Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Microb Cell Fact ; 23(1): 175, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872163

ABSTRACT

INTRODUCTION: Bacterial infections and the rising antimicrobial resistance pose a significant threat to public health. Pseudomonas aeruginosa produces bacteriocins like pyocins, especially S-type pyocins, which are promising for biological applications. This research focuses on clinical P. aeruginosa isolates to assess their bacteriocin production, inhibitory spectrum, chemical structure, antibacterial agents, and preservative potential. METHODS: The identification of P. aeruginosa was conducted through both phenotypic and molecular approaches. The inhibitory spectrum and antibacterial potential of the isolates were assessed. The kinetics of antibacterial peptide production were investigated, and the activity of bacteriocin was quantified in arbitrary units (AU ml-1). Physico-chemical characterization of the antibacterial peptides was performed. Molecular weight estimation was carried out using SDS-PAGE. qRT-PCR analysis was employed to validate the expression of the selected candidate gene. RESULT: The antibacterial activity of P. aeruginosa was attributed to the secretion of bacteriocin compounds, which belong to the S-type pyocin family. The use of mitomycin C led to a significant 65.74% increase in pyocin production by these isolates. These S-type pyocins exhibited the ability to inhibit the growth of both Gram-negative (P. mirabilis and P. vulgaris) and Gram-positive (S. aureus, S. epidermidis, E. hirae, S. pyogenes, and S. mutans) bacteria. The molecular weight of S-type pyocin was 66 kDa, and its gene expression was confirmed through qRT-PCR. CONCLUSION: These findings suggest that S-type pyocin hold significant potential as therapeutic agents against pathogenic strains. The Physico-chemical resistance of S-type pyocin underscores its potential for broad applications in the pharmaceutical, hygiene, and food industries.


Subject(s)
Anti-Bacterial Agents , Bacteriocins , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/biosynthesis , Bacteriocins/biosynthesis , Bacteriocins/pharmacology , Bacteriocins/metabolism , Pyocins/metabolism , Pyocins/pharmacology , Pyocins/biosynthesis , Humans , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy
2.
Microbiol Spectr ; 11(6): e0177323, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37877708

ABSTRACT

IMPORTANCE: Cystic fibrosis (CF) patients often experience chronic, debilitating lung infections caused by antibiotic-resistant Pseudomonas aeruginosa, contributing to antimicrobial resistance (AMR). The genetic and phenotypic diversity of P. aeruginosa populations in CF lungs raises questions about their susceptibility to non-traditional antimicrobials, like bacteriocins. In this study, we focused on R-pyocins, a type of bacteriocin with high potency and a narrow killing spectrum. Our findings indicate that a large number of infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations, supporting their potential use as therapeutic agents. The absence of a clear correlation between lipopolysaccharide (LPS) phenotypes and R-pyocin susceptibility suggests that LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Understanding the relationship between LPS phenotypes and R-pyocin susceptibility is crucial for developing effective treatments for these chronic infections.


Subject(s)
Bacteriocins , Cystic Fibrosis , Pseudomonas Infections , Humans , Pyocins/pharmacology , Lipopolysaccharides , Pseudomonas aeruginosa/genetics , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Prevalence , Bacteriocins/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , Lung
3.
Biochem J ; 480(14): 1035-1049, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37399084

ABSTRACT

Pseudomonas aeruginosa is a common cause of serious hospital-acquired infections, the leading proven cause of mortality in people with cystic fibrosis and is associated with high levels of antimicrobial resistance. Pyocins are narrow-spectrum protein antibiotics produced by P. aeruginosa that kill strains of the same species and have the potential to be developed as therapeutics targeting multi-drug resistant isolates. We have identified two novel pyocins designated SX1 and SX2. Pyocin SX1 is a metal-dependent DNase while pyocin SX2 kills cells through inhibition of protein synthesis. Mapping the uptake pathways of SX1 and SX2 shows these pyocins utilize a combination of the common polysaccharide antigen (CPA) and a previously uncharacterized TonB-dependent transporter (TBDT) PA0434 to traverse the outer membrane. In addition, TonB1 and FtsH are required by both pyocins to energize their transport into cells and catalyze their translocation across the inner membrane, respectively. Expression of PA0434 was found to be specifically regulated by copper availability and we have designated PA0434 as Copper Responsive Transporter A, or CrtA. To our knowledge these are the first S-type pyocins described that utilize a TBDT that is not involved in iron uptake.


