Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.287
Filter
1.
AAPS PharmSciTech ; 25(7): 211, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39242397

ABSTRACT

Pirarubicin attracted considerable attention in clinical studies because of its high therapeutic efficacy and reduced toxicity in comparison with other anthracyclines. Nevertheless, ~ 30% patients undergoing PIRA treatment still experience relapse and metastasis. Clinical advancements unveiled that cancer stem cells (CSCs) residing in the tumor constitutes a major factor for such limitations and subsequently are the reason for treatment failure. Consequently, eradicating CSCs alongside bulk tumor is a crucial undertaking to attain utmost therapeutic efficacy of the treatment. Nevertheless, majority of the CSCs inhibitors currently under examination lack specificity, show unsynchronized bioavailability with other primary treatments and exhibit notable toxicity in their therapeutic applications, which is primarily attributable to their inadequate tumor-targeting capabilities. Therefore, we have developed a biodegradable polylactic acid based blend block copolymeric NPs for concomitant delivery of CSCs inhibitor Salinomycin (SAL) & chemotherapeutic drug Pirarubicin (PIRA) with an aim to improve the efficacy of treatment and prevent cancer relapse. Prepared NPs showed < 100 nm size and excellent loading with sustained release for both the drugs. Also, PIRA:SAL co-loaded NPs exhibits synergistically enhanced cytotoxicity against cancer cell as well as CSCs. Most importantly, NPs mediated co-delivery of the drugs showed complete tumor eradication, without any reoccurrence throughout the surveillance period. Additionally, NPs treatment didn't show any histopathological alteration in vital organs confirming their non-toxic nature. Altogether, present study concludes that the developed PIRA:SAL NPs have excellent efficacy for tumor regression as well as prevention of cancer relapse, hence can be used as a potential combination therapy for cancer treatment.


Subject(s)
Doxorubicin , Pyrans , Pyrans/administration & dosage , Pyrans/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/analogs & derivatives , Doxorubicin/pharmacology , Humans , Animals , Cell Line, Tumor , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Nanoparticles/chemistry , Drug Synergism , Neoplastic Stem Cells/drug effects , Mice , Polyesters/chemistry , Drug Delivery Systems/methods , Drug Carriers/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasm Recurrence, Local/drug therapy , Female , Drug Liberation , Polyether Polyketides
2.
J Med Chem ; 67(15): 13089-13105, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39044437

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly lethal malignancy, and its clinical management encounters severe challenges due to its high metastatic propensity and the absence of effective therapeutic targets. To improve druggability of aurovertin B (AVB), a natural polyketide with a significant antiproliferative effect on TNBC, a series of NO donor/AVB hybrids were synthesized and tested for bioactivities. Among them, compound 4d significantly inhibited the proliferation and metastasis of TNBC in vitro and in vivo with better safety than that of AVB. The structure-activity relationship analysis suggested that the types of NO donor and the linkers had considerable effects on the activities. Mechanistic investigations unveiled that 4d induced apoptosis and ferroptosis by the reduction of mitochondrial membrane potential and the down-regulation of GPX4, respectively. The antimetastatic effect of 4d was associated with the upregulation of DUSP1. Overall, these compelling results underscore the tremendous potential of 4d for treating TNBC.


Subject(s)
Antineoplastic Agents , Apoptosis , Ferroptosis , Nitric Oxide Donors , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Drug Screening Assays, Antitumor , Ferroptosis/drug effects , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/chemistry , Nitric Oxide Donors/therapeutic use , Nitric Oxide Donors/chemical synthesis , Structure-Activity Relationship , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Pyrans/chemistry , Pyrans/pharmacology
3.
Eur J Med Chem ; 276: 116701, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39067438

ABSTRACT

Salinomycin (Sal) has attracted considerable attention in the field of tumor treatment, especially for its inhibitory effect on cancer stem cells (CSCs) and drug-resistant tumor cells. However, its solubility and targeting specificity pose significant challenges to its pharmaceutical development. Sal-A6, a novel peptide-drug conjugate (PDC), was formed by linking the peptide A6 targeting the CSC marker CD44 with Sal using a specific linker. This conjugation markedly enhances the physicochemical properties of Sal and compared to Sal, Sal-A6 demonstrated a significantly increased activity against ovarian cancer. Furthermore, Sal-A6, employing a disulfide bond as a linker, exhibited bystander killing effect. Moreover, it induces substantial cytotoxic effect on both cancer stem cells and drug-resistant cells in addition to enhance chemosensitivity of resistant ovarian cancer cells. In summary, the results indicated that Sal-A6, a novel PDC derived from Sal, has potential therapeutic applications in the treatment of ovarian cancer and drug-resistant patients. Additionally, this discovery offers insights for developing PDC-type drugs using Sal as a foundation.


