
12.
Nat Commun ; 12(1): 2073, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824313

ABSTRACT

Phenylketonuria (PKU) is caused by autosomal recessive variants in phenylalanine hydroxylase (PAH), leading to systemic accumulation of L-phenylalanine (L-Phe) that may reach neurotoxic levels. A homozygous Pah-R261Q mouse, with a highly prevalent misfolding variant in humans, reveals the expected hepatic PAH activity decrease, systemic L-Phe increase, L-tyrosine and L-tryptophan decrease, and tetrahydrobiopterin-responsive hyperphenylalaninemia. Pah-R261Q mice also present unexpected traits, including altered lipid metabolism, reduction of liver tetrahydrobiopterin content, and a metabolic profile indicative of oxidative stress. Pah-R261Q hepatic tissue exhibits large ubiquitin-positive, amyloid-like oligomeric aggregates of mutant PAH that colocalize with selective autophagy markers. Together, these findings reveal that PKU, customarily considered a loss-of-function disorder, can also have toxic gain-of-function contribution from protein misfolding and aggregation. The proteostasis defect and concomitant oxidative stress may explain the prevalence of comorbid conditions in adult PKU patients, placing this mouse model in an advantageous position for the discovery of mutation-specific biomarkers and therapies.


Subject(s)
Amyloid/metabolism , Liver/enzymology , Mutation/genetics , Oxidative Stress , Phenylalanine Hydroxylase/genetics , Protein Aggregates , Animals , Autophagy , Biomarkers/metabolism , Body Weight , Breeding , Female , Gene Expression Regulation , Genotype , Lipid Metabolism , Liver/pathology , Male , Metabolome , Mice , Mutant Proteins/metabolism , Neurotransmitter Agents/metabolism , Oxidative Stress/genetics , Phenylalanine/metabolism , Phenylalanine Hydroxylase/metabolism , Phenylketonurias/enzymology , Pterins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Respiration , Ubiquitin/metabolism , Ubiquitination
13.
Bioorg Med Chem ; 29: 115847, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33199204

ABSTRACT

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a key enzyme in the folate biosynthesis pathway. It catalyzes pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP). HPPK is essential for microorganisms but absent in mammals; therefore, it is an attractive target for developing novel antimicrobial agents. Previously, based on our studies of the structure and mechanism of HPPK, we created first-generation bisubstrate inhibitors by linking 6-hydroxymethylpterin to adenosine through phosphate groups, and developed second-generation inhibitors by replacing the phosphate bridge with a linkage that contains a piperidine moiety. Here, we report third-generation inhibitors designed based on the piperidine-containing inhibitor, mimicking the transition state. We synthesized two such inhibitors, characterized their protein-binding and enzyme inhibition properties, and determined their crystal structures in complex with HPPK, advancing the development of such bisubstrate analog inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Piperidines/pharmacology , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Binding Sites/drug effects , Crystallography, X-Ray , Diphosphotransferases , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Escherichia coli/enzymology , Models, Molecular , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Pterins/chemistry , Pterins/metabolism , Structure-Activity Relationship
14.
Photochem Photobiol Sci ; 19(11): 1538-1547, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33029609

ABSTRACT

Given the prevalence of fluorescence spectroscopy in biological systems, and the prevalence of pterin derivatives throughout biological systems, presented here is an assessment of the two-photon absorption spectroscopy as it applies to a range of the most commonly studied pterin derivatives. QR-CAMB3LYP//ccpVTZ calculations suggest that the use of two-photon spectroscopic methods would enable a more capable differentiation between closely related derivatives in comparison to the one-photon spectra, which show minimal qualitative deviation. Study of short tail derivatives shows that, in most cases, two-photon accessible states solely involve the π* LUMO as the particle orbital, with biopterin, neopterin, and 6-(hydroxymethyl)pterin presenting exceptional potential for targetting. Investigation of derivatives in which the tail contains an aromatic ring resulted in the observation of a series of two-photon accessible states involving charge transfer from the tail to the pterin moiety, the cross sections of which are highly dependent on the adoption of a planar geometry. The observation of these states presents a novel method for tracking the substitution of biologically important molecules such as folic acid and 5-methenyltetrahydrofolylpolyglutamate.