Subject(s)
Cystic Fibrosis , Pyocins , Humans , Pyocins/metabolism , Pyocins/pharmacology , Copper/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Pseudomonas aeruginosa/metabolism
4.
ACS Synth Biol ; 12(7): 1961-1971, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37418677

ABSTRACT

Pseudomonas aeruginosa (P. aeruginosa) infection has become an intractable problem worldwide due to the decreasing efficacy of the mainstay therapy, antibiotic treatment. Hence, exploring new drugs and therapies to address this issue is crucial. Here, we construct a chimeric pyocin (ChPy) to specifically kill P. aeruginosa and engineer a near-infrared (NIR) light-responsive strain to produce and deliver this drug. Our engineered bacterial strain can continuously produce ChPy in the absence of light and release it to kill P. aeruginosa via remotely and precisely controlled bacterial lysis induced by NIR light. We demonstrate that our engineered bacterial strain is effective in P. aeruginosa-infected wound therapy in the mouse model, as it eradicated PAO1 in mouse wounds and shortened the wound healing time. Our work presents a potentially spatiotemporal and noninvasively controlled therapeutic strategy of engineered bacteria for the targeted treatment of P. aeruginosa infections.


Subject(s)
Pseudomonas Infections , Mice , Animals , Pseudomonas Infections/therapy , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pyocins/pharmacology , Bacteria , Pseudomonas aeruginosa/genetics
5.
J Bacteriol ; 205(6): e0002923, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37260386

ABSTRACT

Most Pseudomonas aeruginosa strains produce bacteriocins derived from contractile or noncontractile phage tails known as R- and F-type pyocins, respectively. These bacteriocins possess strain-specific bactericidal activity against P. aeruginosa and likely increase evolutionary fitness through intraspecies competition. R-type pyocins have been studied extensively and show promise as alternatives to antibiotics. Although they have similar therapeutic potential, experimental studies on F-type pyocins are limited. Here, we provide a bioinformatic and experimental investigation of F-type pyocins. We introduce a systematic naming scheme for genes found in R- and F-type pyocin operons and identify 15 genes invariably found in strains producing F-type pyocins. Five proteins encoded at the 3' end of the F-type pyocin cluster are divergent in sequence and likely determine bactericidal specificity. We use sequence similarities among these proteins to define eleven distinct F-type pyocin groups, five of which had not been previously described. The five genes encoding the variable proteins associate in two modules that have clearly reassorted independently during the evolution of these operons. These proteins are considerably more diverse than the specificity-determining tail fibers of R-type pyocins, suggesting that F-type pyocins may have emerged earlier. Experimental studies on six F-type pyocin groups show that each displays a distinct spectrum of bactericidal activity. This activity is strongly influenced by the lipopolysaccharide O-antigen type, but other factors also play a role. F-type pyocins appear to kill as efficiently as R-type pyocins. These studies set the stage for the development of F-type pyocins as antibacterial therapeutics. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that causes antibiotic-resistant infections with high mortality rates, particularly in immunocompromised individuals and cystic fibrosis patients. Due to the increasing frequency of multidrug-resistant P. aeruginosa infections, there is great need for the development of alternative therapeutics. In this study, we investigate one such potential therapeutic: F-type pyocins, which are bacteriocins naturally produced by P. aeruginosa that resemble noncontractile phage tails. We show that they are potent killers of P. aeruginosa and identify their probable bactericidal specificity determinants, which opens up the possibility of engineering them to precisely target strains of pathogenic bacteria. The resemblance of F-type pyocins to well-characterized phage tails will greatly facilitate their development into effective antibacterials.


Subject(s)
Bacteriocins , Bacteriophages , Humans , Pyocins/pharmacology , Pseudomonas aeruginosa/metabolism , Bacteriocins/genetics , Bacteriocins/pharmacology , Bacteriocins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacteriophages/metabolism
6.
Sci Rep ; 13(1): 117, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36596850

ABSTRACT

Phage tail-like bacteriocins (PTLBs) are large proteomic structures similar to the tail phages. These structures function in bacterial competition by making pores in the membrane of their competitors. The PTLBs identified in Pseudomonas aeruginosa are known as R-type and F-type pyocins, which have a narrow spectrum of action. Their specificity is determined by the tail fiber and is closely related to the lipopolysaccharide type of the target competitor strain. In this study, the genome sequences of 32 clinical of P. aeruginosa clinical isolates were analysed to investigate the presence of R-type and F-type pyocins, and one was detected in all strains tested. The pyocins were classified into 4 groups on the basis of the tail fiber and also the homology, phylogeny and structure of the cluster components. A relationship was established between these groups and the sequence type and serotype of the strain of origin and finally the killing spectrum of the representative pyocins was determined showing a variable range of activity between 0 and 37.5%. The findings showed that these pyocins could potentially be used for typing of P. aeruginosa clinical isolates, on the basis of their genomic sequence and cluster structure, and also as antimicrobial agents.