Subject(s)
Antineoplastic Agents , Drug Screening Assays, Antitumor , Neoplastic Stem Cells , Ovarian Neoplasms , Peptides , Pyrans , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Pyrans/pharmacology , Pyrans/chemistry , Pyrans/chemical synthesis , Neoplastic Stem Cells/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Peptides/pharmacology , Peptides/chemistry , Peptides/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Bystander Effect/drug effects , Molecular Structure , Drug Resistance, Neoplasm/drug effects , Dose-Response Relationship, Drug , Cell Line, Tumor , Cell Survival/drug effects , Polyether Polyketides
4.
Biomacromolecules ; 25(8): 4728-4748, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39058483

ABSTRACT

To address lymphatic metastasis in lung cancer, we developed the Au@Gd-SiO2-HA-LyP-1 nanoprobe, assessing its diagnostic and therapeutic capabilities. This nanoprobe integrates a Au core with a Gd-SiO2 shell and dual-targeting HA-LyP-1 molecules. We evaluated its size, shape, and functional properties using various characterization techniques, alongside in vivo and in vitro toxicity tests. The spherical nanoprobes have a 50 nm diameter and contain 1.37% Gd. They specifically target lymphatic metastasis sites and tumor cells, showing enhanced MRI contrast and effective, targeted DOX delivery with reduced normal tissue toxicity. The Au@Gd-SiO2-HA-LyP-1 nanoprobe is a promising tool for diagnosing and treating lung cancer lymphatic metastasis, featuring dual-targeting and superior imaging capabilities.


Subject(s)
Doxorubicin , Gold , Lymphatic Metastasis , Silicon Dioxide , Humans , Gold/chemistry , Animals , Mice , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Silicon Dioxide/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Magnetic Resonance Imaging/methods , Gadolinium/chemistry , Pyrans/chemistry , Pyrans/pharmacology , Cell Line, Tumor , Peptides, Cyclic
5.
Mol Biol Rep ; 51(1): 807, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002036

ABSTRACT

BACKGROUND: Acute Myeloid Leukemia (AML) is a fast-developing invading cancer that impacts the blood and bone marrow, marked by the rapid proliferation of abnormal white blood cells. Chemotherapeutic agents, a primary treatment for AML, encounter clinical limitations such as poor solubility and low bioavailability. Previous studies have highlighted antibiotics as effective in inducing cancer cell death and potentially preventing metastasis. Besides, insulin is known to activate the PI3K/Akt pathway, often disrupted in cancers, leading to enhanced cell survival and resistance to apoptosis. In light of the above-mentioned points, we examined the anti-cancer impact of antibiotics Ciprofloxacin (CP) and Salinomycin (SAL) and their combination on KG1-a cells in the presence and absence of insulin. METHODS: This was accomplished by exposing KG1-a cells to different doses of CP and SAL alone, in combination, and with or without insulin for 24-72 h. Cell viability was evaluated using the MTT assay. Besides, apoptotic effects were examined using Hoechst staining and Annexin-V/PI flow cytometry. The expression levels of Bax, p53, BIRC5, Akt, PTEN, and FOXO1 were analyzed through Real-Time PCR. RESULTS: CP and SAL demonstrated cytotoxic and notable pro-apoptotic impact on KG1-a cells by upregulating Bax and p53 and downregulating BIRC5, leading to G0/G1 cell cycle arrest and prevention of the PI3K-Akt signaling pathway. Our findings demonstrated that combination of CP and SAL promote apoptosis in the KG1-a cell line by down-regulating BIRC5 and Akt, as well as up-regulating Bax, p53, PTEN, and FOXO1. Additionally, the findings strongly indicated that insulin effectively mitigates apoptosis by enhancing Akt expression and reducing FOXO1 and PTEN gene expression in the cells treated with CP and SAL. CONCLUSION: Our findings showed that the combined treatment of CP and SAL exhibit a strong anti-cancer effect on leukemia KG1-a cells. Moreover, it was discovered that the PI3K-Akt signaling can be a promising target in leukemia treatment particularly in hyperinsulinemia condition.


