Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Purinergic Signal ; 16(1): 61-72, 2020 03.
Article in English | MEDLINE | ID: mdl-31989534

ABSTRACT

Accumulating evidence supports a therapeutic role of purinergic signaling in cardiac diseases. Previously, efficacy of systemically infused MRS2339, a charged methanocarba derivative of 2-Cl-adenosine monophosphate, was demonstrated in animal models of heart failure. We now test the hypothesis that an uncharged adenine nucleoside phosphonate, suitable as an oral agent with a hydrolysis-resistant phospho moiety, can prevent the development of cardiac dysfunction in a post-infarction ischemic or pressure overload-induced heart failure model in mice. The diester-masked uncharged phosphonate MRS2978 was efficacious in preventing cardiac dysfunction with improved left ventricular (LV) fractional shortening when administered orally at the onset of ischemic or pressure overload-induced heart failure. MRS2925, the charged, unmasked MRS2978 analog, prevented heart dysfunction when infused subcutaneously but not by oral gavage. When administered orally or systemically, MRS2978 but not MRS2925 could also rescue established cardiac dysfunction in both ischemic and pressure overload heart failure models. The diester-masked phosphate MRS4074 was highly efficacious at preventing the development of dysfunction as well as in rescuing pressure overload-induced and ischemic heart failure. MRS2978 was orally bioavailable (57-75%) giving rise to MRS2925 as a minor metabolite in vivo, tested in rats. The data are consistent with a novel therapeutic role of adenine nucleoside phosphonates in systolic heart failure.


Subject(s)
Adenosine Monophosphate/pharmacology , Heart Failure , Purinergic P2X Receptor Agonists/pharmacology , Adenosine Monophosphate/chemical synthesis , Adenosine Monophosphate/chemistry , Animals , Mice , Purinergic P2X Receptor Agonists/chemical synthesis , Purinergic P2X Receptor Agonists/chemistry
2.
J Neurochem ; 154(3): 251-262, 2020 08.
Article in English | MEDLINE | ID: mdl-31883343

ABSTRACT

Ionotropic purinergic receptors (P2X receptors) are non-specific cation channels that are activated by the binding of ATP at their extracellular side. P2X receptors contribute to multiple functions, including the generation of pain, inflammation, or synaptic transmission. The channels are trimers and structural information on several of their isoforms is available. In contrast, the cooperation of the subunits in the activation process is poorly understood. We synthesized a novel fluorescent ATP derivative, 2-[DY-547P1]-AET-ATP (fATP) to unravel the complex activation process in P2X2 and mutated P2X2 H319K channels with enhanced apparent affinity by characterizing the relation between ligand binding and activation gating. fATP is a full agonist with respect to ATP that reports the degree of binding by bright fluorescence. For quantifying the binding, a fast automated algorithm was employed on human embryonic kidney cell culture images. The concentrations of half maximum occupancy and activation as well as the respective Hill coefficients were determined. All Hill coefficients exceeded unity, even at an occupancy <10%, suggesting cooperativity of the binding even for the first and second binding step. fATP shows promise for continuative functional studies on other purinergic receptors and, beyond, any other ATP-binding proteins.


Subject(s)
Adenosine Triphosphate/metabolism , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Purinergic P2X Receptor Agonists/chemical synthesis , Purinergic P2X Receptor Agonists/metabolism , Receptors, Purinergic P2X2/metabolism , Animals , HEK293 Cells , Humans , Ion Channel Gating/physiology , Ligands , Protein Binding , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...