Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.446
Filter
1.
Front Immunol ; 15: 1372658, 2024.
Article in English | MEDLINE | ID: mdl-38827740

ABSTRACT

Background: Persistent radiological lung abnormalities are evident in many survivors of acute coronavirus disease 2019 (COVID-19). Consolidation and ground glass opacities are interpreted to indicate subacute inflammation whereas reticulation is thought to reflect fibrosis. We sought to identify differences at molecular and cellular level, in the local immunopathology of post-COVID inflammation and fibrosis. Methods: We compared single-cell transcriptomic profiles and T cell receptor (TCR) repertoires of bronchoalveolar cells obtained from convalescent individuals with each radiological pattern, targeting lung segments affected by the predominant abnormality. Results: CD4 central memory T cells and CD8 effector memory T cells were significantly more abundant in those with inflammatory radiology. Clustering of similar TCRs from multiple donors was a striking feature of both phenotypes, consistent with tissue localised antigen-specific immune responses. There was no enrichment for known SARS-CoV-2-reactive TCRs, raising the possibility of T cell-mediated immunopathology driven by failure in immune self-tolerance. Conclusions: Post-COVID radiological inflammation and fibrosis show evidence of shared antigen-specific T cell responses, suggesting a role for therapies targeting T cells in limiting post-COVID lung damage.


Subject(s)
COVID-19 , SARS-CoV-2 , Single-Cell Analysis , Humans , COVID-19/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Male , Female , Middle Aged , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Lung/immunology , Lung/pathology , Lung/diagnostic imaging , Aged , Adult , Inflammation/immunology , Inflammation/pathology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Memory T Cells/immunology , Transcriptome
2.
Arthritis Res Ther ; 26(1): 94, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702742

ABSTRACT

BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease characterized by vascular injury and inflammation, followed by excessive fibrosis of the skin and other internal organs, including the lungs. CX3CL1 (fractalkine), a chemokine expressed on endothelial cells, supports the migration of macrophages and T cells that express its specific receptor CX3CR1 into targeted tissues. We previously reported that anti-CX3CL1 monoclonal antibody (mAb) treatment significantly inhibited transforming growth factor (TGF)-ß1-induced expression of type I collagen and fibronectin 1 in human dermal fibroblasts. Additionally, anti-mouse CX3CL1 mAb efficiently suppressed skin inflammation and fibrosis in bleomycin- and growth factor-induced SSc mouse models. However, further studies using different mouse models of the complex immunopathology of SSc are required before the initiation of a clinical trial of CX3CL1 inhibitors for human SSc. METHODS: To assess the preclinical utility and functional mechanism of anti-CX3CL1 mAb therapy in skin and lung fibrosis, a sclerodermatous chronic graft-versus-host disease (Scl-cGVHD) mouse model was analyzed with immunohistochemical staining for characteristic infiltrating cells and RNA sequencing assays. RESULTS: On day 42 after bone marrow transplantation, Scl-cGVHD mice showed increased serum CX3CL1 level. Intraperitoneal administration of anti-CX3CL1 mAb inhibited the development of fibrosis in the skin and lungs of Scl-cGVHD model, and did not result in any apparent adverse events. The therapeutic effects were correlated with the number of tissue-infiltrating inflammatory cells and α-smooth muscle actin (α-SMA)-positive myofibroblasts. RNA sequencing analysis of the fibrotic skin demonstrated that cGVHD-dependent induction of gene sets associated with macrophage-related inflammation and fibrosis was significantly downregulated by mAb treatment. In the process of fibrosis, mAb treatment reduced cGVHD-induced infiltration of macrophages and T cells in the skin and lungs, especially those expressing CX3CR1. CONCLUSIONS: Together with our previous findings in other SSc mouse models, the current results indicated that anti-CX3CL1 mAb therapy could be a rational therapeutic approach for fibrotic disorders, such as human SSc and Scl-cGVHD.


Subject(s)
Antibodies, Monoclonal , Chemokine CX3CL1 , Disease Models, Animal , Graft vs Host Disease , Pulmonary Fibrosis , Scleroderma, Systemic , Skin , Animals , Graft vs Host Disease/drug therapy , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/pathology , Scleroderma, Systemic/immunology , Mice , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/prevention & control , Skin/pathology , Skin/drug effects , Skin/metabolism , Skin/immunology , Fibrosis , Female , Mice, Inbred C57BL , Humans , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung/immunology
3.
Front Immunol ; 15: 1404828, 2024.
Article in English | MEDLINE | ID: mdl-38745647