Subject(s)
Apoptosis , Cell Survival , Ciprofloxacin , Insulin , Pyrans , Humans , Ciprofloxacin/pharmacology , Apoptosis/drug effects , Pyrans/pharmacology , Cell Line, Tumor , Insulin/metabolism , Cell Survival/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Forkhead Box Protein O1/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation/drug effects , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Leukemia/drug therapy , Leukemia/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Polyether Polyketides
6.
Biomed Pharmacother ; 177: 117026, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936197

ABSTRACT

Cyclophosphamide is an anti-neoplastic drug that has shown competence in the management of a broad range of malignant tumors. In addition, it represents a keystone agent for management of immunological conditions. Despite these unique properties, induction of lung toxicity may limit its clinical use. Omarigliptin is one of the dipeptidyl peptidase-4 inhibitors that has proven efficacy in management of diabetes mellitus. Rosinidin is an anthocyanidin flavonoid that exhibited promising results in management of diseases characterized by oxidative stress, inflammation, and apoptosis. The present work investigated the possible effects of omarigliptin with or without rosinidin on cyclophosphamide-induced lung toxicity with an exploration of the molecular mechanisms that contribute to these effects. In a rodent model of cyclophosphamide elicited lung toxicity, the potential efficacy of omarigliptin with or without rosinidin was investigated at both the biochemical and the histopathological levels. Both omarigliptin and rosinidin exhibited a synergistic ability to augment the tissue antioxidant defenses, mitigate the inflammatory pathways, restore glucagon-like peptide-1 levels, modulate high mobility group box 1 (HMGB1)/receptors of advanced glycation end products (RAGE)/nuclear factor kappa B (NF-κB) axis, downregulate the fibrogenic mediators, and create a balance between the pathways involved in apoptosis and the autophagy signals in the pulmonary tissues. In conclusion, omarigliptin/rosinidin combination may be introduced as a novel therapeutic modality that attenuates the different forms of lung toxicities induced by cyclophosphamide.


Subject(s)
Cyclophosphamide , Glucagon-Like Peptide 1 , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Pyrans , Signal Transduction , Animals , Cyclophosphamide/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Male , Inflammasomes/metabolism , Inflammasomes/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Rats , Phosphatidylinositol 3-Kinases/metabolism , Glucagon-Like Peptide 1/metabolism , Pyrans/pharmacology , Lung/drug effects , Lung/metabolism , Lung/pathology , Anthocyanins/pharmacology , Oxidative Stress/drug effects , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Rats, Wistar , Pyrimidines/pharmacology , Lung Injury/chemically induced , Lung Injury/drug therapy , Lung Injury/metabolism , Lung Injury/pathology , Forkhead Box Protein O1 , Heterocyclic Compounds, 2-Ring
7.
AAPS PharmSciTech ; 25(5): 104, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724836

ABSTRACT

Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Apoptosis , Drug Carriers , Epithelial-Mesenchymal Transition , Nanoparticles , Prostatic Neoplasms , Pyrans , Rats, Wistar , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Animals , Pyrans/pharmacology , Pyrans/administration & dosage , Apoptosis/drug effects , Humans , Rats , Cell Line, Tumor , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Drug Carriers/chemistry , Nanoparticles/chemistry , Epithelial-Mesenchymal Transition/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Cell Movement/drug effects , PC-3 Cells , Drug Delivery Systems/methods , Polyether Polyketides
8.
Mol Plant ; 17(7): 1054-1072, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38807366