Subject(s)
Anti-Infective Agents , Bacteriocins , Bacteriophages , Bacteriocins/genetics , Bacteriocins/pharmacology , Pyocins/pharmacology , Pyocins/chemistry , Pseudomonas aeruginosa , Proteomics , Bacteriophages/genetics
7.
Microbiol Spectr ; 10(4): e0116722, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35708338

ABSTRACT

Pyocins are interbacterial killing complexes made by Pseudomonas aeruginosa primarily to enact intraspecific competition. DNA damage and the ensuing activation of RecA initiate canonical pyocin expression. We recently discovered that deletion of xerC, which encodes a tyrosine recombinase involved in chromosome decatenation, markedly elevates basal pyocin production independently of RecA. Interestingly, the already-elevated basal pyocin expression in ΔxerC cells is substantially further increased by ciprofloxacin treatment. Here, we asked whether this further increase is due to DNA damage additionally activating the canonical RecA-dependent pyocin expression pathway. We also interrogated the relationship between XerC recombinase activity and pyocin expression. Surprisingly, we find that DNA damage-induced pyocin stimulation in ΔxerC cells is independent of RecA but dependent on PrtN, implying a RecA-independent means of DNA damage sensing that activates pyocin expression via PrtN. In sharp contrast to the RecA independence of pyocin expression in ΔxerC strains, specific mutational inactivation of XerC recombinase activity (XerCY272F) caused modestly elevated basal pyocin expression and was further stimulated by DNA-damaging drugs, but both effects were fully RecA dependent. To test whether pyocins could be induced by chemically inactivating XerC, we deployed a previously characterized bacterial tyrosine recombinase inhibitor. However, the inhibitor did not activate pyocin expression even at growth-inhibitory concentrations, suggesting that its principal inhibitory activity resembles neither XerC absence nor enzymatic inactivation. Collectively, our results imply a second function of XerC, separate from its recombinase activity, whose absence permits RecA-independent but DNA damage-inducible pyocin expression. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa produces pyocins-intraspecific, interbacterial killing complexes. The canonical pathway for pyocin production involves DNA damage and RecA activation. Pyocins are released by cell lysis, making production costly. We previously showed that cells lacking the tyrosine recombinase XerC produce pyocins independently of RecA. Here, we show that DNA-damaging agents stimulate pyocin expression in ΔxerC strains without involving RecA. However, strains mutated for XerC recombinase activity display strictly RecA-dependent pyocin production, and a known bacterial tyrosine recombinase inhibitor does not elicit pyocin expression. Our results collectively suggest that the use of XerC inhibition as an antipseudomonal strategy will require targeting the second function of XerC in regulating noncanonical pyocin production rather than targeting its recombinase activity.


Subject(s)
Pseudomonas aeruginosa , Pyocins , DNA Damage , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pyocins/metabolism , Pyocins/pharmacology , Recombinases/genetics , Recombinases/metabolism , Recombinases/pharmacology , Tyrosine/genetics , Tyrosine/metabolism , Tyrosine/pharmacology
8.
mBio ; 13(2): e0339621, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35343790

ABSTRACT

Bacteria exploit a variety of attack strategies to gain dominance within ecological niches. Prominent among these are contact-dependent inhibition (CDI), type VI secretion (T6SS), and bacteriocins. The cytotoxic endpoint of these systems is often the delivery of a nuclease to the cytosol. How such nucleases translocate across the cytoplasmic membrane of Gram-negative bacteria is unknown. Here, we identify a small, conserved, 15-kDa domain, which we refer to as the inner membrane translocation (IMT) domain, that is common to T6SS and bacteriocins and linked to nuclease effector domains. Through fluorescence microscopy assays using intact and spheroplasted cells, we demonstrate that the IMT domain of the Pseudomonas aeruginosa-specific bacteriocin pyocin G (PyoG) is required for import of the toxin nuclease domain to the cytoplasm. We also show that translocation of PyoG into the cytosol is dependent on inner membrane proteins FtsH, a AAA+ATPase/protease, and TonB1, the latter more typically associated with transport of bacteriocins across the outer membrane. Our study reveals that the IMT domain directs the cytotoxic nuclease of PyoG to cross the cytoplasmic membrane and, more broadly, has been adapted for the transport of other toxic nucleases delivered into Gram-negative bacteria by both contact-dependent and contact-independent means. IMPORTANCE Nuclease bacteriocins are potential antimicrobials for the treatment of antibiotic-resistant bacterial infections. While the mechanism of outer membrane translocation is beginning to be understood, the mechanism of inner membrane transport is not known. This study uses PyoG as a model nuclease bacteriocin and defines a conserved domain that is essential for inner membrane translocation and is widespread in other bacterial competition systems. Additionally, the presented data link two membrane proteins, FtsH and TonB1, with inner membrane translocation of PyoG. These findings point to the general importance of this domain to the cellular uptake mechanisms of nucleases delivered by otherwise diverse and distinct bacterial competition systems. The work is also of importance for the design of new protein antibiotics.