ABSTRACT

Objectives: Interstitial lung disease (ILD) is one of the common extramuscular involvement in idiopathic inflammatory myopathies (IIMs) (1). Several patients develop a progressive fibrosing ILD (PF-ILD) despite conventional treatment, resulting in a progressive deterioration in their quality of life (2). Here, we investigated the clinical and immune characteristics of IIM-ILD and risk factors for PF-ILD in IIM, mainly in anti-melanoma differentiation-associated protein 5 (anti-MDA5+) dermatomyositis (DM) and anti-synthetase syndrome (ASS). Methods: Here, a prospective cohort of 156 patients with IIM-ILD were included in the longitudinal analysis and divided into the PF-ILD (n=65) and non-PF-ILD (n=91) groups, and their baseline clinical characteristics were compared. Univariate and multivariate Cox analyses were performed to identify the variables significantly associated with pulmonary fibrosis progression in the total cohort, then anti-MDA5+ DM and ASS groups separately. Results: Peripheral blood lymphocyte counts, including T, B, and NK cell counts, were significantly lower in the PF-ILD group than in the non-PF-ILD group. This characteristic is also present in the comparison between patients with anti-MDA5+ DM and ASS. The multivariate Cox regression analysis revealed that age > 43.5 years [HR: 7.653 (95% CI: 2.005-29.204), p = 0.003], absolute NK cell count < 148 cells/µL [HR: 6.277 (95% CI: 1.572-25.067), p = 0.009] and absolute Th cell count < 533.2 cells/µL [HR: 4.703 (95% CI: 1.014-21.821), p = 0.048] were independent predictors of progressive fibrosing during 1-year follow-up for patients with anti-MDA5+ DM, while absolute count of NK cells < 303.3 cells/µL [HR: 19.962 (95% CI: 3.108-128.223), p = 0.002], absolute count of lymphocytes < 1.545×109/L [HR: 9.684 (95% CI: 1.063-88.186), p = 0.044], and ferritin > 259.45 ng/mL [HR: 6 (95% CI: 1.116-32.256), p = 0.037] were independent predictors of PF-ILD for patients with ASS. Conclusions: Patients with anti-MDA5+ DM and ASS have independent risk factors for PF-ILD. Lymphocyte depletion (particularly NK cells) was significantly associated with PF-ILD within 1-year of follow-up for IIM-ILD.


Subject(s)
Disease Progression , Killer Cells, Natural , Lung Diseases, Interstitial , Myositis , Humans , Female , Male , Middle Aged , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/etiology , Killer Cells, Natural/immunology , Myositis/immunology , Myositis/blood , Myositis/diagnosis , Prognosis , Aged , Prospective Studies , Adult , Lymphocyte Depletion , Interferon-Induced Helicase, IFIH1/immunology , Risk Factors , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/immunology , Lymphocyte Count , Longitudinal Studies
4.
Int Immunopharmacol ; 135: 112331, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38795597

ABSTRACT

CCR5 may be involved in the pathogenesis of asthma; however, the underlying mechanisms remain unclear. In comparison with a mild asthma model, subepithelial fibrosis was more severe and CCR5 gene expression in the lungs was significantly higher in our recently developed murine model of steroid-resistant severe asthma. Treatment with the CCR5 antagonist, maraviroc, significantly suppressed the development of subepithelial fibrosis in bronchi, whereas dexamethasone did not. On the other hand, increases in leukocytes related to type 2 inflammation, eosinophils, Th2 cells, and group 2 innate lymphoid cells in the lungs were not affected by the treatment with maraviroc. Increases in neutrophils and total macrophages were also not affected by the CCR5 antagonist. However, increases in transforming growth factor (TGF)-ß-producing interstitial macrophages (IMs) were significantly reduced by maraviroc. The present results confirmed increases in CCR5-expressing IMs in the lungs of the severe asthma model. In conclusion, CCR5 on IMs plays significant roles in the development of subepithelial fibrosis in severe asthma through TGF-ß production in the lungs.


Subject(s)
Asthma , CCR5 Receptor Antagonists , Macrophages , Maraviroc , Pulmonary Fibrosis , Receptors, CCR5 , Transforming Growth Factor beta , Animals , Asthma/immunology , Asthma/drug therapy , Asthma/pathology , Asthma/metabolism , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Maraviroc/pharmacology , Maraviroc/therapeutic use , CCR5 Receptor Antagonists/pharmacology , CCR5 Receptor Antagonists/therapeutic use , Macrophages/immunology , Macrophages/drug effects , Transforming Growth Factor beta/metabolism , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , Mice , Lung/pathology , Lung/immunology , Lung/drug effects , Mice, Inbred BALB C , Disease Models, Animal , Humans , Female
5.
Exp Cell Res ; 439(1): 114098, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38796136

