Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.692
Filter
1.
J Pak Med Assoc ; 74(4): 797-799, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751283

ABSTRACT

This case report discusses the diagnostic challenge of congenital lobar emphysema (CLE) in a three-month old infant with severe respiratory distress. The infant was initially misdiagnosed and managed as a case of pneumothorax. This case highlights the importance of CT scans as a diagnostic tool for early diagnosis and lifesaving management of CLE. It also signifies the need for adequate funds and infrastructure in the health care system especially in rural areas of developing countries like Pakistan.


Subject(s)
Pulmonary Emphysema , Tomography, X-Ray Computed , Humans , Infant , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/congenital , Pneumothorax/diagnostic imaging , Pneumothorax/diagnosis , Male , Diagnosis, Differential
2.
Medicine (Baltimore) ; 103(20): e38185, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758910

ABSTRACT

This study aims to evaluate chest computed tomography (CT) findings in hospital patients with primary varicella pneumonia (PVP). We retrospectively analyzed CT images of 77 PVP patients using 3D Slicer, an open-source software, to model lesions and lungs. This retrospective cohort study was approved by the Institutional Review Board (Ethical Committee, Renmin Hospital, Hubei University of Medicine, Shiyan, China) and waived the requirement for written informed consent. The left lung was more frequently and severely affected in PVP, with significant differences between the 2 groups in CT involvement percentage of each lung region, except for total lung inflation. Group A showed higher median percentages of lung collapse compared to Group B. The extent of left lung involvement is a critical predictor of emphysema in PVP patients, highlighting the importance of also monitoring the right lung for more severe cases. Lower emphysema levels correspond to more collapsed and infiltrated lung segments, suggesting a more severe clinical presentation.


Subject(s)
Pulmonary Emphysema , Tomography, X-Ray Computed , Humans , Retrospective Studies , Male , Tomography, X-Ray Computed/methods , Female , Pulmonary Emphysema/diagnostic imaging , Child , Adolescent , Chickenpox/diagnostic imaging , Chickenpox/complications , Lung/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/complications , Adult , China/epidemiology , Young Adult , Child, Preschool
3.
Eur Radiol Exp ; 8(1): 63, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764066

ABSTRACT

BACKGROUND: Emphysema influences the appearance of lung tissue in computed tomography (CT). We evaluated whether this affects lung nodule detection by artificial intelligence (AI) and human readers (HR). METHODS: Individuals were selected from the "Lifelines" cohort who had undergone low-dose chest CT. Nodules in individuals without emphysema were matched to similar-sized nodules in individuals with at least moderate emphysema. AI results for nodular findings of 30-100 mm3 and 101-300 mm3 were compared to those of HR; two expert radiologists blindly reviewed discrepancies. Sensitivity and false positives (FPs)/scan were compared for emphysema and non-emphysema groups. RESULTS: Thirty-nine participants with and 82 without emphysema were included (n = 121, aged 61 ± 8 years (mean ± standard deviation), 58/121 males (47.9%)). AI and HR detected 196 and 206 nodular findings, respectively, yielding 109 concordant nodules and 184 discrepancies, including 118 true nodules. For AI, sensitivity was 0.68 (95% confidence interval 0.57-0.77) in emphysema versus 0.71 (0.62-0.78) in non-emphysema, with FPs/scan 0.51 and 0.22, respectively (p = 0.028). For HR, sensitivity was 0.76 (0.65-0.84) and 0.80 (0.72-0.86), with FPs/scan of 0.15 and 0.27 (p = 0.230). Overall sensitivity was slightly higher for HR than for AI, but this difference disappeared after the exclusion of benign lymph nodes. FPs/scan were higher for AI in emphysema than in non-emphysema (p = 0.028), while FPs/scan for HR were higher than AI for 30-100 mm3 nodules in non-emphysema (p = 0.009). CONCLUSIONS: AI resulted in more FPs/scan in emphysema compared to non-emphysema, a difference not observed for HR. RELEVANCE STATEMENT: In the creation of a benchmark dataset to validate AI software for lung nodule detection, the inclusion of emphysema cases is important due to the additional number of FPs. KEY POINTS: • The sensitivity of nodule detection by AI was similar in emphysema and non-emphysema. • AI had more FPs/scan in emphysema compared to non-emphysema. • Sensitivity and FPs/scan by the human reader were comparable for emphysema and non-emphysema. • Emphysema and non-emphysema representation in benchmark dataset is important for validating AI.


Subject(s)
Artificial Intelligence , Pulmonary Emphysema , Tomography, X-Ray Computed , Humans , Male , Middle Aged , Female , Tomography, X-Ray Computed/methods , Pulmonary Emphysema/diagnostic imaging , Software , Sensitivity and Specificity , Lung Neoplasms/diagnostic imaging , Aged , Radiation Dosage , Solitary Pulmonary Nodule/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods
4.
Clin Chest Med ; 45(2): 461-473, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816100

ABSTRACT

Diagnosis and treatment of patients with smoking-related lung diseases often requires multidisciplinary contributions to optimize care. Imaging plays a key role in characterizing the underlying disease, quantifying its severity, identifying potential complications, and directing management. The primary goal of this article is to provide an overview of the imaging findings and distinguishing features of smoking-related lung diseases, specifically, emphysema/chronic obstructive pulmonary disease, respiratory bronchiolitis-interstitial lung disease, smoking-related interstitial fibrosis, desquamative interstitial pneumonitis, combined pulmonary fibrosis and emphysema, pulmonary Langerhans cell histiocytosis, and E-cigarette or vaping related lung injury.


Subject(s)
Lung Diseases, Interstitial , Pulmonary Emphysema , Smoking , Humans , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/therapy , Pulmonary Emphysema/etiology , Pulmonary Emphysema/diagnostic imaging , Smoking/adverse effects , Tomography, X-Ray Computed , Lung/diagnostic imaging , Lung/pathology , Histiocytosis, Langerhans-Cell/complications , Histiocytosis, Langerhans-Cell/diagnosis
5.
Sci Rep ; 14(1): 8718, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622275

ABSTRACT

Chronic Obstructive Pulmonary Disease (COPD) is characterized by progressive and irreversible airflow limitation, with individual body composition influencing disease severity. Severe emphysema worsens symptoms through hyperinflation, which can be relieved by bronchoscopic lung volume reduction (BLVR). To investigate how body composition, assessed through CT scans, impacts outcomes in emphysema patients undergoing BLVR. Fully automated CT-based body composition analysis (BCA) was performed in patients with end-stage emphysema receiving BLVR with valves. Post-interventional muscle and adipose tissues were quantified, body size-adjusted, and compared to baseline parameters. Between January 2015 and December 2022, 300 patients with severe emphysema underwent endobronchial valve treatment. Significant improvements were seen in outcome parameters, which were defined as changes in pulmonary function, physical performance, and quality of life (QoL) post-treatment. Muscle volume remained stable (1.632 vs. 1.635 for muscle bone adjusted ratio (BAR) at baseline and after 6 months respectively), while bone adjusted adipose tissue volumes, especially total and pericardial adipose tissue, showed significant increase (2.86 vs. 3.00 and 0.16 vs. 0.17, respectively). Moderate to strong correlations between bone adjusted muscle volume and weaker correlations between adipose tissue volumes and outcome parameters (pulmonary function, QoL and physical performance) were observed. Particularly after 6-month, bone adjusted muscle volume changes positively corresponded to improved outcomes (ΔForced expiratory volume in 1 s [FEV1], r = 0.440; ΔInspiratory vital capacity [IVC], r = 0.397; Δ6Minute walking distance [6MWD], r = 0.509 and ΔCOPD assessment test [CAT], r = -0.324; all p < 0.001). Group stratification by bone adjusted muscle volume changes revealed that groups with substantial muscle gain experienced a greater clinical benefit in pulmonary function improvements, QoL and physical performance (ΔFEV1%, 5.5 vs. 39.5; ΔIVC%, 4.3 vs. 28.4; Δ6MWDm, 14 vs. 110; ΔCATpts, -2 vs. -3.5 for groups with ΔMuscle, BAR% < -10 vs. > 10, respectively). BCA results among patients divided by the minimal clinically important difference for forced expiratory volume of the first second (FEV1) showed significant differences in bone-adjusted muscle and intramuscular adipose tissue (IMAT) volumes and their respective changes after 6 months (ΔMuscle, BAR% -5 vs. 3.4 and ΔIMAT, BAR% -0.62 vs. 0.60 for groups with ΔFEV1 ≤ 100 mL vs > 100 mL). Altered body composition, especially increased muscle volume, is associated with functional improvements in BLVR-treated patients.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Pneumonectomy/methods , Quality of Life , Bronchoscopy/methods , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/surgery , Pulmonary Emphysema/etiology , Emphysema/etiology , Forced Expiratory Volume/physiology , Body Composition , Tomography, X-Ray Computed , Treatment Outcome
6.
BMJ Case Rep ; 17(4)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670566

ABSTRACT

A woman in her late 60s with severe chronic obstructive pulmonary disease (COPD) and emphysema underwent bronchoscopic lung volume reduction (BLVR) with endobronchial valves (EBV) to address hyperinflation. The initial EBV placement has led to partial lobar atelectasis of the left lower lobe and resulted in significant improvement in the patient's symptoms and lung function. However, valve migration occurred later due to pneumothorax unrelated to valves, leading to suboptimal clinical improvement. The patient achieved delayed full lobar atelectasis 21 months after EBV placement, which led to a significant clinical improvement. The patient decided to be delisted from the lung transplant list due to the improvement. This case highlights the importance of considering delayed atelectasis as a possible outcome of EBV placement and suggests the need for further exploration of the long-term implications and associations of this procedure.


Subject(s)
Bronchoscopy , Pneumonectomy , Pulmonary Atelectasis , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Atelectasis/etiology , Pulmonary Atelectasis/diagnostic imaging , Female , Bronchoscopy/methods , Pneumonectomy/methods , Pulmonary Disease, Chronic Obstructive/surgery , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Emphysema/surgery , Pulmonary Emphysema/diagnostic imaging , Middle Aged , Prostheses and Implants , Treatment Outcome
7.
Med Phys ; 51(6): 4133-4142, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578373

ABSTRACT

BACKGROUND: Pulmonary emphysema is a part of chronic obstructive pulmonary disease, which is an irreversible chronic respiratory disease. In order to avoid further damage to lung tissue, early diagnosis and treatment of pulmonary emphysema is essential. PURPOSE: Early pulmonary emphysema diagnosis is difficult with conventional radiographic imaging. Recently, x-ray phase contrast imaging has proved to be an effective and promising imaging strategy for soft tissue, due to its high sensitivity and multi-contrast. The aim of this study is to diagnose pulmonary emphysema early utilizing an x-ray Talbot-Lau interferometer (TLI). METHODS: We successfully established the mouse model of emphysema by porcine pancreatic elastase treatment, and then used the established x-ray TLI to perform imaging experiments on the mice with different treatment time. The traditional absorption CT and phase contrast CT were obtained simultaneously through TLI. The CT results and histopathology of mice lung in different treatment time were quantitatively analyzed. RESULTS: By imaging mice lungs, it can be found that phase contrast has higher sensitivity than absorption contrast in early pulmonary emphysema. The results show that the phase contrast signal could distinguish the pulmonary emphysema earlier than the conventional attenuation signal, which can be consistent with histological images. Through the quantitative analysis of pathological section and phase contrast CT, it can be found that there is a strong linear correlation. CONCLUSIONS: In this study, we quantitatively analyze mean linear intercept of histological sections and CT values of mice. The results show that the phase contrast signal has higher imaging sensitivity than the attenuation signal. X-ray TLI multi-contrast imaging is proved as a potential diagnostic method for early pulmonary emphysema in mice.


Subject(s)
Interferometry , Pulmonary Emphysema , Animals , Pulmonary Emphysema/diagnostic imaging , Mice , Interferometry/instrumentation , Tomography, X-Ray Computed , Lung/diagnostic imaging , Early Diagnosis , Mice, Inbred C57BL
8.
Eur J Cardiothorac Surg ; 65(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38447190

ABSTRACT

OBJECTIVES: Pulmonary resection in patients with severe emphysema may impact postoperative respiratory complications. Low-attenuation areas evaluated using three-dimensional computed tomography to assess emphysematous changes are strongly associated with postoperative respiratory complications. Herein, we investigated the relationship between low-attenuation area, the surgical procedure and resected lung volume, which has not been explored in previous studies. METHODS: We retrospectively evaluated patients with primary or metastatic lung cancer who underwent surgical resection. The low-attenuation area percentage (low-attenuation area/total lung area × 100) and resected lung volume were calculated using three-dimensional computed tomography software, and the relationship with postoperative respiratory complications was analysed. RESULTS: Postoperative respiratory complications occurred in 66 patients (17%) in the total cohort (n = 383). We set the median value of 1.1% as the cut-off value for low-attenuation area percentage to predict postoperative respiratory complications, which occurred in 24% and 10% of patients with low-attenuation area >1.1% and <1.1%, respectively (P < 0.001). Postoperative respiratory complications occurred in approximately one-third of the patients with low-attenuation area >1.1%, whose resected lung volume was ≥15.8% or ≥5 resected subsegments. Multivariable analysis revealed that sublobar resection was associated with a significantly lower risk of postoperative respiratory complications in patients with low-attenuation area >1.1% (odds ratio 0.4, 95% confidence interval 0.183-0.875). CONCLUSIONS: Emphysema is a risk factor for postoperative respiratory complications, and lobectomy is an independent predictive risk factor. Preserving more lung parenchyma may yield better short-term prognoses in patients with emphysematous lungs.


Subject(s)
Emphysema , Lung Neoplasms , Pulmonary Emphysema , Respiration Disorders , Humans , Retrospective Studies , Pneumonectomy/adverse effects , Pneumonectomy/methods , Lung/diagnostic imaging , Lung/surgery , Lung/pathology , Lung Neoplasms/complications , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Respiration Disorders/etiology , Postoperative Complications/etiology , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/surgery , Emphysema/surgery , Neoplasm Staging
10.
Tohoku J Exp Med ; 263(1): 51-54, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38355110

ABSTRACT

Indium lung is an occupational lung disease caused by exposure to indium-tin-oxide (ITO) dust. Compared to other occupational lung diseases, indium lung has a shorter latency period and the respiratory status continues to worsen even after exposure to the work environment improves. Paraseptal emphysema which affects mainly the subpleural area is seen on chest images obtained via computed tomography (CT), regardless of the smoking history. However, the pathogenesis of emphysema in indium lung is still unclear. Therefore, we re-evaluated the pathology of three previously reported cases of indium lung. Paraseptal emphysema was observed in both smokers and nonsmokers. Obstructive respiratory impairment worsened over time in the cases with paraseptal emphysema. Many alveolar walls were destroyed independent of the presence or absence of emphysetamous changes or fibrosis. Moreover, bronchiolitis was found to be less common in indium lung than in asbestosis (the most common occupational lung disease) or common cases of chronic obstructive pulmonary disease caused by smoking. It has been shown that ITO causes protease anti-protease imbalance, oxidant-antioxidant imbalance, and continuous, abnormal inflammation (the three major causes of emphysema). In addition, nano-sized ITO is less likely to be trapped in the upper airways and may easily reach the subpleural alveoli. Furthermore, ITO may continue to cause sustained tissue injury at the alveolar level potentially resulting in emphysema. Further studies are needed to elucidate the detailed pathogenesis of indium lung by comparing it with other occupational lung diseases.


Subject(s)
Indium , Lung , Pulmonary Emphysema , Humans , Indium/toxicity , Pulmonary Emphysema/pathology , Pulmonary Emphysema/diagnostic imaging , Lung/pathology , Lung/diagnostic imaging , Male , Middle Aged , Occupational Exposure/adverse effects , Tomography, X-Ray Computed , Aged , Tin Compounds
11.
Article in English | MEDLINE | ID: mdl-38333775

ABSTRACT

Introduction: Although pulmonary involvement due to alpha-1 antitrypsin (AAT) deficiency has been widely described, most studies focus on the genotypes causing severe deficiency (<60 mg/dL). Objective: The aim of this study was to analyze the prevalence of the different AAT gene variants that do not cause severe deficiency in patients with pulmonary emphysema diagnosed by thoracic computed tomography (CT). Furthermore, we assessed the risk associated with a non-severe decrease in AAT values in the pathogenesis of emphysema. Methods: Case-control study design that included patients who had a CT scan available of the entire thorax. In total, 176 patients with emphysema (cases) and 100 control subjects without emphysema were analyzed. Results: The prevalence of variants was higher among cases (25.6%; 45/176) than controls (22%; 22/100), although the difference was not statistically significant (P=0.504) when analyzed globally. In the control group, all the variants detected were MS. Excluding this variant, statistically significant differences were observed in the remaining variants (MZ, SS and SZ). Only 18% of the controls (all MS) presented values below our limit of normality, and all had values very close to the reference value (90 mg/dL). In contrast, 76% of patients with the other variants presented pathological levels. In a logistic regression model, both smoking and a non-severe reduction in AAT (60 to 90 mg/dL) increased the probability of emphysema. Conclusion: Our study confirms an association between certain variants in the alpha-1 antitrypsin gene that do not cause severe deficiency and the presence of pulmonary emphysema. This association with variants that are associated with reductions in serum AAT values is statistically significant and independent of smoking habit.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , alpha 1-Antitrypsin Deficiency , Humans , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin Deficiency/diagnosis , alpha 1-Antitrypsin Deficiency/diagnostic imaging , Case-Control Studies , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/epidemiology , Pulmonary Emphysema/genetics , Thorax , Tomography, X-Ray Computed
15.
Radiology ; 310(1): e231632, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38165244

ABSTRACT

Background CT attenuation is affected by lung volume, dosage, and scanner bias, leading to inaccurate emphysema progression measurements in multicenter studies. Purpose To develop and validate a method that simultaneously corrects volume, noise, and interscanner bias for lung density change estimation in emphysema progression at CT in a longitudinal multicenter study. Materials and Methods In this secondary analysis of the prospective Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) study, lung function data were obtained from participants who completed baseline and 5-year follow-up visits from January 2008 to August 2017. CT emphysema progression was measured with volume-adjusted lung density (VALD) and compared with the joint volume-noise-bias-adjusted lung density (VNB-ALD). Reproducibility was studied under change of dosage protocol and scanner model with repeated acquisitions. Emphysema progression was visually scored in 102 randomly selected participants. A stratified analysis of clinical characteristics was performed that considered groups based on their combined lung density change measured by VALD and VNB-ALD. Results A total of 4954 COPDGene participants (mean age, 60 years ± 9 [SD]; 2511 male, 2443 female) were analyzed (1329 with repeated reduced-dose acquisition in the follow-up visit). Mean repeatability coefficients were 30 g/L ± 0.46 for VALD and 14 g/L ± 0.34 for VNB-ALD. VALD measurements showed no evidence of differences between nonprogressors and progressors (mean, -5.5 g/L ± 9.5 vs -8.6 g/L ± 9.6; P = .11), while VNB-ALD agreed with visual readings and showed a difference (mean, -0.67 g/L ± 4.8 vs -4.2 g/L ± 5.5; P < .001). Analysis of progression showed that VNB-ALD progressors had a greater decline in forced expiratory volume in 1 second (-42 mL per year vs -32 mL per year; Tukey-adjusted P = .002). Conclusion Simultaneously correcting volume, noise, and interscanner bias for lung density change estimation in emphysema progression at CT improved repeatability analyses and agreed with visual readings. It distinguished between progressors and nonprogressors and was associated with a greater decline in lung function metrics. Clinical trial registration no. NCT00608764 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Goo in this issue.


Subject(s)
Emphysema , Pulmonary Emphysema , Female , Male , Humans , Middle Aged , Prospective Studies , Reproducibility of Results , Pulmonary Emphysema/diagnostic imaging , Lung/diagnostic imaging , Tomography, X-Ray Computed
17.
Am J Respir Crit Care Med ; 209(11): 1351-1359, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38226871

ABSTRACT

Rationale: Airway tree morphology varies in the general population and may modify the distribution and uptake of inhaled pollutants. Objectives: We hypothesized that smaller airway caliber would be associated with emphysema progression and would increase susceptibility to air pollutant-associated emphysema progression. Methods: MESA (Multi-Ethnic Study of Atherosclerosis) is a general population cohort of adults 45-84 years old from six U.S. communities. Airway tree caliber was quantified as the mean of airway lumen diameters measured from baseline cardiac computed tomography (CT) (2000-2002). Percentage emphysema, defined as percentage of lung pixels below -950 Hounsfield units, was assessed up to five times per participant via cardiac CT scan (2000-2007) and equivalent regions on lung CT scan (2010-2018). Long-term outdoor air pollutant concentrations (particulate matter with an aerodynamic diameter ⩽2.5 µm, oxides of nitrogen, and ozone) were estimated at the residential address with validated spatiotemporal models. Linear mixed models estimated the association between airway tree caliber and emphysema progression; modification of pollutant-associated emphysema progression was assessed using multiplicative interaction terms. Measurements and Main Results: Among 6,793 participants (mean ± SD age, 62 ± 10 yr), baseline airway tree caliber was 3.95 ± 1.1 mm and median (interquartile range) of percentage emphysema was 2.88 (1.21-5.68). In adjusted analyses, 10-year emphysema progression rate was 0.75 percentage points (95% confidence interval, 0.54-0.96%) higher in the smallest compared with largest airway tree caliber quartile. Airway tree caliber also modified air pollutant-associated emphysema progression. Conclusions: Smaller airway tree caliber was associated with accelerated emphysema progression and modified air pollutant-associated emphysema progression. A better understanding of the mechanisms of airway-alveolar homeostasis and air pollutant deposition is needed.


Subject(s)
Air Pollutants , Pulmonary Emphysema , Humans , Aged , Male , Female , Middle Aged , Aged, 80 and over , Pulmonary Emphysema/diagnostic imaging , Air Pollutants/adverse effects , Disease Progression , Tomography, X-Ray Computed , Air Pollution/adverse effects , United States/epidemiology , Particulate Matter/adverse effects , Disease Susceptibility , Cohort Studies
18.
Respir Res ; 25(1): 33, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238788

ABSTRACT

BACKGROUND: No single pulmonary function test captures the functional effect of emphysema in idiopathic pulmonary fibrosis (IPF). Without experienced radiologists, other methods are needed to determine emphysema extent. Here, we report the development and validation of a formula to predict emphysema extent in patients with IPF and emphysema. METHODS: The development cohort included 76 patients with combined IPF and emphysema at the Royal Brompton Hospital, London, United Kingdom. The formula was derived using stepwise regression to generate the weighted combination of pulmonary function data that fitted best with emphysema extent on high-resolution computed tomography. Test cohorts included patients from two clinical trials (n = 455 [n = 174 with emphysema]; NCT00047645, NCT00075998) and a real-world cohort from the Royal Brompton Hospital (n = 191 [n = 110 with emphysema]). The formula is only applicable for patients with IPF and concomitant emphysema and accordingly was not used to detect the presence or absence of emphysema. RESULTS: The formula was: predicted emphysema extent = 12.67 + (0.92 x percent predicted forced vital capacity) - (0.65 x percent predicted forced expiratory volume in 1 second) - (0.52 x percent predicted carbon monoxide diffusing capacity). A significant relationship between the formula and observed emphysema extent was found in both cohorts (R2 = 0.25, P < 0.0001; R2 = 0.47, P < 0.0001, respectively). In both, the formula better predicted observed emphysema extent versus individual pulmonary function tests. A 15% emphysema extent threshold, calculated using the formula, identified a significant difference in absolute changes from baseline in forced vital capacity at Week 48 in patients with baseline-predicted emphysema extent < 15% versus ≥ 15% (P = 0.0105). CONCLUSION: The formula, designed for use in patients with IPF and emphysema, demonstrated enhanced ability to predict emphysema extent versus individual pulmonary function tests. TRIAL REGISTRATION: NCT00047645; NCT00075998.


Subject(s)
Emphysema , Idiopathic Pulmonary Fibrosis , Pulmonary Emphysema , Humans , Emphysema/complications , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/complications , Lung/diagnostic imaging , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/complications , Retrospective Studies , Vital Capacity , Clinical Trials as Topic
20.
Eur Radiol ; 34(3): 1895-1904, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37650968

ABSTRACT

OBJECTIVES: To compare clinical image quality and perceived impact on diagnostic interpretation of chest CT findings between ultra-high-resolution photon-counting CT (UHR-PCCT) and conventional high-resolution energy-integrating-detector CT (HR-EIDCT) using visual grading analysis (VGA) scores. MATERIALS AND METHODS: Fifty patients who underwent a UHR-PCCT (matrix 512 × 512, 768 × 768, or 1024 × 1024; FOV average 275 × 376 mm, 120 × 0.2 mm; focal spot size 0.6 × 0.7 mm) between November 2021 and February 2022 and with a previous HR-EIDCT within the last 14 months were included. Four readers evaluated central and peripheral airways, lung vasculature, nodules, ground glass opacities, inter- and intralobular lines, emphysema, fissures, bullae/cysts, and air trapping on PCCT (0.4 mm) and conventional EIDCT (1 mm) via side-by-side reference scoring using a 5-point diagnostic quality score. The median VGA scores were compared and tested using one-sample Wilcoxon signed rank tests with hypothesized median values of 0 (same visibility) and 2 (better visibility on PCCT with impact on diagnostic interpretation) at a 2.5% significance level. RESULTS: Almost all lung structures had significantly better visibility on PCCT compared to EIDCT (p < 0.025; exception for ground glass nodules (N = 2/50 patients, p = 0.157)), with the highest scores seen for peripheral airways, micronodules, inter- and intralobular lines, and centrilobular emphysema (mean VGA > 1). Although better visibility, a perceived difference in diagnostic interpretation could not be demonstrated, since the median VGA was significantly different from 2. CONCLUSION: UHR-PCCT showed superior visibility compared to HR-EIDCT for central and peripheral airways, lung vasculature, fissures, ground glass opacities, macro- and micronodules, inter- and intralobular lines, paraseptal and centrilobular emphysema, bullae/cysts, and air trapping. CLINICAL RELEVANCE STATEMENT: UHR-PCCT has emerged as a promising technique for thoracic imaging, offering improved spatial resolution and lower radiation dose. Implementing PCCT into daily practice may allow better visibility of multiple lung structures and optimization of scan protocols for specific pathology. KEY POINTS: • The aim of this study was to verify if the higher spatial resolution of UHR-PCCT would improve the visibility and detection of certain lung structures and abnormalities. • UHR-PCCT was judged to have superior clinical image quality compared to conventional HR-EIDCT in the evaluation of the lungs. UHR-PCCT showed better visibility for almost all tested lung structures (except for ground glass nodules). • Despite superior image quality, the readers perceived no significant impact on the diagnostic interpretation of the studied lung structures and abnormalities.


Subject(s)
Cysts , Lung Diseases , Pulmonary Emphysema , Humans , Pulmonary Emphysema/diagnostic imaging , Blister , Phantoms, Imaging , Lung/diagnostic imaging , Tomography, X-Ray Computed/methods , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...