Subject(s)
Bacteriocins , Pyocins , Bacteriocins/metabolism , Bacteriocins/pharmacology , Biological Transport , Gram-Negative Bacteria/metabolism , Membrane Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Pyocins/metabolism , Pyocins/pharmacology
9.
mBio ; 12(3)2021 05 04.
Article in English | MEDLINE | ID: mdl-33947755

ABSTRACT

Bacteriocins are proteinaceous antimicrobials produced by bacteria that are active against other strains of the same species. R-type pyocins are phage tail-like bacteriocins produced by Pseudomonas aeruginosa Due to their antipseudomonal activity, R-pyocins have potential as therapeutics in infection. P. aeruginosa is a Gram-negative opportunistic pathogen and is particularly problematic for individuals with cystic fibrosis (CF). P. aeruginosa organisms from CF lung infections develop increasing resistance to antibiotics, making new treatment approaches essential. P. aeruginosa populations become phenotypically and genotypically diverse during infection; however, little is known of the efficacy of R-pyocins against heterogeneous populations. R-pyocins vary by subtype (R1 to R5), distinguished by binding to different residues on the lipopolysaccharide (LPS). Each type varies in killing spectrum, and each strain produces only one R-type. To evaluate the prevalence of different R-types, we screened P. aeruginosa strains from the International Pseudomonas Consortium Database (IPCD) and from our biobank of CF strains. We found that (i) R1-types were the most prevalent R-type among strains from respiratory sources, (ii) a large number of strains lack R-pyocin genes, and (iii) isolates collected from the same patient have the same R-type. We then assessed the impact of intrastrain diversity on R-pyocin susceptibility and found a heterogenous response to R-pyocins within populations, likely due to differences in the LPS core. Our work reveals that heterogeneous populations of microbes exhibit variable susceptibility to R-pyocins and highlights that there is likely heterogeneity in response to other types of LPS-binding antimicrobials, including phage.IMPORTANCE R-pyocins have potential as alternative therapeutics against Pseudomonas aeruginosa in chronic infection; however, little is known about the efficacy of R-pyocins in heterogeneous bacterial populations. P. aeruginosa is known to become resistant to multiple antibiotics and to evolve phenotypic and genotypic diversity over time; thus, it is particularly difficult to eradicate in chronic cystic fibrosis (CF) lung infections. In this study, we found that P. aeruginosa populations from CF lungs maintain the same R-pyocin genotype but exhibit heterogeneity in susceptibility to R-pyocins from other strains. Our findings suggest there is heterogeneity in response to other types of LPS-binding antimicrobials, such as phage, highlighting the necessity of further studying the potential of LPS-binding antimicrobial particles as alternative therapies in chronic infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cystic Fibrosis/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pyocins/pharmacology , Humans , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/isolation & purification , Pyocins/classification
10.
J Appl Microbiol ; 131(6): 2780-2792, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33977611

ABSTRACT

AIM: This study is aimed at characterization of both antimicrobial and anti-biofilm activity of R-pyocin from clinical Pseudomonas aeruginosa against Gram-positive pathogens including Staphylococcus aureus. METHODS AND RESULTS: Pyocinogenic P. aeruginosa was detected using reverse-side method, and pyocinogeny typing was confirmed using revised-spotting method. Transmission electron microscopy (TEM) was used for morphological characterization of R-pyocin and for detection of changes in membrane of R-pyocin-treated S. aureus. SDS-PAGE analysis was used for detection of the molecular weight of R-pyocin protein-subunits and Poisson-killing-distribution assay for burst-size calculation. Lipotechoic-acid (LTA) adsorption-assay was used to confirm whether LTA in Gram-positive bacteria served as R-pyocin receptor. Moreover, R-pyocin production at 10-60°C was assessed herein. Host-range of activity of R-pyocin was tested against antimicrobial resistant (AMR) pathogens. The anti-biofilm activity of R-pyocin was detected against sensitive bacterial strains. Chemical, enzymatic, pH and thermo-stability of R-pyocin were evaluated. TEM micrographs revealed a typical morphology of myotailocins indicating the production of R-pyocin designated as RPU15. TEM revealed pores formation in S. aureus membrane, and bacteriophage-like plaques were obvious on plates of R-pyocin-treated S. aureus. R-pyocin activity was neutralized by LTA of S. aureus and Listeria monocytogenes. Pseudomonas aeruginosa PU15 produced ˜428 non-inducible R-pyocin particles. RPU15 sheath and tube protein-subunits exhibited a molecular weight of 38 and 23 kDa, respectively. RPU15 possessed activity against S. aureus, L. monocytogenes, Bacillus cereus and Candida albicans and reduced biofilm-biomasses of tested AMR strains. CONCLUSION: Our results show the potential therapeutic use of R-pyocin due to its effectiveness on tested bacterial biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study that investigates antimicrobial and anti-biofilm activity of R-pyocin activity against S. aureus. R-pyocin shows new phenomenon of bacteriophage-like plaques. Our findings represent a future therapeutic agent targeting both methicillin-resistant and vancomycin-resistant S. aureus.