ABSTRACT

The involvement of γδT cells, Th17 cells, and CD4+CD25+ regulatory T cells (Tregs) is crucial in the progression of pulmonary fibrosis (PF), particularly in maintaining immune tolerance and homeostasis. However, the dynamics of these cells in relation to PF progression, especially under pharmacological interventions, remains poorly understood. This study aims to unravel the interplay between the dynamic changes of these cells and the effect of pharmacological agents in a mouse model of PF induced by intratracheal instillation of bleomycin. We analyzed changes in lung histology, lung index, hydroxyproline levels, and the proportions of γδT cells, Th17 cells, and Tregs on the 3rd, 14th, and 28th days following treatment with Neferine, Isoliensinine, Pirfenidone, and Prednisolone. Our results demonstrate that these drugs can partially or dynamically reverse weight loss, decrease lung index and hydroxyproline levels, and ameliorate lung histopathological damage. Additionally, they significantly modulated the abnormal changes in γδT, Th17, and Treg cell proportions. Notably, on day 3, the proportion of γδT cells increased in the Neferine and Prednisolone groups but decreased in the Isoliensinine and Pirfenidone groups, while the proportion of Th17 cells decreased across all treated groups. On day 14, the Neferine group showed an increase in all three cell types, whereas the Pirfenidone group exhibited a decrease. In the Isoliensinine group, γδT and Th17 cells increased, and in the Prednisolone group, only Tregs increased. By day 28, an increase in Th17 cell proportion was observed in all treatment groups, with a decrease in γδT cells noted in the Neferine group. These shifts in cell proportions are consistent with the pathogenesis changes induced by these anti-PF drugs, suggesting a correlation between cellular dynamics and pharmacological interventions in PF progression. Our findings imply potential strategies for assessing the efficacy and timing of anti-PF treatments based on these cellular changes.


Subject(s)
Bleomycin , Pulmonary Fibrosis , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Th17 Cells/drug effects , Th17 Cells/immunology , Mice , Pyridones/pharmacology , Male , Prednisolone/pharmacology , Disease Progression , Mice, Inbred C57BL , Disease Models, Animal , Lung/pathology , Lung/immunology , Lung/drug effects , Interleukin-2 Receptor alpha Subunit/metabolism , Isoquinolines/pharmacology , Benzylisoquinolines/pharmacology
6.
Pharmacol Res ; 203: 107178, 2024 May.
Article in English | MEDLINE | ID: mdl-38583686

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is one of the most fatal chronic interstitial lung diseases with unknown pathogenesis, current treatments cannot truly reverse the progression of the disease. Pulmonary macrophages, especially bone marrow derived pro-fibrotic macrophages, secrete multiple kinds of profibrotic mediators (SPP1, CD206, CD163, IL-10, CCL18…), thus further promote myofibroblast activation and fibrosis procession. IL20Rb is a cell-surface receptor that belongs to IL-20 family. The role of IL20Rb in macrophage activation and pulmonary fibrosis remains unclear. In this study, we established a bleomycin-induced pulmonary fibrosis model, used IL4/13-inducing THP1 cells to induce profibrotic macrophage (M2-like phenotype) polarization models. We found that IL20Rb is upregulated in the progression of pulmonary fibrosis, and its absence can alleviate the progression of pulmonary fibrosis. In addition, we demonstrated that IL20Rb promote the activation of bone marrow derived profibrotic macrophages by regulating the Jak2/Stat3 and Pi3k/Akt signaling pathways. In terms of therapeutic strategy, we used IL20Rb neutralizing antibodies for animal administration, which was found to alleviate the progression of IPF. Our results suggest that IL20Rb plays a profibrotic role by promoting profibrotic macrophage polarization, and IL20Rb may become a potential therapeutic target for IPF. Neutralizing antibodies against IL20Rb may become a potential drug for the clinical treatment of IPF.


Subject(s)
Bleomycin , Macrophage Activation , Macrophages , Animals , Humans , Male , Mice , Bleomycin/toxicity , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/immunology , Janus Kinase 2/metabolism , Lung/pathology , Lung/metabolism , Lung/immunology , Lung/drug effects , Macrophages/metabolism , Macrophages/immunology , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/chemically induced , Receptors, Interleukin/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism , THP-1 Cells
7.
Toxicology ; 504: 153762, 2024 May.
Article in English | MEDLINE | ID: mdl-38403151

ABSTRACT

Recent research has hinted at a potential connection between silicosis, a fibrotic lung disease caused by exposure to crystalline silica particles, and cuproptosis. The aim of the study was to explore how cuproptosis-related genes (CRGs) may influence the development of silicosis and elucidate the underlying mechanisms. An analysis of genes associated with both silicosis and cuproptosis was conducted. Key gene identification was achieved through the application of two machine learning techniques. Additionally, the correlation between these key genes and immune cell populations was explored and the critical pathways were discerned. To corroborate our findings, the expression of key genes was verified in both a publicly available silica-induced mouse model and our own silicosis mouse model. A total of 12 differentially expressed CRGs associated with silicosis were identified. Further analysis resulted in the identification of 6 CRGs, namely LOX, SPARC, MOXD1, ALB, MT-CO2, and AOC2. Elevated immune cell infiltration of CD8 T cells, regulatory T cells, M0 macrophages, and neutrophils in silicosis patients compared to healthy controls was indicated. Validation in a silica-induced pulmonary fibrosis mouse model supported SPARC and MT-CO2 as potential signature genes for the prediction of silicosis. These findings highlight a strong association between silicosis and cuproptosis. Among CRGs, LOX, SPARC, MOXD1, ALB, MT-CO2, and AOC2 emerged as pivotal players in the context of silicosis by modulating CD8 T cells, regulatory T cells, M0 macrophages, and neutrophils.