ABSTRACT

Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways. The transcriptional repressor proteins SUPPRESSOR OF MAX2 1 (SMAX1), SMAX1-like2 (SMXL2), and D53-like SMXLs mediate karrikin and strigolactone signaling by directly binding downstream genes or by inhibiting the activities of transcription factors. In this study, we characterized the non-transcriptional regulatory activities of SMXL proteins in Arabidopsis. We discovered that SMAX1 and SMXL2 with mutations in their ethylene-response factor-associated amphiphilic repression (EAR) motif had undetectable or weak transcriptional repression activities but still partially rescued the hypocotyl elongation defects and fully reversed the cotyledon epinasty defects of the smax1 smxl2 mutant. SMAX1 and SMXL2 directly interact with PHYTOCHROME INTERACTION FACTOR 4 (PIF4) and PIF5 to enhance their protein stability by interacting with phytochrome B (phyB) and suppressing the association of phyB with PIF4 and PIF5. The karrikin-responsive genes were then identified by treatment with GR24ent-5DS, a GR24 analog showing karrikin activity. Interestingly, INDOLE-3-ACETIC ACID INDUCIBLE 29 (IAA29) expression was repressed by GR24ent-5DS treatment in a PIF4- and PIF5-dependent and EAR-independent manner, whereas KARRIKIN UPREGULATED F-BOX 1 (KUF1) expression was induced in a PIF4- and PIF5-independent and EAR-dependent manner. Furthermore, the non-transcriptional regulatory activity of SMAX1, which is independent of the EAR motif, had a global effect on gene expression. Taken together, these results indicate that non-transcriptional regulatory activities of SMAX1 and SMXL2 mediate karrikin-regulated seedling response to red light.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Furans , Gene Expression Regulation, Plant , Light , Seedlings , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/radiation effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Seedlings/genetics , Seedlings/radiation effects , Seedlings/growth & development , Seedlings/metabolism , Gene Expression Regulation, Plant/radiation effects , Furans/pharmacology , Furans/metabolism , Pyrans/pharmacology , Pyrans/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Hypocotyl/genetics , Hypocotyl/growth & development , Hypocotyl/metabolism , Mutation , Red Light , Intracellular Signaling Peptides and Proteins
9.
Chem Biodivers ; 21(8): e202400920, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38818615

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative condition characterized by both motor and non-motor symptoms. Although PD is commonly associated with a decline of dopaminergic neurons in the substantia nigra, other diagnostic criteria and biomarkers also exist. In the search for novel therapeutic agents, chromene and pyran derivatives have shown potential due to their diverse pharmacological activities. This study utilizes a comprehensive computational approach to investigate the viability of chromene/pyran compounds as potential treatments for PD. The drug-likeness characteristics of these molecules were analyzed using ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) studies. Molecular docking was performed against PDB ID: 2V5Z. The best three molecules chosen were compound 7, compound 24, and compound 67 have a binding energy of -6.7, -8.6, and -10.9 kcal/mol. Molecules demonstrating positive blood-brain barrier permeability, good solubility, and favorable binding affinity were further evaluated using Density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations to assess their electronic structure and stability. DFT calculations indicated that molecule 82 has a dipole moment of 15.70 D. RMSD and RMSF results confirmed the stability of the complexes over a 100 ns simulation, with a maximum of 3 hydrogen bonds formed.


Subject(s)
Benzopyrans , Density Functional Theory , Molecular Docking Simulation , Molecular Dynamics Simulation , Parkinson Disease , Pyrans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Pyrans/chemistry , Pyrans/pharmacology , Pyrans/metabolism , Humans , Benzopyrans/chemistry , Benzopyrans/metabolism , Benzopyrans/pharmacology , Molecular Structure , Blood-Brain Barrier/metabolism , Antiparkinson Agents/chemistry , Antiparkinson Agents/pharmacology , Antiparkinson Agents/metabolism
10.
Biochem Biophys Res Commun ; 716: 150038, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704891

ABSTRACT

Hyperuricemia (HUA) is caused by increased synthesis and/or insufficient excretion of uric acid (UA). Long-lasting HUA may lead to a number of diseases including gout and kidney injury. Harpagoside (Harp) is a bioactive compound with potent anti-inflammatory activity from the roots of Scrophularia ningpoensis. Nevertheless, its potential effect on HUA was not reported. The anti-HUA and nephroprotective effects of Harp on HUA mice were assessed by biochemical and histological analysis. The proteins responsible for UA production and transportation were investigated to figure out its anti-HUA mechanism, while proteins related to NF-κB/NLRP3 pathway were evaluated to reveal its nephroprotective mechanism. The safety was evaluated by testing its effect on body weight and organ coefficients. The results showed that Harp significantly reduced the SUA level and protected the kidney against HUA-induced injury but had no negative effect on safety. Mechanistically, Harp significantly reduced UA production by acting as inhibitors of xanthine oxidase (XOD) and adenosine deaminase (ADA) and decreased UA excretion by acting as activators of ABCG2, OAT1 and inhibitors of GLUT9 and URAT1. Moreover, Harp markedly reduced infiltration of inflammatory cells and down-regulated expressions of TNF-α, NF-κB, NLRP3 and IL-1ß in the kidney. Harp was a promising anti-HUA agent.