Subject(s)
Anti-Bacterial Agents , Pyocins/pharmacology , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Biofilms , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
11.
J Mol Biol ; 432(13): 3869-3880, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32339530

ABSTRACT

Pseudomonas aeruginosa is a priority pathogen for the development of new antibiotics, particularly because multi-drug-resistant strains of this bacterium cause serious nosocomial infections and are the leading cause of death in cystic fibrosis patients. Pyocins, bacteriocins of P. aeruginosa, are potent and diverse protein antibiotics that are deployed during bacterial competition. Pyocins are produced by more than 90% of P. aeruginosa strains and may have utility as last resort antibiotics against this bacterium. In this study, we explore the antimicrobial activity of a newly discovered pyocin called pyocin G (PyoG). We demonstrate that PyoG has broad killing activity against a collection of clinical P. aeruginosa isolates and is active in a Galleria mellonella infection model. We go on to identify cell envelope proteins that are necessary for the import of PyoG and its killing activity. PyoG recognizes bacterial cells by binding to Hur, an outer-membrane TonB-dependent transporter. Both pyocin and Hur interact with TonB1, which in complex with ExbB-ExbD links the proton motive force generated across the inner membrane with energy-dependent pyocin translocation across the outer membrane. Inner-membrane translocation of PyoG is dependent on the conserved inner-membrane AAA+ ATPase/protease, FtsH. We also report a functional exploration of the PyoG receptor. We demonstrate that Hur can bind to hemin in vitro and that this interaction is blocked by PyoG, confirming the role of Hur in hemin acquisition.


Subject(s)
Hemin/genetics , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Pyocins/pharmacology , ATPases Associated with Diverse Cellular Activities/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacteriocins/chemistry , Bacteriocins/pharmacology , Drug Resistance, Multiple/drug effects , Humans , Membrane Proteins/genetics , Protein Binding/drug effects , Pseudomonas Infections/drug therapy , Pseudomonas Infections/genetics , Pseudomonas aeruginosa/pathogenicity , Pyocins/chemistry
12.
J Bacteriol ; 201(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-30988031

ABSTRACT

Certain Pseudomonas aeruginosa strains produce a homolog of colicin M, namely, PaeM, that specifically inhibits peptidoglycan biosynthesis of susceptible P. aeruginosa strains by hydrolyzing the lipid II intermediate precursor. Two variants of this pyocin were identified whose sequences mainly differed in the N-terminal protein moiety, i.e., the region involved in the binding to the FiuA outer membrane receptor and translocation into the periplasm. The antibacterial activity of these two variants, PaeM1 and PaeM2, was tested against various P. aeruginosa strains comprising reference strains PAO1 and PA14, PaeM-producing strains, and 60 clinical isolates. Seven of these strains, including PAO1, were susceptible to only one variant (2 to PaeM1 and 5 to PaeM2), and 11 were affected by both. The remaining strains, including PA14 and four PaeM1 producers, were resistant to both variants. The differences in the antibacterial spectra of the two PaeM homologs prompted us to investigate the molecular determinants allowing their internalization into P. aeruginosa cells, taking the PAO1 strain that is susceptible to PaeM2 but resistant to PaeM1 as the indicator strain. Heterologous expression of fiuA gene orthologs from different strains into PAO1, site-directed mutagenesis experiments, and construction of PaeM chimeric proteins provided evidence that the cell susceptibility and discrimination differences between the PaeM variants resulted from a polymorphism of both the pyocin and the outer membrane receptor FiuA. Moreover, we found that a third component, TonB1, a protein involved in iron transport in P. aeruginosa, working together with FiuA and the ExbB/ExbD complex, was directly implicated in this discrimination.IMPORTANCE Bacterial antibiotic resistance constitutes a threat to human health, imposing the need for identification of new targets and development of new strategies to fight multiresistant pathogens. Bacteriocins and other weapons that bacteria have themselves developed to kill competitors are therefore of great interest and a valuable source of inspiration for us. Attention was paid here to two variants of a colicin M homolog (PaeM) produced by certain strains of P. aeruginosa that inhibit the growth of their congeners by blocking cell wall peptidoglycan synthesis. Molecular determinants allowing recognition of these pyocins by the outer membrane receptor FiuA were identified, and a receptor polymorphism affecting the susceptibility of P. aeruginosa clinical strains was highlighted, providing new insights into the potential use of these pyocins as an alternative to antibiotics.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Drug Resistance, Bacterial , Polymorphism, Genetic , Pseudomonas aeruginosa/genetics , Pyocins/pharmacology , Anti-Bacterial Agents/pharmacology , Cell Wall/chemistry , Mutagenesis, Site-Directed , Peptidoglycan/chemistry , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Receptors, Cell Surface
13.
Appl Microbiol Biotechnol ; 102(24): 10393-10408, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30338356