Subject(s)
Silicon Dioxide , Silicosis , Silicosis/genetics , Silicosis/immunology , Silicosis/pathology , Animals , Silicon Dioxide/toxicity , Mice , Male , Mice, Inbred C57BL , Humans , Disease Models, Animal , Lung/pathology , Lung/immunology , Lung/drug effects , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/pathology , Machine Learning , Osteonectin/genetics
8.
Cell Signal ; 103: 110562, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36535629

ABSTRACT

Silicosis is a common occupational disease characterized by lung inflammation, fibrosis and pulmonary dysfunction caused by long-term inhalation of free SiO2. Cell foaming and the change of CyPA have been observed in SiO2-induced macrophages, but the specific mechanism of CyPA in SiO2-induced foam cells remains poorly understood. The purpose of this study is to explore the mechanism of CyPA in SiO2-induced macrophage foaming and its effect on silicosis. We found that overexpression of CyPA promoted the macrophage foaming and the expression of COL I and α-SMA, while silencing CyPA inhibites the macrophage foaming and the expression of COL I and α-SMA. After blocking the expression of CD36 on the basis of overexpression CyPA, we found it inhibites the macrophage foaming. In conclusion, CyPA can affect the foaming of macrophages and may participate in silicosis fibrosis.


Subject(s)
Cyclophilin A , Foam Cells , Pulmonary Fibrosis , Silicon Dioxide , Silicosis , Humans , Cyclophilin A/metabolism , Silicon Dioxide/toxicity , Silicosis/immunology , Silicosis/pathology , Foam Cells/drug effects , Foam Cells/enzymology , Pulmonary Fibrosis/immunology
9.
Front Immunol ; 13: 934264, 2022.
Article in English | MEDLINE | ID: mdl-35844548

ABSTRACT

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), responsible for COVID-19, has caused a global pandemic. Observational studies revealed a condition, herein called as Long-COVID syndrome (PC), that affects both moderately and severely infected patients, reducing quality-of-life. The mechanism/s underlying the onset of fibrotic-like changes in PC are still not well defined. The goal of this study was to understand the involvement of the Absent in melanoma-2 (AIM2) inflammasome in PC-associated lung fibrosis-like changes revealed by chest CT scans. Peripheral blood mononuclear cells (PBMCs) obtained from PC patients who did not develop signs of lung fibrosis were not responsive to AIM2 activation by Poly dA:dT. In sharp contrast, PBMCs from PC patients with signs of lung fibrosis were highly responsive to AIM2 activation, which induced the release of IL-1α, IFN-α and TGF-ß. The recognition of Poly dA:dT was not due to the activation of cyclic GMP-AMP (cGAMP) synthase, a stimulator of interferon response (cGAS-STING) pathways, implying a role for AIM2 in PC conditions. The release of IFN-α was caspase-1- and caspase-4-dependent when AIM2 was triggered. Instead, the release of pro-inflammatory IL-1α and pro-fibrogenic TGF-ß were inflammasome independent because the inhibition of caspase-1 and caspase-4 did not alter the levels of the two cytokines. Moreover, the responsiveness of AIM2 correlated with higher expression of the receptor in circulating CD14+ cells in PBMCs from patients with signs of lung fibrosis.


Subject(s)
COVID-19 , DNA-Binding Proteins , Pulmonary Fibrosis , COVID-19/blood , COVID-19/immunology , COVID-19/pathology , Carrier Proteins , Caspase 1/immunology , DNA-Binding Proteins/blood , DNA-Binding Proteins/immunology , Humans , Inflammasomes/blood , Inflammasomes/immunology , Interferon-alpha/metabolism , Leukocytes, Mononuclear/immunology , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/virology , SARS-CoV-2 , Transforming Growth Factor beta/metabolism , Post-Acute COVID-19 Syndrome
10.
Proc Natl Acad Sci U S A ; 119(15): e2121098119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35377803

ABSTRACT

The pathogenesis of lung fibrosis involves hyperactivation of innate and adaptive immune pathways that release inflammatory cytokines and growth factors such as tumor growth factor (TGF)ß1 and induce aberrant extracellular matrix protein production. During the genesis of pulmonary fibrosis, resident alveolar macrophages are replaced by a population of newly arrived monocyte-derived interstitial macrophages that subsequently transition into alveolar macrophages (Mo-AMs). These transitioning cells initiate fibrosis by releasing profibrotic cytokines and remodeling the matrix. Here, we describe a strategy for leveraging the up-regulation of the mannose receptor CD206 in interstitial macrophages and Mo-AM to treat lung fibrosis. We engineered mannosylated albumin nanoparticles, which were found to be internalized by fibrogenic CD206+ monocyte derived macrophages (Mo-Macs). Mannosylated albumin nanoparticles incorporating TGFß1 small-interfering RNA (siRNA) targeted the profibrotic subpopulation of CD206+ macrophages and prevented lung fibrosis. The findings point to the potential utility of mannosylated albumin nanoparticles in delivering TGFß-siRNA into CD206+ profibrotic macrophages as an antilung fibrosis strategy.


Subject(s)
Lymphotoxin-alpha , Macrophages, Alveolar , Nanoparticles , Pulmonary Fibrosis , RNA, Small Interfering , Animals , Bleomycin/pharmacology , Disease Models, Animal , Lymphotoxin-alpha/genetics , Macrophages, Alveolar/immunology , Mannose Receptor , Mice , Mice, Inbred C57BL , Nanoparticles/administration & dosage , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/therapy , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics
11.
Nat Immunol ; 23(2): 237-250, 2022 02.
Article in English | MEDLINE | ID: mdl-35075279

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are highly heterogeneous tissue-resident lymphocytes that regulate inflammation and tissue homeostasis in health and disease. However, how these cells integrate into the tissue microenvironment to perform tissue-specific functions is unclear. Here, we show neuropilin-1 (Nrp1), which is induced postnatally and sustained by lung-derived transforming growth factor beta-1 (TGFß1), is a tissue-specific marker of lung ILC2s. Genetic ablation or pharmacological inhibition of Nrp1 suppresses IL-5 and IL-13 production by ILC2s and protects mice from the development of pulmonary fibrosis. Mechanistically, TGFß1-Nrp1 signaling enhances ILC2 function and type 2 immunity by upregulating IL-33 receptor ST2 expression. These findings identify Nrp1 as a tissue-specific regulator of lung-resident ILC2s and highlight Nrp1 as a potential therapeutic target for pulmonary fibrosis.


Subject(s)
Immunity, Innate/immunology , Lung/immunology , Neuropilin-1/immunology , Animals , Disease Models, Animal , Inflammation/immunology , Interleukin-33/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Inbred ICR , Pulmonary Fibrosis/immunology , Signal Transduction/immunology
12.
Mol Med Rep ; 25(2)2022 02.
Article in English | MEDLINE | ID: mdl-34913070

ABSTRACT

Pulmonary fibrosis is one of the most important pathological processes associated with paraquat (PQ) poisoning. 5­Aminosalicylic acid (5­ASA) has been shown to be a promising agent against fibrotic diseases. In the present study, the alleviating role of 5­ASA was evaluated in a rat model of pulmonary fibrosis induced by PQ intragastric poisoning (80 mg/kg). Wistar rats were divided into control, PQ, 5­ASA (30 mg/kg daily, 14 days) and PQ + 5­ASA groups. Histological examination revealed congestion, edema and inflammatory cell infiltration in the bronchial and alveolar walls at 3 days after PQ exposure. Alveolar septum thickening with alveolar lumen narrowing was observed at 14 days, while fibroblast proliferation, increase in collagen fiber number and fibrous thickening of the alveolar walls were observed at 28 day. All the aforementioned pulmonary injury changes in the PQ group were attenuated in the PQ + 5­ASA group. Hydroxyproline (HYP) content increased in the lung tissues of the rats at 14 days after PQ treatment and reached a peak at 28 days. Compared with the PQ group, HYP contents of lung tissue decreased at 14 and 28 days after PQ + 5­ASA treatment. Masson's trichrome staining revealed that the increase in the amount of collagen fibers in the lung tissues of rats in the PQ group was inhibited by 5­ASA treatment, further confirming the alleviating effect of 5­ASA on fibrosis. In addition, the results showed that 5­ASA attenuated the upregulation of transforming growth factor­ß1 and phosphorylated­SMAD3, and the reduction of peroxisome proliferator activated receptor γ induced by PQ in lung tissue of rats and human lung fibroblast WI­38 VA13 cells. In conclusion, the results suggested that 5­ASA had an alleviating effect on PQ­induced pulmonary fibrosis, partly by suppressing the activation of the TGF­ß1 signaling pathway.


Subject(s)
Acute Lung Injury/drug therapy , Fibroblasts/drug effects , Lung/drug effects , Mesalamine/administration & dosage , Pulmonary Fibrosis/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Animals , Disease Models, Animal , Fibroblasts/immunology , Fibroblasts/pathology , Humans , Lung/cytology , Lung/immunology , Lung/pathology , Male , Paraquat/administration & dosage , Paraquat/toxicity , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/pathology , Rats , Signal Transduction/drug effects , Signal Transduction/immunology , Transforming Growth Factor beta1/antagonists & inhibitors , Transforming Growth Factor beta1/metabolism
13.
Front Immunol ; 12: 740260, 2021.
Article in English | MEDLINE | ID: mdl-34745111

ABSTRACT

Increased left ventricular fibrosis has been reported in patients hospitalized with coronavirus disease 2019 (COVID-19). It is unclear whether this fibrosis is a consequence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection or a risk factor for severe disease progression. We observed increased fibrosis in the left ventricular myocardium of deceased COVID-19 patients, compared with matched controls. We also detected increased mRNA levels of soluble interleukin-1 receptor-like 1 (sIL1-RL1) and transforming growth factor ß1 (TGF-ß1) in the left ventricular myocardium of deceased COVID-19 patients. Biochemical analysis of blood sampled from patients admitted to the emergency department (ED) with COVID-19 revealed highly elevated levels of TGF-ß1 mRNA in these patients compared to controls. Left ventricular strain measured by echocardiography as a marker of pre-existing cardiac fibrosis correlated strongly with blood TGF-ß1 mRNA levels and predicted disease severity in COVID-19 patients. In the left ventricular myocardium and lungs of COVID-19 patients, we found increased neuropilin-1 (NRP-1) RNA levels, which correlated strongly with the prevalence of pulmonary SARS-CoV-2 nucleocapsid. Cardiac and pulmonary fibrosis may therefore predispose these patients to increased cellular viral entry in the lung, which may explain the worse clinical outcome observed in our cohort. Our study demonstrates that patients at risk of clinical deterioration can be identified early by echocardiographic strain analysis and quantification of blood TGF-ß1 mRNA performed at the time of first medical contact.