Subject(s)
Glycosides , Hyperuricemia , NLR Family, Pyrin Domain-Containing 3 Protein , Pyrans , Uric Acid , Animals , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Uric Acid/blood , Male , Glycosides/pharmacology , Glycosides/therapeutic use , Pyrans/pharmacology , Pyrans/therapeutic use , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , NF-kappa B/metabolism , Mice, Inbred C57BL
11.
Curr Pharm Des ; 30(18): 1398-1403, 2024.
Article in English | MEDLINE | ID: mdl-38623973

ABSTRACT

BACKGROUND: Influenza virus is a kind of RNA virus. Nowadays, the high incidence of influenza and the morbidity and mortality of epidemic influenza are substantial. It has been reported that one hundred million people in the world are infected with influenza viruses, and two hundred and fifty thousand to five hundred thousand people die from the flu per year. In 2021, the number of infected persons in China was reported to be 654,700, and 0.07% of the infected persons died. The flu has caused a serious threat to human survival. Although several drugs, such as Zanamivir, Oseltamivir, Peramivir, and Laninamivir, have been used in clinics for the treatment of the influenza virus, there are some shortcomings of these drugs. The strain of influenza H5N1 (avian influenza) has been found to resist the effective drug Oseltamivir. Thus, there is an urgent demand to discover new influenza virus inhibitors to overcome the emergence of influenza antigens. AIMS: This study aimed to develop new influenza virus inhibitors based on the rupestonic acid parent core. OBJECTIVE: The rupestonic acid L-ephedrine ester (A) and rupestonic acid L-ephedrine complex (B) were synthesized in this work for the development of influenza virus inhibitors. METHODS: The target compounds were synthesized using rupestonic acid and L-ephedrine as starting materials. Their structures were characterized by 1H NMR and 13C NMR, and the purity was determined by HPLC. Then, their preliminary in vitro influenza activity was evaluated using Oseltamivir as a reference drug. RESULTS: The results showed that the synthesized rupestonic acid L-ephedrine derivatives A and B were more potent influenza virus inhibitors against the strains of A/PR/8/34 (H1N1) and A/FM/1/47 (H1N1) with the IC50 values of 51.0, 51.0 µM and 441.0, 441.0 µM, respectively, than that of rupestonic acid. By comparing the IC50 of compounds A and B, compound A can be regarded as a very promising lead compound for the development of influenza virus inhibitors. CONCLUSION: The rupestonic acid L-ephedrine ester (A) and rupestonic acid L-ephedrine complex (B) were synthesized and characterized using 1H NMR and 13C NMR. Moreover, their purity was determined by HPLC. Both compounds A and B exhibited more potent activities against the strains of A/PR/8/34 (H1N1) and A/FM/1/47 (H1N1) than rupestonic acid. Compound A can be regarded as a very promising lead compound for the development of influenza virus inhibitors. Based on these results, more rupestonic acid derivatives will be designed and synthesized in the future for the development of influenza virus inhibitors.


Subject(s)
Antiviral Agents , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Humans , Microbial Sensitivity Tests , Structure-Activity Relationship , Madin Darby Canine Kidney Cells , Animals , Molecular Structure , Dose-Response Relationship, Drug , Pyrans/pharmacology , Pyrans/chemical synthesis , Pyrans/chemistry , Dogs , Influenza, Human/drug therapy , Influenza, Human/virology , Dibenzothiepins/pharmacology , Dibenzothiepins/chemical synthesis , Sesquiterpenes , Azulenes
12.
Sci Rep ; 14(1): 9862, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684707

ABSTRACT

The process of creating a series of 3-amino-1-aryl-8-methoxy-1H-benzo[f]chromene-2-carbonitriles (4a-q) involved reacting 6-methoxynaphthalen-2-ol (1), the appropriate aromatic aldehydes (2a-q), and malononitrile (3) in an absolute ethanol/piperidine solution under Ultrasonic irradiation. However, the attempt to create 3-amino-1-aryl-1H-benzo[f]chromene-2,8-dicarbonitrile (6a, d, e) was unsuccessful when 6-cyanonaphthalen-2-ol (5) was stirred at room temperature, reflux, Microwave irradiation, or Ultrasonic irradiation. In addition, the target molecules were screened against Staphylococcus aureus (MRSA), Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Escherichia coli and Klebsiella pneumonia, as well as a panel of three human cancer cells lines such as MCF-7, HCT-116, HepG-2 and two normal cell lines HFL-1 and WI-38. The obtained results confirmed that the pyran derivatives (4 m, i, k) which have a double chlorine at 3,4/2,3/2,5-positions, a single halogen atom 3-Cl/4-Br (4c, e) and a double bromine at 3,5-positions with a single methoxy group at 2-position (4n), of phenyl ring, and, to a lesser extent, other pyran derivatives with monoihalogenated (4a, b, d, f), dihalogenated (4 g, h, j, l) or trisubstituent phenyl ring (4o, p, q). Furthermore, compounds 4b-e, g, i, j, m, and n showed negligible activity against the two normal cell lines, HFL-1 and WI-38. Moreover, compound 4 g exhibited the strongest antimicrobial activity among the other pyran derivatives (4a-f, g-q) when compared to Ciprofloxacin. The MIC was assessed and screened for compound 4 g, revealing bactericidal effects. Lastly, SAR and molecular docking were studied.