ABSTRACT

Antimicrobial peptides (AMPs) from prokaryotic source also known as bacteriocins are ribosomally synthesized by bacteria belonging to different eubacterial taxonomic branches. Most of these AMPs are low molecular weight cationic membrane active peptides that disrupt membrane by forming pores in target cell membranes resulting in cell death. While these peptides known to exhibit broad-spectrum antimicrobial activity, including antibacterial and antifungal, they displayed minimal cytotoxicity to the host cells. Their antimicrobial efficacy has been demonstrated in vivo using diverse animal infection models. Therefore, we have discussed some of the promising peptides for their ability towards potential therapeutic applications. Further, some of these bacteriocins have also been reported to exhibit significant biological activity against various types of cancer cells in different experimental studies. In fact, differential cytotoxicity towards cancer cells as compared to normal cells by certain bacteriocins directs for a much focused research to utilize these compounds as novel therapeutic agents. In this review, bacteriocins that demonstrated antitumor activity against diverse cancer cell lines have been discussed emphasizing their biochemical features, selectivity against extra targets and molecular mechanisms of action.


Subject(s)
Antineoplastic Agents/pharmacology , Bacteriocins/genetics , Bacteriocins/pharmacology , Azurin/pharmacology , Bacteriocins/chemistry , Cations , Cell Membrane/drug effects , Humans , Nisin/pharmacology , Pediocins/pharmacology , Protein Engineering/methods , Pyocins/chemistry , Pyocins/pharmacology
14.
Appl Environ Microbiol ; 84(18)2018 09 15.
Article in English | MEDLINE | ID: mdl-29980560

ABSTRACT

Pyocins are bacteriocins secreted by Pseudomonas aeruginosa, and they assist in the colonization of different niches. A major subset of these antibacterial proteins adopt a modular organization characteristic of polymorphic toxins. They include a receptor-binding domain, a segment enabling membrane passage, and a toxin module at the carboxy terminus, which eventually kills the target cells. To protect themselves from their own products, bacteriocin-producing strains express an immunity gene concomitantly with the bacteriocin. We show here that a pyocin equipped with a phylogenetically distinct ColM toxin domain, PaeM4, mediates antagonism against a large set of P. aeruginosa isolates. Immunity to PaeM4 is provided by the inner membrane protein PmiC, which is equipped with a transmembrane topology not previously described for the ColM family. Given that strains lacking a pmiC gene are killed by PaeM4, the presence of such an immunity partner likely is a key criterion for escaping cellular death mediated by PaeM4. The presence of a TonB box in PaeM4 and enhanced bacteriocin activity under iron-poor conditions strongly suggested the targeting of a TonB-dependent receptor. Evaluation of PaeM4 activities against TonB-dependent receptor knockout mutants in P. aeruginosa PAO1 revealed that the heme receptor HxuC (PA1302) serves as a PaeM4 target at the cellular surface. Because other ColM-type pyocins may target the ferrichrome receptor FiuA, our results illustrate the versatility in target recognition conferred by the polymorphic nature of ColM-type bacteriocins.IMPORTANCE The antimicrobial armamentarium of a bacterium is a major asset for colonizing competitive environments. Bacteriocins comprise a subset of these compounds. Pyocins are an example of such antibacterial proteins produced by Pseudomonas aeruginosa, killing other P. aeruginosa strains. A large group of these molecules show a modular protein architecture that includes a receptor-binding domain for initial target cell attachment and a killer domain. In this study, we have shown that a novel modular pyocin (PaeM4) that kills target bacteria via interference with peptidoglycan assembly takes advantage of the HxuC heme receptor. Cells can protect themselves from killing by the presence of a dedicated immunity partner, an integral inner membrane protein that adopts a transmembrane topology distinct from that of proteins currently known to provide immunity against such toxin activity. Understanding the receptors with which pyocins interact and how immunity to pyocins is achieved is a pivotal step toward the rational design of bacteriocin cocktails for the treatment of P. aeruginosa infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Pseudomonas aeruginosa/drug effects , Pyocins/pharmacology , Receptors, Cell Surface/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/genetics , Genome, Bacterial , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/metabolism , Pyocins/chemistry , Pyocins/metabolism , Receptors, Cell Surface/genetics
15.
PLoS One ; 12(10): e0185782, 2017.
Article in English | MEDLINE | ID: mdl-28973027