Subject(s)
COVID-19/physiopathology , Heart Ventricles/pathology , Myocardium/pathology , Pulmonary Fibrosis/physiopathology , SARS-CoV-2/physiology , Adult , Aged , COVID-19/immunology , Female , Fibrosis , Heart Ventricles/metabolism , Humans , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Male , Middle Aged , Myocardium/metabolism , Neuropilin-1/genetics , Neuropilin-1/metabolism , Pulmonary Fibrosis/immunology , Risk , Severity of Illness Index , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Viral Load
14.
Front Immunol ; 12: 741218, 2021.
Article in English | MEDLINE | ID: mdl-34777353

ABSTRACT

The global outbreak of the SARS-Cov-2 virus in 2020 has killed millions of people worldwide and forced large parts of the world into lockdowns. While multiple vaccine programs are starting to immunize the global population, there is no direct cure for COVID-19, the disease caused by the SARS-Cov-2 infection. A common symptom in patients is a decrease in T cells, called lymphopenia. It is as of yet unclear what the exact role of T cells are in the immune response to COVID-19. The research so far has mainly focused on the involvement of classical αß T cells. However, another subset of T cells called γδ T cells could have an important role to play. As part of the innate immune system, γδ T cells respond to inflammation and stressed or infected cells. The γδ T cell subset appears to be particularly affected by lymphopenia in COVID-19 patients and commonly express activation and exhaustion markers. Particularly in children, this subset of T cells seems to be most affected. This is interesting and relevant because γδ T cells are more prominent and active in early life. Their specific involvement in this group of patients could indicate a significant role for γδ T cells in this disease. Furthermore, they seem to be involved in other viral infections and were able to kill SARS infected cells in vitro. γδ T cells can take up, process and present antigens from microbes and human cells. As e.g. tumour-associated antigens are presented by MHC on γδ T cells to classical T-cells, we argue here that it stands to reason that also viral antigens, such as SARS-Cov-2-derived peptides, can be presented in the same way. γδ T cells are already used for medical purposes in oncology and have potential in cancer therapy. As γδ T cells are not necessarily able to distinguish between a transformed and a virally infected cell it could therefore be of great interest to investigate further the relationship between COVID-19 and γδ T cells.


Subject(s)
COVID-19/immunology , Intraepithelial Lymphocytes/immunology , SARS-CoV-2 , Animals , Cytokine Release Syndrome/immunology , Humans , Neoplasms/immunology , Pulmonary Fibrosis/immunology
15.
BMC Pulm Med ; 21(1): 383, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34823498

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PH) secondary to pulmonary fibrosis (PF) is one of the most common complications in PF patients, it causes severe disease and usually have a poor prognosis. Whether the combination of PH and PF is a unique disease phenotype is unclear. We aimed to screen the key modules associated with PH-PF immune infiltration based on WGCNA and identify the hub genes for molecular typing. METHOD: Using the gene expression profile GSE24988 of PF patients with or without PH from the Gene Expression Omnibus (GEO) database, we evaluated immune cell infiltration using Cibersortx and immune cell gene signature files. Different immune cell types were screened using the Wilcoxon test; differentially expressed genes were screened using samr. The molecular pathways implicated in these differential responses were identified using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses. A weighted co-expression network of the differential genes was constructed, relevant co-expression modules were identified, and relationships between modules and differential immune cell infiltration were calculated. The modules most relevant to this disease were identified using weighted correlation network analysis. From these, we constructed a co-expression network; using the STRING database, we integrated the values into the human protein-protein interaction network before constructing a co-expression interaction subnet, screening genes associated with immunity and unsupervised molecular typing, and analyzing the immune cell infiltration and expression of key genes in each disease type. RESULTS: Of the 22 immune cell types from the PF GEO data, 20 different immune cell types were identified. There were 1622 differentially expressed genes (295 upregulated and 1327 downregulated). The resulting weighted co-expression network identified six co-expression modules. These were screened to identify the modules most relevant to the disease phenotype (the green module). By calculating the correlations between modules and the differentially infiltrated immune cells, extracting the green module co-expression network (46 genes), extracting 25 key genes using gene significance and module-membership thresholds, and combining these with the 10 key genes in the human protein-protein interaction network, we identified five immune cell-related marker genes that might be applied as biomarkers. Using these marker genes, we evaluated these disease samples using unsupervised clustering molecular typing. CONCLUSION: Our results demonstrated that all PF combined with PH samples belonged to four categories. Studies on the five key genes are required to validate their diagnostic and prognostic value.


Subject(s)
Hypertension, Pulmonary/genetics , Pulmonary Fibrosis/genetics , Databases, Genetic , Gene Expression Profiling , Genetic Markers , Humans , Hypertension, Pulmonary/immunology , Molecular Typing , Pulmonary Fibrosis/immunology , Transcriptome
16.
Biomed Pharmacother ; 143: 112225, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649353

ABSTRACT

Heat shock protein beta-1 (HSPB1) is a multifaceted protein that controls cellular stress, modulates cell differentiation and development, and inhibits apoptosis of cancer cells. Increased HSPB1 expression is highly associated with poor outcomes in lung cancer by enhancing cell migration and invasion; therefore, targeting HSPB1 may be a promising therapeutic for lung cancer and fibrosis. Although the HSPB1 inhibitor J2 has been reported to exhibit potent antifibrotic effects, it remains unclear whether and how J2 directly modulates inflammatory immune responses in pulmonary fibrosis. In this study, we found that J2 potently attenuated irradiation or bleomycin-induced pulmonary fibrosis by significantly inhibiting the infiltration and activation of T cells and macrophages. J2 inhibited T-cell proliferation and subsequently suppressed T helper cell development. Although there was no significant effect of J2 on cell proliferation of M1 and M2 macrophages, J2 specifically increased the expression of Ym1 in M2 macrophages without affecting the expression of other M2 markers. Interestingly, J2 increased lysosomal degradation of HSPB1 and inhibited HSPB1-induced repression of signal transducer and activator of transcription 6 (STAT6), which simultaneously increased STAT6 and Ym1 expression. Ym1 production and secretion by J2-treated M2 macrophages substantially decreased IL-8 production by airway epithelial cells in vitro and in vivo, resulting in attenuation of airway inflammation. Taken together, we suggest that J2 has potential as a therapeutic agent for pulmonary fibrosis with increased HSPB1 expression through direct immune suppression by Ym1 production by M2 macrophages as well as T-cell suppression.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antifibrotic Agents/pharmacology , Heat-Shock Proteins/antagonists & inhibitors , Lectins/metabolism , Lung/drug effects , Molecular Chaperones/antagonists & inhibitors , Paracrine Communication , Pneumonia/prevention & control , Pulmonary Fibrosis/prevention & control , beta-N-Acetylhexosaminidases/metabolism , Animals , Bleomycin , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , HEK293 Cells , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Lung/immunology , Lung/metabolism , Lymphocyte Activation/drug effects , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Pneumonia/etiology , Pneumonia/immunology , Pneumonia/metabolism , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/metabolism , RAW 264.7 Cells , Radiation Dosage , Signal Transduction
17.
Biochem Pharmacol ; 193: 114812, 2021 11.
Article in English | MEDLINE | ID: mdl-34687672

ABSTRACT

Pulmonary fibrosis (PF) is characterised by several grades of chronic inflammation and collagen deposition in the interalveolar space and is a hallmark of interstitial lung diseases (ILDs). Recently, infectious agents have emerged as driving causes for PF development; however, the role of viral/bacterial infections in the initiation and propagation of PF is still debated. In this context, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the current coronavirus disease 2019 (COVID-19) pandemic, has been associated with acute respiratory distress syndrome (ARDS) and PF development. Although the infection by SARS-CoV-2 can be eradicated in most cases, the development of fibrotic lesions cannot be precluded; furthermore, whether these lesions are stable or progressive fibrotic events is still unknown. Herein, an overview of the main molecular mechanisms driving the fibrotic process together with the currently approved and newly proposed therapeutic solutions was given. Then, the most recent data that emerged from post-COVID-19 patients was discussed, in order to compare PF and COVID-19-dependent PF, highlighting shared and specific mechanisms. A better understanding of PF aetiology is certainly needed, also to develop effective therapeutic strategies and COVID-19 pathology is offering one more chance to do it. Overall, the work reported here could help to define new approaches for therapeutic intervention in the diversity of the ILD spectrum.


Subject(s)
COVID-19/complications , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/metabolism , Animals , COVID-19/etiology , COVID-19/immunology , COVID-19/metabolism , Humans , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Pulmonary Fibrosis/etiology , Post-Acute COVID-19 Syndrome
18.
Front Immunol ; 12: 690375, 2021.
Article in English | MEDLINE | ID: mdl-34489937

ABSTRACT

Immunostimulation is recognized as an important contribution in lung fibrosis in some animal models and patient subsets. With this review, we illustrate an additional scenario covering the possible implication of immunoregulation during fibrogenesis. Available animal and human data indicate that pulmonary fibrosis also includes diverse and discrete immunoregulating populations comprising regulatory lymphocytes (T and B regs) and myeloid cells (immunosuppressive macrophages and myeloid-derived suppressive cells; MDSC). They are initially recruited to limit the establishment of deleterious inflammation but participate in the development of lung fibrosis by producing immunoregulatory mediators (mainly TGF-ß1 and IL-10) that directly or indirectly stimulate fibroblasts and matrix protein deposition. The existence of this silent immunoregulatory environment sustains an alternative mechanism of fibrosis that explains why in some conditions neither pro-inflammatory cytokine deficiency nor steroid and immunosuppressive therapies limit lung fibrosis. Therefore, the persistent presence of immunoregulation is an important parameter to consider for refining therapeutical strategies in lung fibrotic disorders under non-immunostimulatory conditions.


Subject(s)
Lung/immunology , Lymphocytes/immunology , Myeloid-Derived Suppressor Cells/immunology , Pulmonary Fibrosis/immunology , Animals , Cellular Microenvironment , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Lung/metabolism , Lung/pathology , Lymphocytes/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Signal Transduction
19.
Biomed Pharmacother ; 143: 112153, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34507117

ABSTRACT

Exposure to the toxic herbicide paraquat (PQ) can lead to the active absorption and enrichment of alveolar epithelial cells, resulting in pulmonary fibrosis and respiratory failure. At present, no effective clinical treatment is available. Notably, however, patients infected with human acquired immunodeficiency virus (HIV) (with T lymphocyte deficiency) do not show pulmonary fibrosis after PQ poisoning, suggesting that T lymphocytes may be involved in the occurrence and pathological development of lung fibers following PQ exposure, although relevant studies remain limited. Here, we found that the degree of pulmonary fibrosis induced by intragastric administration of PQ in congenital immunodeficiency BALB/C (nu/nu) nude (T lymphocyte loss) mice was lower than that in normal mice. However, pulmonary fibrosis was aggravated after transplantation of BALB/C (nu/nu) T lymphocytes into congenital immunodeficiency mice. This study is the first to report on the involvement of T lymphocytes in the occurrence and pathological development of lung fibers induced by PQ exposure. Thus, T cells may be an important cellular target for the clinical treatment of pulmonary fibrosis caused by PQ.


Subject(s)
Epithelial-Mesenchymal Transition , Immunocompromised Host , Lung/immunology , Pulmonary Fibrosis/immunology , T-Lymphocytes/immunology , Adoptive Transfer , Animals , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Lung/metabolism , Lung/pathology , Male , Mice, Inbred BALB C , Mice, Nude , Neutrophils/immunology , Neutrophils/metabolism , Paraquat , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation
20.
Front Immunol ; 12: 686483, 2021.
Article in English | MEDLINE | ID: mdl-34276673

ABSTRACT

Disease-associated, high-affinity pathological autoantibody production is a well-described consequence of immune dysregulation affecting B cells in systemic sclerosis (SSc), including the distribution of B-cell subsets. We have previously shown that the increased relative frequency of CD19+CD27+IgD- switched memory B cells is associated with the severe form of SSc. This study sought to analyze memory B cell subsets using an extended range of markers for further subdivision based on CD19, IgD, CD27, CD38 and CD95 phenotype, to define relationship between the alterations of memory B cell subsets and the clinical features of SSc. Peripheral blood samples were obtained from 21 SSc patients, including 14 diffuse (dcSSc) and 7 limited (lcSSc) cutaneous SSc patients, with disease duration of 2.7 ( ± 1.6) years. After purification of CD19+ B cells, multiparametric flow cytometry was performed and the frequencies of CD19+IgD-CD27-CD38+ double negative (DN) 1, CD19+IgDloCD27+CD38+ unswitched, CD19+IgD-CD27+CD38+CD95- resting switched and CD19+IgD-CD27+CD38-CD95+ activated switched memory (ASM) B cells were determined, and correlated with clinical features of SSc. The dcSSc patients had a higher frequency of ASM B cells (p = 0.028) compared to lcSSc patients. The percentage of ASM B cells was elevated in anti-Scl-70 (anti-topoisomerase I) antibody positive patients compared to negative patients (p = 0.016). Additionally, the frequency of ASM B cells was also increased in patients with pulmonary fibrosis (p = 0.003) suggesting that patients with severe form of SSc have higher ASM B cell ratios. Furthermore, the ratio of DN1 B cells was decreased (p = 0.029), while the level of anti-citrate synthase IgG natural autoantibody was elevated (p = 0.028) in patients with active disease. Our observations on the increase of ASM B cells in dcSSc and in patients with pulmonary fibrosis may point to the association of this alteration with the severe form of the disease. Functionally the correlation of ASM B cells as effector memory-plasma cell precursors with anti-topoisomerase I antibody positivity could reflect their contribution to pathological autoantibody production, whereas the decrease of memory precursor DN B cells and the increase of anti-citrate synthase IgG autoantibody may have potential significance in the assessment of disease activity.


Subject(s)
B-Lymphocytes/immunology , Immunologic Memory , Pulmonary Fibrosis/immunology , Scleroderma, Diffuse/immunology , Scleroderma, Systemic/immunology , Adult , Antigens, CD19/immunology , Antigens, CD19/metabolism , Autoantibodies/blood , B-Lymphocytes/metabolism , Biomarkers/blood , Case-Control Studies , Female , Flow Cytometry , Humans , Immunophenotyping , Lymphocyte Count , Male , Middle Aged , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/diagnosis , Scleroderma, Diffuse/blood , Scleroderma, Diffuse/diagnosis , Scleroderma, Systemic/blood , Scleroderma, Systemic/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...