Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.832
Filter
1.
Front Immunol ; 15: 1410158, 2024.
Article in English | MEDLINE | ID: mdl-38873611

ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) is one of the most prevalent chronic respiratory diseases and the fourth cause of mortality globally. Neutrophilic inflammation has a vital role in the occurrence and progression of COPD. This study aimed to identify the novel hub genes involved in neutrophilic inflammation in COPD through bioinformatic prediction and experimental validation. Methods: Both the single-cell RNA sequencing (scRNA-seq) dataset (GSE173896) and the RNA sequencing (RNA-seq) dataset (GSE57148) were downloaded from the Gene Expression Omnibus (GEO) database. The Seurat package was used for quality control, dimensions reduction, and cell identification of scRNA-seq. The irGSEA package was used for scoring individual cells. The Monocle2 package was used for the trajectory analysis of neutrophils. The CIBERSORT algorithm was used for analysis of immune cell infiltration in the lungs of COPD patients and controls in RNA-seq dataset, and weighted gene co-expression network analysis (WGCNA) correlated gene modules with neutrophil infiltration. The Mendelian randomization (MR) analysis explored the causal relationship between feature DEGs and COPD. The protein-protein interaction (PPI) network of novel hub genes was constructed, and real-time quantitative polymerase chain reaction (qRT-PCR) was used to validate novel hub genes in clinical specimens. Results: In scRNA-seq, the gene sets upregulated in COPD samples were related to the neutrophilic inflammatory response and TNF-α activation of the NF-κB signaling pathway. In RNA-seq, immune infiltration analysis showed neutrophils were upregulated in COPD lung tissue. We combined data from differential and modular genes and identified 51 differential genes associated with neutrophilic inflammation. Using MR analysis, 6 genes were explored to be causally associated with COPD. Meanwhile, 11 hub genes were identified by PPI network analysis, and all of them were upregulated. qRT-PCR experiments validated 9 out of 11 genes in peripheral blood leukocytes of COPD patients. Furthermore, 5 genes negatively correlated with lung function in COPD patients. Finally, a network of transcription factors for NAMPT and PTGS2 was constructed. Conclusion: This study identified nine novel hub genes related to the neutrophilic inflammation in COPD, and two genes were risk factors of COPD, which may serve as potential biomarkers for the clinical severity of COPD.


Subject(s)
Biomarkers , Neutrophils , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/immunology , Humans , Neutrophils/immunology , Neutrophils/metabolism , Gene Regulatory Networks , Protein Interaction Maps , Inflammation/genetics , Gene Expression Profiling , Computational Biology/methods , Male , Transcriptome , Databases, Genetic
2.
PLoS One ; 19(6): e0303286, 2024.
Article in English | MEDLINE | ID: mdl-38875233

ABSTRACT

PURPOSE: The relationship between the levels of Systemic Immune-inflammation Index (SII) and chronic obstructive pulmonary disease (COPD), lung function, and COPD severity were not fully understood. We conducted this cross-sectional, population-based study to investigate the complex association between SII and COPD, lung function, and COPD severity among the US adults. METHODS: Overall, 18,349 participants were included in the National Health and Nutrition Examination Survey (NHANES) between 2005 and 2018. The exposure variable was SII, calculated from platelet counts, neutrophil counts, and lymphocyte counts. Weighted univariable and multivariable logistic regression, subgroup analysis, and restricted cubic spline (RCS) regression were performed to assess the relationship between COPD, lung function, COPD severity and SII. Last, we used a propensity score matching (PSM) analysis to reduce selective bias and validate these relationships. RESULTS: Approximately 1,094 (5.96%) of the participants were diagnosed as COPD. The multivariable-adjusted odds ratio (OR) (95% confidence interval, CI) for the Q2 group (Log-SII > 2.740) was 1.39 (1.16 to 1.68). Before and after matching, multivariable logistic regression models revealed that increased Log-SII levels (SII Logarithmic transformation) associated positively with the risk of COPD. The subgroup analysis showed no interaction between Log-SII and a variety of variables (P for interaction > 0.05). RCS showed a reversed L-shaped relationship between Log-SII with COPD (P for nonlinear = 0.001) in individuals. In addition, we observed negative significant correlations between forced expiratory volume in one second (FEV1) / forced vital capacity (FVC) %, FEV1/FVC% predicted and SII, and reversed U-shaped curve relationships between FEV1, FEV1% predicted and SII. High SII level is associated with severity of COPD, especially at Global Initiative on Obstructive Lung Disease (GOLD) 1 and GOLD 3. CONCLUSIONS: In summary, the Log-SII level is associated with COPD risk, lung function, and COPD severity.