ABSTRACT

The emergence, persistence and spread of antibiotic-resistant human pathogenic bacteria heralds a growing global health crisis. Drug-resistant strains of gram-negative bacteria, such as Pseudomonas aeruginosa, are especially dangerous and the medical and economic burden they impose underscore the critical need for finding new antimicrobials. Recent studies have demonstrated that plant-expressed bacteriocins of the colicins family can be efficient antibacterials against all major enteropathogenic strains of E. coli. We extended our studies of colicin-like bacteriocins to pyocins, which are produced by strains of P. aeruginosa for ecological advantage against other strains of the same species. Using a plant-based transient expression system, we expressed six different pyocins, namely S5, PaeM, L1, L2, L3 and one new pyocin, PaeM4, and purified them to homogeneity. Among these pyocins, PaeM4 demonstrated the broadest spectrum of activity by controlling 53 of 100 tested clinical isolates of P. aeruginosa. The activity of plant-made pyocins was confirmed in the agar drop, liquid culture susceptibility and biofilm assays, and in the Galleria mellonella animal infection model.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriocins/pharmacology , Plant Extracts/pharmacology , Pseudomonas aeruginosa/drug effects , Pyocins/pharmacology , Animals , Biofilms/drug effects , Moths/microbiology , Pseudomonas aeruginosa/isolation & purification
16.
Sci Rep ; 6: 30201, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27444885

ABSTRACT

Protein antibiotics, known as bacteriocins, are widely produced by bacteria for intraspecies competition. The potency and targeted action of bacteriocins suggests that they could be developed into clinically useful antibiotics against highly drug resistant Gram-negative pathogens for which there are few therapeutic options. Here we show that Pseudomonas aeruginosa specific bacteriocins, known as pyocins, show strong efficacy in a murine model of P. aeruginosa lung infection, with the concentration of pyocin S5 required to afford protection from a lethal infection at least 100-fold lower than the most commonly used inhaled antibiotic tobramycin. Additionally, pyocins are stable in the lung, poorly immunogenic at high concentrations and efficacy is maintained in the presence of pyocin specific antibodies after repeated pyocin administration. Bacteriocin encoding genes are frequently found in microbial genomes and could therefore offer a ready supply of highly targeted and potent antibiotics active against problematic Gram-negative pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Lung Diseases/drug therapy , Lung/microbiology , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Animals , Bacteriocins/pharmacology , Disease Models, Animal , Female , Lung Diseases/microbiology , Mice , Mice, Inbred C57BL , Pseudomonas Infections/microbiology , Pyocins/pharmacology , Species Specificity , Tobramycin/pharmacology
17.
Biochem J ; 473(15): 2345-58, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27252387

ABSTRACT

Increasing rates of antibiotic resistance among Gram-negative pathogens such as Pseudomonas aeruginosa means alternative approaches to antibiotic development are urgently required. Pyocins, produced by P. aeruginosa for intraspecies competition, are highly potent protein antibiotics known to actively translocate across the outer membrane of P. aeruginosa. Understanding and exploiting the mechanisms by which pyocins target, penetrate and kill P. aeruginosa is a promising approach to antibiotic development. In this work we show the therapeutic potential of a newly identified tRNase pyocin, pyocin SD2, by demonstrating its activity in vivo in a murine model of P. aeruginosa lung infection. In addition, we propose a mechanism of cell targeting and translocation for pyocin SD2 across the P. aeruginosa outer membrane. Pyocin SD2 is concentrated at the cell surface, via binding to the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide (LPS), from where it can efficiently locate its outer membrane receptor FpvAI. This strategy of utilizing both the CPA and a protein receptor for cell targeting is common among pyocins as we show that pyocins S2, S5 and SD3 also bind to the CPA. Additional data indicate a key role for an unstructured N-terminal region of pyocin SD2 in the subsequent translocation of the pyocin into the cell. These results greatly improve our understanding of how pyocins target and translocate across the outer membrane of P. aeruginosa. This knowledge could be useful for the development of novel anti-pseudomonal therapeutics and will also support the development of pyocin SD2 as a therapeutic in its own right.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Pseudomonas aeruginosa/chemistry , Pyocins/isolation & purification , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Circular Dichroism , Cloning, Molecular , Lung Diseases/drug therapy , Mice , Pyocins/chemistry , Pyocins/pharmacology , Scattering, Small Angle , Spectrophotometry, Ultraviolet , X-Ray Diffraction
18.
Nat Commun ; 7: 11220, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27075392

ABSTRACT

Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs.