Subject(s)
Density Functional Theory , Photons , Pterins/metabolism , Humans , Molecular Structure , Pterins/chemistry , Spectrometry, Fluorescence
15.
J Insect Physiol ; 127: 104114, 2020.
Article in English | MEDLINE | ID: mdl-32905790

ABSTRACT

The pierid butterfly Colias croceus (Geoffroy in Fourcroy, 1785), established in the Azores archipelago, is polymorphic with six forms, C. croceus f. croceus ♂ and ♀, C. c. f. cremonae ♂ and ♀, C. c. f. helice ♀, and C. c. f. cremonaehelice ♀. We investigated the optical mechanisms underlying the wing colouration of the butterflies by performing spectrophotometry and imaging scatterometry of the variously coloured wing areas and scales. The scale colouration is primarily due to wavelength-selective absorption of incident light by pterins expressed in granular beads in the wing scales, but thin film reflections of the scales' lower lamina and scale stacking also contribute. Three forms (croceus ♂ and ♀ and helice ♀) are consistent with the patterns of the well-known 'alba' polymorphism. We postulate the coexistence of a second polymorphism, 'cremonae', to understand the three other forms (cremonae ♂ and ♀, and cremonaehelice ♀), which are characterized by the absence of red pigment, presumably due to the differential blocking of erythropterin expression.


Subject(s)
Butterflies/physiology , Gene Expression , Polymorphism, Genetic/physiology , Pterins/metabolism , Wings, Animal/chemistry , Animals , Azores , Butterflies/genetics , Female , Male , Pigmentation , Wings, Animal/metabolism
16.
ACS Synth Biol ; 9(3): 494-499, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32149495

ABSTRACT

Tetrahydrobiopterin-dependent hydroxylation of aromatic amino acids is the first step in the biosynthesis of many neuroactive compounds in humans. A fundamental challenge in building these pathways in Escherichia coli is the provision of the non-native hydroxylase cofactor, tetrahydrobiopterin. To solve this, we designed a genetic selection that relies on the tyrosine synthesis activity of phenylalanine hydroxylase. Using adaptive laboratory evolution, we demonstrate the use of this selection to discover: (1) a minimum set of heterologous enzymes and a host folE (T198I) mutation for achieving this type of hydroxylation chemistry in whole cells, (2) functional complementation of tetrahydrobiopterin by indigenous cofactors, and (3) a tryptophan hydroxylase mutation for improving protein abundance. Thus, the goal of having functional aromatic-amino-acid hydroxylation in E. coli was achieved through directed metabolic pathway evolution.


Subject(s)
Amino Acids, Aromatic/metabolism , Directed Molecular Evolution/methods , Escherichia coli/metabolism , Pterins/metabolism , 5-Hydroxytryptophan/metabolism , Biopterins/analogs & derivatives , Biopterins/genetics , Biopterins/metabolism , Dihydroxyphenylalanine/metabolism , GTP Cyclohydrolase/genetics , GTP Cyclohydrolase/metabolism , Hydroxylation , Metabolic Networks and Pathways , Mutation , Phenylalanine Hydroxylase/genetics , Phenylalanine Hydroxylase/metabolism , Tryptophan/metabolism
17.
Biochem Pharmacol ; 176: 113887, 2020 06.
Article in English | MEDLINE | ID: mdl-32112882

ABSTRACT

Immunotherapy is a first-line treatment for many tumor types. However, most breast tumors are immuno-suppressive and only modestly respond to immunotherapy. We hypothesized that correcting arginine metabolism might improve the immunogenicity of breast tumors. We tested whether supplementing sepiapterin, the precursor of tetrahydrobiopterin (BH4)-the nitric oxide synthase (NOS) cofactor-redirects arginine metabolism from the pathway synthesizing polyamines to that of synthesizing nitric oxide (NO) and make breast tumors more immunogenic. We showed that sepiapterin elevated NO but lowered polyamine levels in tumor cells, as well as in tumor-associated macrophages (TAMs). This not only suppressed tumor cell proliferation, but also induced the conversion of TAMs from the immuno-suppressive M2-type to immuno-stimulatory M1-type. Furthermore, sepiapterin abrogated the expression of a checkpoint ligand, PD-L1, in tumors in a STAT3-dependent manner. This is the first study which reveals that supplementing sepiapterin normalizes arginine metabolism, improves the immunogenicity and inhibits the growth of breast tumor cells.


Subject(s)
Arginine/metabolism , Breast Neoplasms/metabolism , Macrophages/drug effects , Nitric Oxide/metabolism , Polyamines/metabolism , Pterins/pharmacology , B7-H1 Antigen/metabolism , Biopterins/analogs & derivatives , Biopterins/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Macrophages/classification , Macrophages/metabolism , Nitric Oxide Synthase/metabolism , Pterins/metabolism , STAT3 Transcription Factor/metabolism , THP-1 Cells
18.
Eur J Med Chem ; 190: 112113, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32058237

ABSTRACT

Cobalamin-dependent methionine synthase (MetH) is involved in the process of tumor cell growth and survival. In this study, a novel series of N5-electrophilic substituted tetrahydropteroate analogs without glutamate residue were designed as non-classical antifolates and evaluated for their inhibitory activities against MetH. In addition, the cytotoxicity of target compounds was evaluated in human tumor cell lines. With N5-chloracetyl as the optimum group, further structure research on the benzene substituent and on the 2,4-diamino group was also performed. Compound 6c, with IC50 value of 12.1 µM against MetH and 0.16-6.12 µM against five cancer cells, acted as competitive inhibitor of MetH. Flow cytometry studies indicated that compound 6c arrested HL-60 cells in the G1-phase and then inducted late apoptosis. The molecular docking further explained the structure-activity relationship.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Folic Acid Antagonists/pharmacology , Pterins/pharmacology , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/chemistry , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Catalytic Domain , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Folic Acid Antagonists/chemical synthesis , Folic Acid Antagonists/metabolism , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Molecular Docking Simulation , Molecular Structure , Protein Binding , Pterins/chemical synthesis , Pterins/metabolism , Structure-Activity Relationship
19.
J Biol Chem ; 295(10): 3029-3039, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31996372

ABSTRACT

Molybdenum cofactor (Moco) biosynthesis is a highly conserved multistep pathway. The first step, the conversion of GTP to cyclic pyranopterin monophosphate (cPMP), requires the bicistronic gene molybdenum cofactor synthesis 1 (MOCS1). Alternative splicing of MOCS1 within exons 1 and 9 produces four different N-terminal and three different C-terminal products (type I-III). Type I splicing results in bicistronic transcripts with two open reading frames, of which only the first, MOCS1A, is translated, whereas type II/III splicing produces MOCS1AB proteins. Here, we first report the cellular localization of alternatively spliced human MOCS1 proteins. Using fluorescence microscopy, fluorescence spectroscopy, and cell fractionation experiments, we found that depending on the alternative splicing of exon 1, type I splice variants (MOCS1A) either localize to the mitochondrial matrix (exon 1a) or remain cytosolic (exon 1b). MOCS1A proteins required exon 1a for mitochondrial translocation, but fluorescence microscopy of MOCS1AB variants (types II and III) revealed that they were targeted to mitochondria independently of exon 1 splicing. In the latter case, cell fractionation experiments displayed that mitochondrial matrix import was facilitated via an internal motif overriding the N-terminal targeting signal. Within mitochondria, MOCS1AB underwent proteolytic cleavage resulting in mitochondrial matrix localization of the MOCS1B domain. In conclusion, MOCS1 produces two functional proteins, MOCS1A and MOCS1B, which follow different translocation routes before mitochondrial matrix import for cPMP biosynthesis involving both proteins. MOCS1 protein maturation provides a novel alternative splicing mechanism that ensures the coordinated mitochondrial targeting of two functionally related proteins encoded by a single gene.


Subject(s)
Carbon-Carbon Lyases/metabolism , Mitochondria/metabolism , Alternative Splicing , Animals , COS Cells , Carbon-Carbon Lyases/genetics , Chlorocebus aethiops , Exons , Humans , Microscopy, Fluorescence , Mitochondrial Proteins/metabolism , Open Reading Frames/genetics , Organophosphorus Compounds/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pterins/metabolism
20.
Biosci Rep ; 40(1)2020 01 31.
Article in English | MEDLINE | ID: mdl-31860061

ABSTRACT

Molybdenum insertases (Mo-insertases) catalyze the final step of molybdenum cofactor (Moco) biosynthesis, an evolutionary old and highly conserved multi-step pathway. In the first step of the pathway, GTP serves as substrate for the formation of cyclic pyranopterin monophosphate, which is subsequently converted into molybdopterin (MPT) in the second pathway step. In the following synthesis steps, MPT is adenylated yielding MPT-AMP that is subsequently used as substrate for enzyme catalyzed molybdate insertion. Molybdate insertion and MPT-AMP hydrolysis are catalyzed by the Mo-insertase E-domain. Earlier work reported a highly conserved aspartate residue to be essential for Mo-insertase functionality. In this work, we confirmed the mechanistic relevance of this residue for the Arabidopsis thaliana Mo-insertase Cnx1E. We found that the conservative substitution of Cnx1E residue Asp274 by Glu (D274E) leads to an arrest of MPT-AMP hydrolysis and hence to the accumulation of MPT-AMP. We further showed that the MPT-AMP accumulation goes in hand with the accumulation of molybdate. By crystallization and structure determination of the Cnx1E variant D274E, we identified the potential reason for the missing hydrolysis activity in the disorder of the region spanning amino acids 269 to 274. We reasoned that this is caused by the inability of a glutamate in position 274 to coordinate the octahedral Mg2+-water complex in the Cnx1E active site.


Subject(s)
Adenosine Monophosphate/metabolism , Arabidopsis Proteins/metabolism , Coenzymes/metabolism , Metalloproteins/metabolism , Pteridines/metabolism , Amino Acid Sequence , Amino Acids/metabolism , Arabidopsis/metabolism , Catalysis , Catalytic Domain , Hydrolysis , Molybdenum/metabolism , Molybdenum Cofactors , Organophosphorus Compounds/metabolism , Pterins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...