Subject(s)
Inflammation , Nutrition Surveys , Pulmonary Disease, Chronic Obstructive , Severity of Illness Index , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/epidemiology , Male , Female , Middle Aged , Cross-Sectional Studies , Aged , Lung/physiopathology , Adult , Risk Factors , Forced Expiratory Volume , Neutrophils/immunology , Respiratory Function Tests , Platelet Count
3.
Front Immunol ; 15: 1406234, 2024.
Article in English | MEDLINE | ID: mdl-38868780

ABSTRACT

Objective: This study employed Mendelian Randomization (MR) to investigate the causal relationships among immune cells, COPD, and potential metabolic mediators. Methods: Utilizing summary data from genome-wide association studies, we analyzed 731 immune cell phenotypes, 1,400 plasma metabolites, and COPD. Bidirectional MR analysis was conducted to explore the causal links between immune cells and COPD, complemented by two-step mediation analysis and multivariable MR to identify potential mediating metabolites. Results: Causal relationships were identified between 41 immune cell phenotypes and COPD, with 6 exhibiting reverse causality. Additionally, 21 metabolites were causally related to COPD. Through two-step MR and multivariable MR analyses, 8 cell phenotypes were found to have causal relationships with COPD mediated by 8 plasma metabolites (including one unidentified), with 1-methylnicotinamide levels showing the highest mediation proportion at 26.4%. Conclusion: We have identified causal relationships between 8 immune cell phenotypes and COPD, mediated by 8 metabolites. These findings contribute to the screening of individuals at high risk for COPD and offer insights into early prevention and the precocious diagnosis of Pre-COPD.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/genetics , Humans , Phenotype , Biomarkers/blood , Polymorphism, Single Nucleotide , Metabolome , Genetic Predisposition to Disease
4.
Cells ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786101

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized, at least in part, by autoimmunity through amplified T helper 1 and 17 (Th1 and Th17) immune responses. The loss of immune tolerance controlled by programmed death-ligand 1 (PD-L1) may contribute to this. OBJECTIVES: We studied the tolerogenic role of PD-L1+ dendritic cells (DCs) and their subtypes in relation to specific T cell immunity and the clinical phenotypes of COPD. METHODS: We used flow cytometry to analyze PD-L1 expression by the DCs and their subtypes in the peripheral blood mononuclear cells (PBMCs) from normal participants and those with COPD. T cell proliferation and the signature cytokines of T cell subtypes stimulated with elastin as autoantigens were measured using flow cytometry and enzyme-linked immunosorbent assays (ELISA), respectively. MEASUREMENT AND MAIN RESULTS: A total of 83 participants were enrolled (normal, n = 29; COPD, n = 54). A reduced PD-L1+ conventional dendritic cell 1 (cDC1) ratio in the PBMCs of the patients with COPD was shown (13.7 ± 13.7%, p = 0.03). The decrease in the PD-L1+ cDC1 ratio was associated with a rapid decline in COPD (p = 0.02) and correlated with the CD4+ T cells (r = -0.33, p = 0.02). This is supported by the NCBI GEO database accession number GSE56766, the researchers of which found that the gene expressions of PD-L1 and CD4, but not CD8 were negatively correlated from PBMC in COPD patients (r = -0.43, p = 0.002). Functionally, the PD-L1 blockade enhanced CD4+ T cell proliferation stimulated by CD3/elastin (31.2 ± 22.3%, p = 0.04) and interleukin (IL)-17A production stimulated by both CD3 (156.3 ± 54.7, p = 0.03) and CD3/elastin (148 ± 64.9, p = 0.03) from the normal PBMCs. The PD-L1 blockade failed to increase IL-17A production in the cDC1-depleted PBMCs. By contrast, there was no significant change in interferon (IFN)-γ, IL-4, or IL-10 after the PD-L1 blockade. Again, these findings were supported by the NCBI GEO database accession number GSE56766, the researchers of which found that only the expression of RORC, a master transcription factor driving the Th17 cells, was significantly negatively correlated to PD-L1 (r = -0.33, p = 0.02). CONCLUSIONS: Circulating PD-L1+ cDC1 was reduced in the patients with COPD, and the tolerogenic role was suppressed with susceptibility to self-antigens and linked to rapid decline caused by Th17-skewed chronic inflammation.


Subject(s)
B7-H1 Antigen , Dendritic Cells , Immune Tolerance , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , B7-H1 Antigen/metabolism , Female , Male , Middle Aged , Aged , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Cytokines/metabolism
5.
Respir Res ; 25(1): 218, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789950