Subject(s)
Bacteriolysis , Biofilms , Cell Membrane/metabolism , Organelle Biogenesis , Pseudomonas aeruginosa/physiology , Bacteriolysis/drug effects , Biofilms/drug effects , Cell Membrane/drug effects , DNA, Bacterial/metabolism , Endopeptidases/pharmacology , Extracellular Space/metabolism , Pseudomonas aeruginosa/drug effects , Pyocins/pharmacology , Quinolones/pharmacology , Stress, Physiological/drug effects
19.
Environ Microbiol ; 18(10): 3482-3493, 2016 10.
Article in English | MEDLINE | ID: mdl-27119970

ABSTRACT

When bacterial lineages make the transition from free-living to permanent association with hosts, they can undergo massive gene losses, for which the selective forces within host tissues are unknown. We identified here melanogenic clinical isolates of Pseudomonas aeruginosa with large chromosomal deletions (66 to 270 kbp) and characterized them to investigate how they were selected. When compared with their wild-type parents, melanogenic mutants (i) exhibited a lower fitness in growth conditions found in human tissues, such as hyperosmolarity and presence of aminoglycoside antibiotics, (ii) narrowed their metabolic spectrum with a growth disadvantage with particular carbon sources, including aromatic amino acids and acyclic terpenes, suggesting a reduction of metabolic flexibility. Despite an impaired fitness in rich media, melanogenic mutants can inhibit their wild-type parents and compete with them in coculture. Surprisingly, melanogenic mutants became highly resistant to two intraspecific toxins, the S-pyocins AP41 and S1. Our results suggest that pyocins produced within a population of infecting P. aeruginosa may have selected for bacterial mutants that underwent massive gene losses and that were adapted to the life in diverse bacterial communities in the human host. Intraspecific interactions may therefore be an important factor driving the continuing evolution of pathogens during host infections.


Subject(s)
Chromosome Deletion , Drug Resistance, Bacterial , Melanins/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Pyocins/pharmacology , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , Humans , Pseudomonas aeruginosa/genetics
20.
Microbiologyopen ; 5(3): 413-23, 2016 06.
Article in English | MEDLINE | ID: mdl-26860427

ABSTRACT

S-type pyocins are bacteriocins produced by Pseudomonas aeruginosa isolates to antagonize or kill other strains of the same species. They have a modular organization comprising a receptor-binding domain recognizing a surface constituent of the target bacterium, a domain for translocation through the periplasm, and a killing or toxic domain with DNase, tRNase, or pore-forming activity. Pyocins S2, S3, S4, and S5 recognize TonB-dependent ferri-siderophore receptors in the outer membrane. We here describe a new nuclease bacteriocin, pyocin S6, encoded in the genome of a P. aeruginosa cystic fibrosis (CF) clinical isolate, CF_PA39. Similarly to pyocins S1 and S2, the S6 toxin-immunity gene tandem was recruited to the genomic region encoding exotoxin A. The pyocin S6 receptor-binding and translocation domains are identical to those of pyocin S1, whereas the killing domain is similar to the 16S ribonuclease domain of Escherichia coli colicin E3. The cytotoxic activity was abolished in pyocin S6 forms with a mutation in the colicin E3-equivalent catalytic motif. The CF_PA39 S6 immunity gene displays a higher expression level than the gene encoding the killing protein, the latter being only detected when bacteria are grown under iron-limiting conditions. In the S1-pyocinogenic strain P. aeruginosa ATCC 25324 and pyocin S2 producer P. aeruginosa PAO1, a remnant of the pyocin S6 killing domain and an intact S6-type immunity gene are located downstream of their respective pyocin operons. Strain PAO1 is insensitive for pyocin S6, and its S6-type immunity gene provides protection against pyocin S6 activity. Purified pyocin S6 inhibits one-fifth of 110 P. aeruginosa CF clinical isolates tested, showing clearer inhibition zones when the target cells are grown under iron limitation. In this panel, about half of the CF clinical isolates were found to host the S6 genes. The pyocin S6 locus is also present in the genome of some non-CF clinical isolates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cystic Fibrosis/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Pyocins/pharmacology , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Bacterial Outer Membrane Proteins/metabolism , Bacteriocins/genetics , Base Sequence , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Microbial Sensitivity Tests , Protein Structure, Tertiary , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Pyocins/chemistry , Pyocins/immunology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...