Subject(s)
Antineoplastic Agents , Microbial Sensitivity Tests , Pyrans , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Pyrans/pharmacology , Pyrans/chemistry , Pyrans/chemical synthesis , Cell Line, Tumor , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Molecular Docking Simulation , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Structure-Activity Relationship , Escherichia coli/drug effects
13.
Res Vet Sci ; 172: 105249, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579633

ABSTRACT

The effect of salinomycin sodium alone and in combination with functional oils on performance and microbiota of broiler infected Eimeria were evaluated. 512 broilers were randomly assigned to 4 treatments (8 replicates, 16 birds/pen): a Control group (any additives); Ionophore group: salinomycin supplementation at 66 ppm (SS66); Ionophore +0.075% Functional oil (FO) group (SS66 + FO supplementation at 750 ppm); and Ionophore +0.10% FO group (SS66 + FO supplementation at 1000 ppm). At 14 days of age, birds were gavaged with 1 mL of a saline solution containing sporulated oocysts of E. tenella, E. acervulina and E. maxima. Performance indices were measured weekly. At 28 days, intestinal content was collected for microbiota analysis. Broilers of Control group presented the worst performance indices. Broilers of Ionophore + FO (0.075% and 0.10%) groups exhibited a higher BW at 28 days of age. The supplementation of Ionophore +0.075% FO resulted in a higher relative proportion of Firmicutes and a lower proportion of Actinobacteria in the ileum-jejunum. Lactobacillaceae was the dominant family in the jejunal, and ileal microbiotas of broilers fed diets supplemented with Ionophore, Ionophore +0.075% FO and Ionophore +0.10% FO. The supplementation of ionophore yielded higher numbers of Lactobacillaceae, Enterobactereaceae and Cloritridiaceae in the cecal. Ionophore associated with FO controlled the Lactobacillaceae, Enterobactereaceae and Cloritridiaceae families present in the cecum. Therefore, the combination of salinomycin with functional oil showed synergistic effect on performance and modulation of intestinal microbiota of broilers challenged with Eimeria.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Diet , Dietary Supplements , Eimeria , Gastrointestinal Microbiome , Polyether Polyketides , Poultry Diseases , Pyrans , Animals , Chickens/growth & development , Pyrans/pharmacology , Pyrans/administration & dosage , Coccidiosis/veterinary , Coccidiosis/drug therapy , Coccidiosis/parasitology , Gastrointestinal Microbiome/drug effects , Eimeria/drug effects , Poultry Diseases/parasitology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Animal Feed/analysis , Diet/veterinary , Random Allocation , Ionophores/pharmacology , Ionophores/administration & dosage , Coccidiostats/pharmacology , Coccidiostats/administration & dosage , Male
14.
Bioorg Med Chem Lett ; 104: 129739, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38599298

ABSTRACT

FR901464 is a natural product that exhibits antiproliferative activity at single-digit nanomolar concentrations in cancer cells. Its tetrahydropyran-spiroepoxide covalently binds the spliceosome. Through our medicinal chemistry campaign, we serendipitously discovered that a bromoetherification formed a tetrahydrofuran. The tetrahydrofuran analog was three orders of magnitude less potent than the corresponding tetrahydropyran analogs. This study shows the significance of the tetrahydropyran ring that presents the epoxide toward the spliceosome.