ABSTRACT

OBJECTIVE: To evaluate the predictive value of PD-1 expression in T lymphocytes for rehospitalization due to acute exacerbations of COPD (AECOPD) in discharged patients. METHODS: 115 participants hospitalized with COPD (average age 71.8 ± 6.0 years) were recruited at Fujian Provincial Hospital. PD1+T lymphocytes proportions (PD1+T%), baseline demographics and clinical data were recorded at hospital discharge. AECOPD re-admission were collected at 1-year follow-up. Kaplan-Meier analysis compared the time to AECOPD readmissions among groups stratified by PD1+T%. Multivariable Cox proportional hazards regression and stratified analysis determined the correlation between PD1+T%, potential confounders, and AECOPD re-admission. ROC and DCA evaluated PD1+T% in enhancing the clinical predictive values of Cox models, BODE and CODEX. RESULTS: 68 participants (59.1%) were AECOPD readmitted, those with AECOPD readmission exhibited significantly elevated baseline PD-1+CD4+T/CD4+T% and PD-1+CD8 + T/CD8 + T% compared to non-readmitted counterparts. PD1+ T lymphocyte levels statistically correlated with BODE and CODEX indices. Kaplan-Meier analysis demonstrated that those in Higher PD1+ T lymphocyte proportions had reduced time to AECOPD readmission (logRank p < 0.05). Cox analysis identified high PD1+CD4+T and PD1+CD8+T ratios as risk factors of AECOPD readmission, with hazard ratios of 1.384(95%CI [1.043-1.725]) and 1.401(95%CI [1.013-1.789]), respectively. Notably, in patients aged < 70 years and with fewer than twice AECOPD episodes in the previous year, high PD1+T lymphocyte counts significantly increased risk for AECOPD readmission(p < 0.05). The AECOPD readmission predictive model, incorporating PD1+T% exhibited superior discrimination to the Cox model, BODE index and CODEX index, AUC of ROC were 0.763(95%CI [0.633-0.893]) and 0.734(95%CI [0.570-0.899]) (DeLong's test p < 0.05).The DCA illustrates that integrating PD1+T% into models significantly enhances the utility in aiding clinical decision-making. CONCLUSION: Evaluation of PD1+ lymphocyte proportions offer a novel perspective for identifying high-risk COPD patients, potentially providing insights for COPD management. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR, URL: www.chictr.org.cn/ ), Registration number: ChiCTR2200055611 Date of Registration: 2022-01-14.


Subject(s)
Programmed Cell Death 1 Receptor , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/immunology , Male , Female , Aged , Programmed Cell Death 1 Receptor/metabolism , Prospective Studies , Middle Aged , Disease Progression , Patient Readmission , Cohort Studies , Hospitalization/statistics & numerical data , Hospitalization/trends , Aged, 80 and over , Follow-Up Studies , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
6.
Expert Rev Respir Med ; 18(3-4): 111-125, 2024.
Article in English | MEDLINE | ID: mdl-38743428

ABSTRACT

INTRODUCTION: This review summarizes our current understanding of the respiratory microbiome in COPD and Bronchiectasis. We explore the interplay between microbial communities, host immune responses, disease pathology, and treatment outcomes. AREAS COVERED: We detail the dynamics of the airway microbiome, its influence on chronic respiratory diseases, and analytical challenges. Relevant articles from PubMed and Medline (January 2010-March 2024) were retrieved and summarized. We examine clinical correlations of the microbiome in COPD and bronchiectasis, assessing how current therapies impact upon it. The potential of emerging immunotherapies, antiinflammatories and antimicrobial strategies is discussed, with focus on the pivotal role of commensal taxa in maintaining respiratory health and the promising avenue of microbiome remodeling for disease management. EXPERT OPINION: Given the heterogeneity in microbiome composition and its pivotal role in disease development and progression, a shift toward microbiome-directed therapeutics is appealing. This transition, from traditional 'pathogencentric' diagnostic and treatment modalities to those acknowledging the microbiome, can be enabled by evolving crossdisciplinary platforms which have the potential to accelerate microbiome-based interventions into routine clinical practice. Bridging the gap between comprehensive microbiome analysis and clinical application, however, remains challenging, necessitating continued innovation in research, diagnostics, trials, and therapeutic development pipelines.


Subject(s)
Bronchiectasis , Microbiota , Pulmonary Disease, Chronic Obstructive , Humans , Bronchiectasis/microbiology , Bronchiectasis/immunology , Bronchiectasis/therapy , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/therapy , Pulmonary Disease, Chronic Obstructive/physiopathology , Disease Progression , Treatment Outcome , Animals , Immunotherapy
7.
Trends Immunol ; 45(6): 428-441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763820

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is characterized by infiltration of the airways and lung parenchyma by inflammatory cells. Lung pathology results from the cumulative effect of complex and aberrant interactions between multiple cell types. However, three cell types, natural killer cells (NK), dendritic cells (DCs), and regulatory T cells (Tregs), are understudied and underappreciated. We propose that their mutual interactions significantly contribute to the development of COPD. Here, we highlight recent advances in NK, DC, and Treg biology with relevance to COPD, discuss their pairwise bidirectional interactions, and identify knowledge gaps that must be bridged to develop novel therapies. Understanding their interactions will be crucial for therapeutic use of autologous Treg, an approach proving effective in other diseases with immune components.