Subject(s)
Epoxy Compounds , Furans , Pyrans , Spiro Compounds , Humans , Cell Line, Tumor , Epoxy Compounds/chemical synthesis , Epoxy Compounds/pharmacology , Furans/chemical synthesis , Furans/pharmacology , Pyrans/chemical synthesis , Pyrans/pharmacology , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology
15.
Chem Biodivers ; 21(5): e202301833, 2024 May.
Article in English | MEDLINE | ID: mdl-38456582

ABSTRACT

Hispidin was initially discovered in basidiomycete Inonotus hispidus (Bull.) P. Karst and this extraordinary compound possesses immense potency and can be extracted from the wild mushroom through specialized bioreactor cultivation techniques. In our study, we isolated it from Inonotus hispidus (Bull.) P. Karst., with a yield of 3.6 %. We identified and characterized hispidin through the implementation of spectroscopic techniques such as FTIR, NMR, and MS. Additionally, we utilized Thermogravimetric Analysis for thermal characterization of the compound. Computational studies based on DFT were performed to investigate the molecular structure, electronic properties, and chemical reactivity of hispidin. PASS analysis for hispidin demonstrated that 19 of them are anti-neoplastic activities. The Pharmacology prediction of hispidin confirm that it is not toxic, non-carcinogenesis with a good human intestinal absorption. The effect of hispidin on the viability of bone cancer cells was evaluated by MTT assay. The results showed that hispidin significantly reduced SaoS2 cell viability in a dose-dependent manner. Molecular docking was carried out using five targets related to bone cancer to determine the interactions between hispidin and the studied proteins. The results demonstrate that hispidin is a good inhibitor for the five targets. Dynamic simulation shows a good stability of the complex hispidin-protein.


Subject(s)
Antineoplastic Agents , Cell Survival , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Osteosarcoma , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/metabolism , Cell Survival/drug effects , Density Functional Theory , Cell Line, Tumor , Cell Proliferation/drug effects , Molecular Structure , Pyrans/pharmacology , Pyrans/chemistry , Pyrans/isolation & purification , Dose-Response Relationship, Drug , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Structure-Activity Relationship
16.
Chem Biodivers ; 21(5): e202400243, 2024 May.
Article in English | MEDLINE | ID: mdl-38462494

ABSTRACT

Dehydroacetic acid (DHA) was utilized as a fundamental precursor in the synthesis of novel pyrano [4,3-b] pyran and pyrano [2,3-b] pyridine systems. Whereas, a new series of fused polyheteronuclear systems was achieved through the reaction of DHA with active methylene compounds such as malononitrile and pyrazolone. Whereas, the treatment of DHA 1 with cyclic ketones involving cyclohexanone and cyclododecanone afforded annulated tricyclic system 6 and spiro hybrid molecule 7. Also, the reaction of DHA 1 with cyanoacetamide derivatives 8 and 11 yielded their corresponding novel pyrano [2,3-b] pyridine-6-carbonitrile frameworks 9 and 12, respectively. Also, in silico predictive theoretical molecular docking studies for bioactive synthesized scaffolds against both HER2 and 6BBP displayed an optimistic result for compounds 2 b, 5, 9, and 12 highlighting their expediency as up-and-coming candidates for future preclinical trials. Additionally, all compounds were assessed as antibacterial agents against various types of four candidates of bacteria in the presence of ampicillin as a reference. Notably, compounds 6, 7, and 12 showed promising antibacterial potential against Bacillus subtilis with activity indexes (69.6, 91.3, and 82.6 %), respectively.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Molecular Docking Simulation , Pyridones , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Density Functional Theory , Molecular Structure , Pyrans/chemistry , Pyrans/pharmacology , Pyrans/chemical synthesis , Pyridones/chemistry , Pyridones/pharmacology , Pyridones/chemical synthesis , Structure-Activity Relationship , Acetates/chemistry , Acetates/pharmacology
17.
Article in English | MEDLINE | ID: mdl-38409717