Subject(s)
Cell Communication , Dendritic Cells , Killer Cells, Natural , Pulmonary Disease, Chronic Obstructive , T-Lymphocytes, Regulatory , Pulmonary Disease, Chronic Obstructive/immunology , Humans , T-Lymphocytes, Regulatory/immunology , Dendritic Cells/immunology , Animals , Killer Cells, Natural/immunology , Cell Communication/immunology
8.
Sci Rep ; 14(1): 12042, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802460

ABSTRACT

T cells are one of the main cell types shaping the immune microenvironment in chronic obstructive pulmonary disease (COPD). They persist andplay cytotoxic roles. The purpose of this study aimed to explore the potential related-genes of T cells in lung tissue of COPD. Chip data GSE38974 and single_celldata GSE196638 were downloaded from the GEO database. Difference analyses and WGCNA of GSE38974 were performed to identify DEGs and the modules most associated with the COPD phenotype. Various cell subsets were obtained by GSE196638, and DEGs of T cells were further identified. GO, GSEA and KEGG enrichment analyses were conducted to explore the biological functions and regulatory signaling pathways of the DEGs and DEGs of T cells. The intersection of the DEGs, module genes and DEGs of T cells was assessed to acquire related-genes of T cells. The mRNA and protein expression levels of related-genes ofT cells were verified in lung tissue of mouse with emphysema model. Based on GSE38974 difference analysis, 3811 DEGs were obtained. The results of WGCNA showed that the red module had the highest correlation coefficient with the COPD phenotype. GSE196638 analysis identified 124 DEGs of T cells. The GO, GSEAand KEGG enrichment analyses mainly identified genes involved in I-kappaB kinase/NF-kappaB signaling, receptor signaling pathway via STAT, regulationof CD4-positive cells, regulation of T-helper cell differentiation, chemokine signaling pathway, Toll-likereceptor signaling pathway, CD8-positive cells, alpha-beta T cell differentiation, MAPK signaling pathway and Th17 cell differentiation. The DEGs, genes of the red module and DEGs of T cells were overlapped to acquire FOXO1 and DDX17. The results of RT-qPCR and Western Blot indicate that the mRNA and protein expression levels of FOXO1 and DDX17 in lung tissue of emphysema mice were significantly higher compared with those in air-exposed mice. FOXO1 as well as DDX17 may be related-genesof T cells in lung tissue of patient with COPD, and their participation in the biological processes of different signaling pathways may inspire further COPD research.


Subject(s)
Computational Biology , Lung , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Computational Biology/methods , Animals , Mice , Lung/metabolism , Lung/pathology , Lung/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Humans , Gene Expression Profiling , Signal Transduction , Disease Models, Animal , Gene Regulatory Networks , Databases, Genetic
9.
Int Immunopharmacol ; 135: 112310, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38788453

ABSTRACT

Chronic obstructive pulmonary disease (COPD) poses a significant health threat characterized by lung inflammation primarily triggered by pulmonary monocytes. Despite the centrality of inflammation in COPD, the regulatory mechanisms governing this response remain elusive, presenting a challenge for anti-inflammatory interventions. In this study, we assessed the expression of exportins in COPD mouse models, revealing a notable upregulation of XPO6 in the mouse lung (P = 0.0011). Intriguingly, we observed a consistent upregulation of XPO6 in pulmonary monocytes from both human and mouse COPD subjects (P < 0.0001). Furthermore, in human lung tissue, XPO6 expression exhibited a positive correlation with TLR2 expression (P = 0). In vitro investigations demonstrated that XPO6 enhances TLR2 expression, activating the MyD88/NF-κB inflammatory signaling pathway. This activation, in turn, promotes the secretion of pro-inflammatory cytokines such as TNFα, IL-6, and IL-1ß in monocytes. Mechanistically, XPO6 facilitates the nuclear export of TLR2 mRNA, ensuring its stability and subsequent protein expression in monocytes. In conclusion, our findings unveil that the upregulation of XPO6 in COPD pulmonary monocytes activates the MyD88/NF-κB inflammatory signaling pathway by facilitating the nuclear export of TLR2 mRNA, thereby identifying XPO6 as a promising therapeutic target for anti-inflammatory interventions in COPD.


Subject(s)
Karyopherins , Mice, Inbred C57BL , Monocytes , Myeloid Differentiation Factor 88 , NF-kappa B , Pulmonary Disease, Chronic Obstructive , RNA, Messenger , Signal Transduction , Toll-Like Receptor 2 , Up-Regulation , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/immunology , Animals , Humans , Myeloid Differentiation Factor 88/metabolism , Monocytes/metabolism , Monocytes/immunology , Monocytes/drug effects , NF-kappa B/metabolism , Mice , Male , Karyopherins/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Active Transport, Cell Nucleus , Lung/pathology , Lung/immunology , Lung/metabolism , Disease Models, Animal , Female
10.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L812-L820, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38712445

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a condition characterized by chronic airway inflammation and obstruction, primarily caused by tobacco smoking. Although the involvement of immune cells in COPD pathogenesis is well established, the contribution of innate lymphoid cells (ILCs) remains poorly understood. ILCs are a type of innate immune cells that participate in tissue remodeling processes, but their specific role in COPD has not been fully elucidated. During COPD, the breakdown of pulmonary elastin generates elastin peptides that elicit biological activities on immune cells. This study aimed to investigate the presence of ILC in patients with COPD and examine the impact of elastin peptides on their functionality. Our findings revealed an elevated proportion of ILC2 in the peripheral blood of patients with COPD, and a general activation of ILC as indicated by an increase in their cytokine secretion capacity. Notably, our study demonstrated that serum from patients with COPD promotes ILC2 phenotype, likely due to the elevated concentration of IL-5, a cytokine known to favor ILC2 activation. Furthermore, we uncovered that this increase in IL-5 secretion is partially attributed to its secretion by macrophages upon stimulation by elastin peptides, suggesting an indirect role of elastin peptides on ILC in COPD. These findings shed light on the involvement of ILC in COPD and provide insights into the potential interplay between elastin breakdown, immune cells, and disease progression. Further understanding of the mechanisms underlying ILC activation and their interaction with elastin peptides could contribute to the development of novel therapeutic strategies for COPD management.NEW & NOTEWORTHY Elastin-derived peptides, generated following alveolar degradation during emphysema in patients with COPD, are able to influence the response of type 2 innate lymphoid cells. We show that the orientation of innate lymphoid cells in patients with COPD is shifted toward a type 2 profile and that elastin peptides are indirectly participating in that shift through their influence of macrophages, which in turn impact innate lymphoid cells.


Subject(s)
Elastin , Immunity, Innate , Lymphocytes , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/pathology , Elastin/metabolism , Elastin/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/drug effects , Female , Male , Aged , Middle Aged , Interleukin-5/metabolism , Interleukin-5/immunology , Macrophages/immunology , Macrophages/metabolism , Peptides/pharmacology , Peptides/immunology
11.
Immunol Invest ; 53(4): 652-694, 2024 May.
Article in English | MEDLINE | ID: mdl-38573590

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a disease whose incidence increase with age and is characterised by chronic inflammation and significant immune dysregulation. Inhalation of toxic substances cause oxidative stress in the lung tissue as well as airway inflammation, under the recruitment of chemokines, immune cells gathered and are activated to play a defensive role. However, persistent inflammation damages the immune system and leads to immune dysregulation, which is mainly manifested in the reduction of the body's immune response to antigens, and immune cells function are impaired, further destroy the respiratory defensive system, leading to recurrent lower respiratory infections and progressive exacerbation of the disease, thus immune dysregulation play an important role in the pathogenesis of COPD. This review summarizes the changes of innate and adaptive immune-related cells during the pathogenesis of COPD, aiming to control COPD airway inflammation and improve lung tissue remodelling by regulating immune dysregulation, for further reducing the risk of COPD progression and opening new avenues of therapeutic intervention in COPD.


Subject(s)
Adaptive Immunity , Immunity, Innate , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/immunology , Humans , Animals , Oxidative Stress/immunology , Lung/immunology , Lung/pathology , Inflammation/immunology , Disease Progression
12.
Hum Vaccin Immunother ; 20(1): 2343544, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38655676

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory illness in older adults. A major cause of COPD-related morbidity and mortality is acute exacerbation of COPD (AECOPD). Bacteria in the lungs play a role in exacerbation development, and the most common pathogen is non-typeable Haemophilus influenzae (NTHi). A vaccine to prevent AECOPD containing NTHi surface antigens was tested in a clinical trial. This study measured IgG and IgA against NTHi vaccine antigens in sputum. Sputum samples from 40 COPD patients vaccinated with the NTHi vaccine were collected at baseline and 30 days after the second dose. IgG and IgA antibodies against the target antigens and albumin were analyzed in the sputum. We compared antibody signals before and after vaccination, analyzed correlation with disease severity and between sputum and serum samples, and assessed transudation. Antigen-specific IgG were absent before vaccination and present with high titers after vaccination. Antigen-specific IgA before and after vaccination were low but significantly different for two antigens. IgG correlated between sputum and serum, and between sputum and disease severity. Sputum albumin was higher in patients with severe COPD than in those with moderate COPD, suggesting changes in transudation played a role. We demonstrated that immunization with the NTHi vaccine induces antigen-specific antibodies in sputum. The correlation between IgG from sputum and serum and the presence of albumin in the sputum of severe COPD patients suggested transudation of antibodies from the serum to the lungs, although local IgG production could not be excluded.Clinical Trial Registration: NCT02075541.


What is the context? Chronic obstructive pulmonary disease (COPD) is the most common chronic respiratory illness in older adults and the third leading cause of death worldwide.One bacterium in the lungs, non-typeable Haemophilus influenzae (NTHi), is responsible for acute exacerbation of the disease, characterized by an increase in airway wall inflammation and symptoms, leading to high morbidity and mortality.A vaccine targeting NTHi was previously developed but did not show efficacy in reducing exacerbations in COPD patients, probably because the vaccine did not elicit an immune response in the lung mucosae, where the bacteria are located.What is the impact? Parenteral immunization with new vaccines targeting NTHi is able to elicit immune defense at the level of lung mucosae.Now that antibodies can be measured in sputum, new vaccines against COPD exacerbations or other lung infections can be tested for efficacy in the actual target tissue.Also, lung immunity against specific pathogens can now be tested.What is new? We determined that antigen-specific antibodies were present in the lungs after vaccination; these were assessed in sputum after vaccination with NTHi surface antigens.NTHi-specific IgG were present in the lungs and appeared to have arrived there primarily by transudation, a type of leakage from the serum to the lung mucosae.Transudation appeared to be stronger in severe than in moderate COPD patients.


Subject(s)
Antibodies, Bacterial , Antigens, Bacterial , Haemophilus Infections , Haemophilus Vaccines , Haemophilus influenzae , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Pulmonary Disease, Chronic Obstructive , Sputum , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus influenzae/immunology , Haemophilus Vaccines/immunology , Haemophilus Vaccines/administration & dosage , Immunity, Mucosal/immunology , Immunoglobulin A/immunology , Immunoglobulin A/analysis , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lung/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Sputum/immunology , Sputum/microbiology
13.
Sheng Li Xue Bao ; 76(2): 346-352, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658383

ABSTRACT

Programmed death-ligand 1 (PD-L1) is important in maintaining central and peripheral immune tolerance in normal tissues, mediating tumor immune escape and keeping the balance between anti- and pro-inflammatory responses. Inflammation plays an important role in inflammatory lung diseases. This article reviews the research progress and potential clinical value of PD-L1 in inflammatory lung diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma and idiopathic pulmonary fibrosis.


Subject(s)
Asthma , B7-H1 Antigen , Pulmonary Disease, Chronic Obstructive , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Asthma/immunology , Acute Lung Injury/immunology , Inflammation/immunology , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/metabolism , Lung Diseases/immunology , Lung Diseases/metabolism , Animals
14.
Pathol Res Pract ; 257: 155295, 2024 May.
Article in English | MEDLINE | ID: mdl-38603841

ABSTRACT

Tobacco smoking is a leading cause of preventable mortality, and it is the major contributor to diseases such as COPD and lung cancer. Cigarette smoke compromises the pulmonary antiviral immune response, increasing susceptibility to viral infections. There is currently no therapy that specifically addresses the problem of impaired antiviral response in cigarette smokers and COPD patients, highlighting the necessity to develop novel treatment strategies. 18-ß-glycyrrhetinic acid (18-ß-gly) is a phytoceutical derived from licorice with promising anti-inflammatory, antioxidant, and antiviral activities whose clinical application is hampered by poor solubility. This study explores the therapeutic potential of an advanced drug delivery system encapsulating 18-ß-gly in poly lactic-co-glycolic acid (PLGA) nanoparticles in addressing the impaired antiviral immunity observed in smokers and COPD patients. Exposure of BCi-NS1.1 human bronchial epithelial cells to cigarette smoke extract (CSE) resulted in reduced expression of critical antiviral chemokines (IP-10, I-TAC, MIP-1α/1ß), mimicking what happens in smokers and COPD patients. Treatment with 18-ß-gly-PLGA nanoparticles partially restored the expression of these chemokines, demonstrating promising therapeutic impact. The nanoparticles increased IP-10, I-TAC, and MIP-1α/1ß levels, exhibiting potential in attenuating the negative effects of cigarette smoke on the antiviral response. This study provides a novel approach to address the impaired antiviral immune response in vulnerable populations, offering a foundation for further investigations and potential therapeutic interventions. Further studies, including a comprehensive in vitro characterization and in vivo testing, are warranted to validate the therapeutic efficacy of 18-ß-gly-PLGA nanoparticles in respiratory disorders associated with compromised antiviral immunity.


Subject(s)
Glycyrrhetinic Acid , Nanoparticles , Humans , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/analogs & derivatives , Antiviral Agents/pharmacology , Smoke/adverse effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Cell Line , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/immunology , Epithelial Cells/drug effects , Epithelial Cells/virology , Cigarette Smoking/adverse effects
15.
Acta Med Okayama ; 78(2): 95-106, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38688827

ABSTRACT

The lungs are very complex organs, and the respiratory system performs the dual roles of repairing tissue while protecting against infection from various environmental stimuli. Persistent external irritation disrupts the immune responses of tissues and cells in the respiratory system, ultimately leading to respiratory disease. Neuropeptide Y (NPY) is a 36-amino-acid polypeptide and a neurotransmitter that regulates homeostasis. The NPY receptor is a seven-transmembrane-domain G-protein-coupled receptor with six subtypes (Y1, Y2, Y3, Y4, Y5, and Y6). Of these receptors, Y1, Y2, Y4, and Y5 are functional in humans, and Y1 plays important roles in the immune responses of many organs, including the respiratory system. NPY and the Y1 receptor have critical roles in the pathogenesis of asthma, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis. The effects of NPY on the airway immune response and pathogenesis differ among respiratory diseases. This review focuses on the involvement of NPY in the airway immune response and pathogenesis of various respiratory diseases.


Subject(s)
Neuropeptide Y , Receptors, Neuropeptide Y , Humans , Neuropeptide Y/physiology , Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/physiology , Animals , Respiratory Tract Diseases/immunology , Asthma/immunology , Respiratory System/immunology , Pulmonary Disease, Chronic Obstructive/immunology
16.
Eur Respir J ; 63(5)2024 May.
Article in English | MEDLINE | ID: mdl-38485148

ABSTRACT

Globally, nearly 400 million persons have COPD, and COPD is one of the leading causes of hospitalisation and mortality across the world. While it has been long-recognised that COPD is an inflammatory lung disease, dissimilar to asthma, type 2 inflammation was thought to play a minor role. However, recent studies suggest that in approximately one third of patients with COPD, type 2 inflammation may be an important driver of disease and a potential therapeutic target. Importantly, the immune cells and molecules involved in COPD-related type 2 immunity may be significantly different from those observed in severe asthma. Here, we identify the important molecules and effector immune cells involved in type 2 airway inflammation in COPD, discuss the recent therapeutic trial results of biologicals that have targeted these pathways and explore the future of therapeutic development of type 2 immune modulators in COPD.


Subject(s)
Inflammation , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/immunology , Humans , Inflammation/immunology , Th2 Cells/immunology , Asthma/immunology
17.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L672-L686, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38530936

ABSTRACT

Alveolar macrophages (AMs) in patients with chronic obstructive pulmonary disease (COPD) orchestrate persistent inflammation in the airway. However, subpopulations of AMs participating in chronic inflammation have been poorly characterized. We previously reported that Siglec-1 expression on AMs, which is important for bacteria engulfment, was decreased in COPD. Here, we show that Siglec-1-negative AMs isolated from COPD lung tissues exhibit a proinflammatory phenotype and are associated with poor clinical outcomes in patients with COPD. Using flow cytometry, we segregated three subsets of AMs based on the expression of Siglec-1 and their side scattergram (SSC) and forward scattergram (FSC) properties: Siglec-1+SSChiFSChi, Siglec-1-SSChiFSChi, and Siglec-1-SSCloFSClo subsets. The Siglec-1-SSCloFSClo subset number was increased in COPD. RNA sequencing revealed upregulation of multiple proinflammatory signaling pathways and emphysema-associated matrix metalloproteases in the Siglec-1-SSCloFSClo subset. Gene set enrichment analysis indicated that the Siglec-1-SSCloFSClo subset adopted intermediate phenotypes between monocytes and mature alveolar macrophages. Functionally, these cells produced TNF-α, IL-6, and IL-8 at baseline, and these cytokines were significantly increased in response to viral RNA. The increase in Siglec-1-negative AMs in induced sputum is associated with future exacerbation risk and lung function decline in patients with COPD. Collectively, the novel Siglec-1-SSCloFSClo subset of AMs displays proinflammatory properties, and their emergence in COPD airways may be associated with poor clinical outcomes.NEW & NOTEWORTHY Alveolar macrophages (AMs) in patients with chronic obstructive pulmonary disease (COPD) orchestrate persistent inflammation in the airway. We find that Siglec-1-negative alveolar macrophages have a wide range of proinflammatory landscapes and a protease-expressing phenotype. Moreover, this subset is associated with the pathogenesis of COPD and responds to viral stimuli.


Subject(s)
Macrophages, Alveolar , Pulmonary Disease, Chronic Obstructive , Sialic Acid Binding Ig-like Lectin 1 , Aged , Female , Humans , Male , Middle Aged , Cytokines/metabolism , Inflammation/metabolism , Inflammation/pathology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Macrophages, Alveolar/immunology , Phenotype , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/immunology , Sialic Acid Binding Ig-like Lectin 1/metabolism
18.
Eur J Intern Med ; 124: 89-98, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38402021

ABSTRACT

BACKGROUND: Macrophages are the predominant immune cells in the human lung and play a central role in airway inflammation, including asthma and chronic obstructive pulmonary disease (COPD). Thymic stromal lymphopoietin (TSLP), a pleiotropic cytokine mainly expressed by bronchial epithelial cells, plays a key role in asthma and COPD pathobiology. TSLP exists in two variants: the long form (lfTSLP) and a shorter TSLP isoform (sfTSLP). We aimed to localize TSLP in human lung macrophages (HLMs) and investigate the mechanisms of its release from these cells. We also evaluated the effects of the two variants of TSLP on the release of angiogenic factor from HLMs. METHODS: We employed immunofluorescence and Western blot to localize intracellular TSLP in HLMs purified from human lung parenchyma. HLMs were activated by T2-high (IL-4, IL-13) and T2-low (lipopolysaccharide: LPS) immunological stimuli. RESULTS: TSLP was detected in HLMs and subcellularly localized in the cytoplasm. IL-4 and LPS induced TSLP release from HLMs. Preincubation of macrophages with brefeldin A, known to disrupt the Golgi apparatus, inhibited TSLP release induced by LPS and IL-4. lfTSLP concentration-dependently induced the release of vascular endothelial growth factor-A (VEGF-A), the most potent angiogenic factor, from HLMs. sfTSLP neither activated nor interfered with the activating property of lfTSLP on macrophages. CONCLUSIONS: Our results highlight a novel immunologic circuit between HLMs and TSLP. Given the central role of macrophages in airway inflammation, this autocrine loop holds potential translational relevance in understanding innovative aspects of the pathobiology of asthma and chronic inflammatory lung disorders.


Subject(s)
Asthma , Cytokines , Interleukin-4 , Lipopolysaccharides , Macrophages, Alveolar , Pulmonary Disease, Chronic Obstructive , Thymic Stromal Lymphopoietin , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/immunology , Asthma/metabolism , Asthma/immunology , Cytokines/metabolism , Interleukin-4/metabolism , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Lipopolysaccharides/pharmacology , Interleukin-13/metabolism , Vascular Endothelial Growth Factor A/metabolism , Cells, Cultured
19.
Int Arch Allergy Immunol ; 185(5): 480-488, 2024.
Article in English | MEDLINE | ID: mdl-38387446

ABSTRACT

INTRODUCTION: Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a recently discovered inhibitor of matrix metalloproteinase (MMP). There is a large number of chronic obstructive pulmonary disease (COPD) patients worldwide; however, the role of RECK on COPD has not been studied. This study explored the expression of RECK in COPD patients and its effect on neutrophil function to provide a new scientific basis for the prevention and treatment of COPD. METHOD: Fifty patients with acute exacerbation of COPD and fifty healthy controls were enrolled in the study. RECK was detected in lung tissue, sputum, and plasma of subjects as well as in BEAS-2B cells stimulated with cigarette smoke extract (CSE) by immunohistochemistry, ELISA, and qRT-PCR. Meanwhile, lung function (FEV1%pred) and inflammatory cytokines (IL-6 and IL-8) were examined, and correlation analysis was performed with RECK expression. The effect of RECK on proliferation, apoptosis, migration, and inflammatory cytokines and its potential mechanism was further quantified by neutrophil stimulated with recombinant human RECK protein (rhRECK) combined with CSE using CCK8, flow cytometry, Transwell assay, qRT-PCR, ELISA, and Western analysis. RESULTS: RECK was mainly expressed on airway epithelial cells in normal lung tissue and was significantly diminished in COPD patients. The levels of RECK in sputum and plasma were also significantly decreased in COPD patients. Pearson correlation analysis showed that RECK level in plasma was positively correlated with FEV1%pred (r = 0.458, p < 0.001) and negatively correlated with IL-6 and IL-8 (r = -0.386, -0.437; p = 0.006, 0.002) in COPD patients. The expression of RECK was decreased in BEAS-2B stimulated with CSE. The migration, inflammation, and MMP-9 expression of neutrophils were promoted by CSE, while inhibited by rhRECK. CONCLUSION: RECK is low expressed in COPD patients and negatively correlated with inflammation. It may inhibit the inflammation and migration of neutrophils by downregulating MMP-9.


Subject(s)
GPI-Linked Proteins , Neutrophils , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/immunology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Male , Female , Middle Aged , Aged , Cytokines/metabolism , Sputum/metabolism , Sputum/immunology , Cell Line , Inflammation/metabolism , Apoptosis , Cell Movement , Lung/immunology , Lung/pathology , Lung/metabolism
20.
Allergy ; 79(5): 1089-1122, 2024 May.
Article in English | MEDLINE | ID: mdl-38108546

ABSTRACT

The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.


Subject(s)
Cellular Senescence , Metabolic Networks and Pathways , Humans , Cellular Senescence/drug effects , Animals , Chronic Disease , Inflammation/metabolism , Inflammation/immunology , Lung Diseases/etiology , Lung Diseases/drug therapy , Lung Diseases/metabolism , Lung Diseases/immunology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/immunology , Aging/immunology , Aging/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...