ABSTRACT

BACKGROUND: The development of analgesic and anti-inflammatory drugs plays a crucial role in modern medicine, aiming to alleviate pain and reduce inflammation in patients. Opioids and nonsteroidal anti-inflammatory drugs are groups of drugs conventionally used to treat pain and inflammation, but a wide range of adverse effects and ineffectiveness in some pathological conditions leads us to search for new drugs with analgesic and anti-inflammatory properties. OBJECTIVES: In this regard, the authors intend to investigate the ((2s,6s)-6-ethyl-tetrahydro-2h-pyran- 2-yl) methanol compound (LS20) on pain and acute inflammation. METHODS: Male Swiss mice were evaluated using acetic acid-induced abdominal writhing, formalin, and tail-flick as models of nociceptive evaluation and edema paw, air pouch and cell culture as models of inflammatory evaluation besides the rotarod test for assessment of motor impairment. RESULTS: The compound showed an effect on the acetic acid-induced abdominal writhing, formalin and tail-flick tests. Studying the mechanism of action, reversion of the antinociceptive effect of the compound was observed from previous intraperitoneal administration of selective and non-selective opioid antagonists on the tail flick test. In addition, the compound induced an antiedematogenic effect and reduced leukocyte migration and the production of pro-inflammatory cytokines in the air pouch model. LS20 was able to maintain cell viability, in addition to reducing cell production of TNF-α and IL-6. CONCLUSION: In summary, the LS20 compound presented an antinociceptive effect, demonstrating the participation of the opioid system and an anti-inflammatory effect related to the inhibition of pro-inflammatory cytokine production. The compound also demonstrated safety at the cellular level.


Subject(s)
Analgesics , Anti-Inflammatory Agents , Pain , Pyrans , Animals , Male , Mice , Analgesics/pharmacology , Analgesics/therapeutic use , Pyrans/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Pain/drug therapy , Humans , Inflammation/drug therapy , Methanol/chemistry , Acetic Acid , Edema/drug therapy , Edema/chemically induced , Cytokines/metabolism
18.
Bioorg Med Chem Lett ; 98: 129566, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38008338

ABSTRACT

In this study, new indol-fused pyrano[2,3-d]pyrimidines were designed and synthesized. These products were obtained in moderate to good yields and their structures were assigned by NMR, MS, and IR analysis. Afterwards, the biological important of the products was highlighted by evaluating in vitro for α-glucosidase inhibitory activity as well as acetylcholinesterase (AChE) inhibitory activity. Eleven products revealed substantial inhibitory activity against α-glucosidase enzyme, among which, two most potent products 11d,e were approximately 93-fold more potent than acarbose as a standard antidiabetic drug. Besides that, product 11k exhibited good AChE inhibition. The substituents on the 5-phenyl ring, attached to the pyran ring, played a critical role in inhibitory activities. The biological potencies have provided an opportunity to further investigations of indol-fused pyrano[2,3-d]pyrimidines as potential anti-diabetic agents.


Subject(s)
Cholinesterase Inhibitors , Glycoside Hydrolase Inhibitors , Acetylcholinesterase/metabolism , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Hypoglycemic Agents/pharmacology , Molecular Docking Simulation , Pyrans/pharmacology , Pyrans/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemistry , Structure-Activity Relationship , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology
19.
J Integr Plant Biol ; 66(5): 865-882, 2024 May.
Article in English | MEDLINE | ID: mdl-38116738

ABSTRACT

Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments. Plant morphogenic responses to light and warm temperatures, termed photomorphogenesis and thermomorphogenesis, respectively, have been extensively studied in recent decades. During photomorphogenesis, plants actively reshape their growth and developmental patterns to cope with changes in light regimes. Accordingly, photomorphogenesis is closely associated with diverse growth hormonal cues. Notably, accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals, karrikins (KARs) and strigolactones (SLs). KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps, including seed germination. Their receptors and signaling mediators have been identified, and associated working mechanisms have been explored using gene-deficient mutants in various plant species. Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses, among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment. In this review, we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness. We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.


Subject(s)
Lactones , Signal Transduction , Lactones/metabolism , Light , Pyrans/metabolism , Pyrans/pharmacology , Furans/metabolism , Furans/pharmacology , Plant Development/radiation effects , Plant Development/drug effects , Morphogenesis/radiation effects , Morphogenesis/drug effects , Adaptation, Physiological/genetics
20.
Chem Biodivers ; 20(12): e202301512, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37921566

ABSTRACT

Four new phomalones A-D (1-4), together with five known analogues (5-9) were isolated from the deep-sea-derived fungus Trichobotrys effuse FS522. Their structures of the new compounds established by analysis of their NMR and HR-ESI-MS spectroscopic data, and the absolute configurations of 2 was determined by electronic circular dichroism (ECD) calculations. compounds 4, 6 and 8 substantially inhibited the production of nitric oxide (NO) with IC50 values of 4.64, 13.90, and 34.07 µM.


Subject(s)
Ascomycota , Anti-Inflammatory Agents/pharmacology , Magnetic Resonance Spectroscopy/methods , Molecular Structure , Pyrans/chemistry , Pyrans/pharmacology , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL