Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 724
Filter
1.
Cell Death Dis ; 15(5): 365, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806451

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is one of the main causes of peritoneal fibrosis. However, the pathophysiological mechanisms of EMT, specifically its relationship with autophagy, are still unknown. This study aimed to evaluate the role of autophagy in transforming growth factor-beta 1 (TGF-ß1)-induced EMT in human peritoneal mesothelial cells (HPMCs). Primary cultured HPMCs were treated with TGF-ß1 (2 and 5 ng/mL) and changes in autophagy markers and the relationship between autophagy and EMT were evaluated. We also identified changes in EMT- and autophagy-related signaling pathways after autophagy and NADPH oxidase 4 (NOX4) inhibition. TGF-ß1 increased the generation of NOX4 and reactive oxygen species (ROS) in HPMCs, resulting in mitochondrial damage. Treatment with GKT137831 (20 µM), a NOX1/4 inhibitor, reduced ROS in the mitochondria of HPMC cells and reduced TGF-ß1-induced mitochondrial damage. Additionally, the indirect inhibition of autophagy by GKT137831 (20 µM) downregulated TGF-ß1-induced EMT, whereas direct inhibition of autophagy using 3-methyladenine (3-MA) (2 mM) or autophagy-related gene 5 (ATG5) gene silencing decreased the TGF-ß1-induced EMT in HPMCs. The suppressor of mothers against decapentaplegic 2/3 (Smad2/3), autophagy-related phosphoinositide 3-kinase (PI3K) class III, and protein kinase B (Akt) pathways, and mitogen-activated protein kinase (MAPK) signaling pathways, such as extracellular signal-regulated kinase (ERK) and P38, were involved in TGF-ß1-induced EMT. Autophagy and NOX4 inhibition suppressed the activation of these signaling pathways. Direct inhibition of autophagy and its indirect inhibition through the reduction of mitochondrial damage by upstream NOX4 inhibition reduced EMT in HPMCs. These results suggest that autophagy could serve as a therapeutic target for the prevention of peritoneal fibrosis in patients undergoing peritoneal dialysis.


Subject(s)
Autophagy , Epithelial Cells , Epithelial-Mesenchymal Transition , NADPH Oxidase 4 , Oxidative Stress , Reactive Oxygen Species , Signal Transduction , Transforming Growth Factor beta1 , Humans , Epithelial-Mesenchymal Transition/drug effects , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Autophagy/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Signal Transduction/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Peritoneum/pathology , Pyrazolones , Pyridones
2.
Nat Commun ; 15(1): 3912, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724509

ABSTRACT

Direct oral anticoagulants (DOACs) targeting activated factor Xa (FXa) are used to prevent or treat thromboembolic disorders. DOACs reversibly bind to FXa and inhibit its enzymatic activity. However, DOAC treatment carries the risk of anticoagulant-associated bleeding. Currently, only one specific agent, andexanet alfa, is approved to reverse the anticoagulant effects of FXa-targeting DOACs (FXaDOACs) and control life-threatening bleeding. However, because of its mechanism of action, andexanet alfa requires a cumbersome dosing schedule, and its use is associated with the risk of thrombosis. Here, we present the computational design, engineering, and evaluation of FXa-variants that exhibit anticoagulation reversal activity in the presence of FXaDOACs. Our designs demonstrate low DOAC binding affinity, retain FXa-enzymatic activity and reduce the DOAC-associated bleeding by restoring hemostasis in mice treated with apixaban. Importantly, the FXaDOACs reversal agents we designed, unlike andexanet alfa, do not inhibit TFPI, and consequently, may have a safer thrombogenic profile.


Subject(s)
Factor Xa Inhibitors , Factor Xa , Hemorrhage , Hemostasis , Pyrazoles , Pyridones , Pyridones/pharmacology , Pyrazoles/pharmacology , Factor Xa/metabolism , Animals , Hemorrhage/drug therapy , Hemorrhage/chemically induced , Humans , Factor Xa Inhibitors/pharmacology , Hemostasis/drug effects , Mice , Pyrazolones , Recombinant Proteins , Male , Anticoagulants/pharmacology , Anticoagulants/adverse effects
4.
Zhonghua Gan Zang Bing Za Zhi ; 32(3): 201-207, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38584100

ABSTRACT

Objective: To investigate the effects of reduced nicotinamide adenine dinucleotide phosphooxidase 4 (NOX4) inhibitors GKT137831 and M2-type macrophages on oxidative stress markers NOX4, nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in the rat hepatic stellate cell line (HSC-T6). Methods: Rat bone marrow macrophages were extracted and induced using interleukin (IL)-4 to differentiate them into M2 phenotype macrophages. HSC-T6 activation was performed with 5 µg/L transforming growth factor ß1 (TGF-ß1). The proliferation condition of HSC-T6 cells stimulated by the NOX4 inhibitor GKT137831 at a concentration gradient of 5 to 80 µmol/L after 48 hours was detected using the Cell Counting Kit-8 (CCK-8) assay. The optimal drug concentration was chosen and divided into an HSC co-culture group (the control group) and five experimental groups: the TGF-ß1 stimulation group, the TGF-ß1 +GKT137831 stimulation group, the M2-type macrophage + HSC co-culture group, the M2-type macrophage +TGF-ß1 stimulation group, and the M2-type + TGF-ß1 + GKT137831 stimulation group. Reactive oxygen species (ROS) production level was detected in each cell using the DCFH-DA probe method. NOX4, α-smooth muscle actin (α-SMA), Nrf2, and HO-1 levels in each group of HSC cells were detected using the qRT-PCR method and the Western blot method. The t-test was used to compare the two groups. The one-way ANOVA method was used to compare multiple groups. Results: Intracellular ROS increased significantly following TGF-ß1 stimulation. ROS relative levels in each cell group were 1.03±0.11, 3.88±0.07, 2.90±0.08, 0.99±0.06, 3.30±0.05, 2.21±0.11, F = 686.1, P = 0.001, respectively. The mRNA and protein expressions of NOX4, α-SMA, Nrf2, and HO-1 were significantly increased (P < 0.05). After the addition of GKT137831, ROS, and NOX4, α-SMA mRNA and protein expression were comparatively decreased in the TGF-ß1 stimulation group (P < 0.05), while mRNA and protein expressions of Nrf2 and HO-1 were increased (P < 0.05). The expression of ROS and NOX4, as well as α-SMA mRNA and protein, produced by HSC were significantly decreased in the co-culture group compared to the single culture group after TGF-ß1 stimulation (P < 0.05). After the addition of GKT137831, ROS, NOX4, α-SMA mRNA, and protein expression were further reduced in the co-culture group compared with the single culture group (P < 0.05), while the mRNA and protein expression of Nrf2 and HO-1 were further increased (P < 0.05). Conclusion: NOX4 inhibitor GKT137831 can reduce RO, NOX4, and α-SMA levels while increasing Nrf2 and HO-1 levels in hepatic stellate cells. After M2-type macrophage co-culture, GKT137831 assists in lowering ROS, NOX4, and α-SMA levels while accelerating Nrf2 and HO-1 levels in hepatic stellate cells, which regulates the balance between oxidative stress and anti-oxidative stress systems, thereby antagonizing the fibrosis process.


Subject(s)
Hepatic Stellate Cells , Pyrazolones , Pyridones , Transforming Growth Factor beta1 , Rats , Animals , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/pharmacology , NF-E2-Related Factor 2/metabolism , Liver Cirrhosis/chemically induced , Oxidative Stress , Macrophages/metabolism , RNA, Messenger/metabolism
5.
Carbohydr Polym ; 327: 121617, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171699

ABSTRACT

Glycans mediate various biological processes through carbohydrate-protein interactions, and glycan microarrays have become indispensable tools for understanding these mechanisms. However, advances in functional glycomics are hindered by the absence of convenient and universal methods for obtaining natural glycan libraries with diverse structures from glycoconjugates. To address this challenge, we have developed an integrative approach that enables one-pot release and simultaneously capture, separation, structural characterization, and functional analysis of N/O-glycans. Using this approach, glycoconjugates are incubated with a pyrazolone-type heterobifunctional tag-ANPMP to obtain glycan-2ANPMP conjugates, which are then converted to glycan-AEPMP conjugates. We prepared a tagged glycan library from porcine gastric mucin, soy protein, human milk oligosaccharides, etc. Following derivatization by N-acetylation and permethylation, glycans were subjected to detailed structural characterization by ESI-MSn analysis, which revealed >83 highly pure glycan-AEPMPs containing various natural glycan epitopes. A shotgun microarray is constructed to study the fine details of glycan-bindings by proteins and antisera.


Subject(s)
Proteins , Pyrazolones , Animals , Humans , Swine , Glycoconjugates , Polysaccharides/chemistry , Glycomics/methods
6.
Sci Rep ; 13(1): 19170, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932273

ABSTRACT

Pyranopyrazole derivatives have a vital role in the class of organic compounds because of their broad spectrum of biological and pharmacological importance. Our current goal is the [3 + 3] cycloaddition of benzoyl isothiocyanate and pyrazolone 1 to undergo oxidation cyclization, producing pyrazoloxadiazine 3. The diol 5 was obtained as a condensation of two equivalents of 1 with thiophene-2-carboxaldehyde in acetic acid above the sodium acetate mixture. When the condensation was carried out in piperidine under fusion, unsaturated ketone 4 was obtained. The pyrazolo pyran derivative 11 resulted from the [3 + 3] cycloaddition of 1 and cinnamic acid, while the Pyrone derivative was prepared by acylation of 12 with two equivalents of acetic anhydride. Phthalic anhydride undergoes arylation using zinc chloride as a catalyst. The cyclic keto acid 23 was synthesized by the action of succinic anhydride on 12 in the acetic medium, while the latter reacted with cinnamic acid, leading to pyrazole derivative 24. All of these reactions were through the Michael reaction mechanism. All the tested compounds showed good antimicrobial activity against pathogenic microorganisms; newly synthesized compounds were also screened for their antioxidant activity. Rational studies were carried out by the ABTs method to allow a broader choice of activities. In addition, similar off-compounds were conducted. Molecular docking studies with the CB-Dock server and MD simulations were created with the default settings of the Solution Builder on the CHARMM-GUI server at 150 nm. A good correlation was obtained between the experimental results and the theoretical bioavailability predictions using POM theory.


Subject(s)
Pyrazolones , Molecular Docking Simulation , Acylation , Cyclization
7.
J Hazard Mater ; 460: 132471, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37683347

ABSTRACT

Pyrazolones, widely used as analgesic and anti-inflammatory pharmaceuticals, have become a significant concern because of their persistence and widespread presence in engineered (e.g., wastewater treatment plants) and natural environments. Thus, the urgent task is to ensure the effective and cost-efficient removal of pyrazolones. Advanced oxidation processes are the most commonly used removal method. Furthermore, the biodegradation of pyrazolones has been exploited using microbial communities or pure strains; however, screening for efficient degrading bacteria and clarifying the biodegradation mechanisms required further research. In this critical review, we overview the environmental occurrence of pyrazolones, their potential ecological health risks, and their corresponding removal techniques (e.g., O3 oxidation, photocatalysis, and Fenton-like process). We also emphasize the prospects for the risk and contamination control of pyrazolones in various environments using physicochemical-biochemical coupling technology. Collectively, the environmental occurrence of pyrazolones poses significant public health concerns, necessitating heightened attention and the implementation of effective methods to minimize their environmental risks.


Subject(s)
Microbiota , Pyrazolones , Biodegradation, Environmental , Drug Contamination , Public Health
8.
Bioorg Med Chem Lett ; 95: 129479, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37704010

ABSTRACT

This research introduces a series of fourteen 4-aryl-hydrazonopyrazolone sulfonamide derivatives, denoted as 3(a-g) and 4(a-g), which encompass various aromatic substitutions. The aim was to assess the inhibitory potential of these compounds against four significant isoforms, including the cytosolic isoforms hCA I and II, as well as the tumor-associated membrane-bound isoforms hCA IX and XII. Most of the tested compounds exhibited substantial inhibition against the tumor-associated isoform hCA IX, with Ki values spanning from 1.1 to 158.2 nM. Notably, compounds 3e and 3g showed particularly strong inhibitory activity against the tumor-associated membrane-bound isoforms, hCA IX and XII, while maintaining a high selectivity ratio over cytosolic off-target isoforms hCA I and II. This selectivity is vital due to the potential of hCA IX and hCA XII as drug targets for hypoxic tumors. In an effort to create novel analogs that exhibit enhanced carbonic anhydrase inhibitory activity and specificity, we investigated the structure-activity relationships of these compounds and provided a concise interpretation of our findings. Consequently, these compounds merit consideration for subsequent medicinal and pharmacological research, holding potential for developing novel therapeutic agents targeting specific isoforms in hypoxic tumors.


Subject(s)
Carbonic Anhydrases , Neoplasms , Pyrazolones , Humans , Carbonic Anhydrases/metabolism , Carbonic Anhydrase IX/metabolism , Pyrazolones/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Isoenzymes , Structure-Activity Relationship , Sulfonamides/pharmacology , Molecular Structure , Benzenesulfonamides
9.
J Med Chem ; 66(17): 11893-11904, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37584282

ABSTRACT

Candida glabrata has emerged as an important opportunistic pathogen of invasive candidiasis due to increasing drug resistance. Targeting Pdr1-KIX interactions with small molecules represents a potential strategy for treating drug-resistant candidiasis. However, effective Pdr1-KIX inhibitors are rather limited, hindering the validation of target druggability. Here, new Pdr1-KIX inhibitors were designed and assayed. Particularly, compound B8 possessed a new chemical scaffold and exhibited potent KIX binding affinity, leading to enhanced synergistic efficacy with fluconazole to treat resistant C. glabrata infection (FICI = 0.28). Compound B8 acted by inhibiting the efflux pump and down-regulating resistance-associated genes through blocking the Pdr1-KIX interaction. Compound B8 exhibited excellent in vitro and in vivo antifungal potency in combination with fluconazole against azole-resistant C. glabrata. It also had direct antifungal effect to treat C. glabrata infection, suggesting new mechanisms of action independent of Pdr1-KIX inhibition. Therefore, compound B8 represents a promising lead compound for antifungal drug development.


Subject(s)
Candidiasis , Pyrazolones , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Antifungal Agents/metabolism , Azoles/pharmacology , Azoles/therapeutic use , Azoles/metabolism , Candida glabrata/genetics , Candida glabrata/metabolism , Candidiasis/drug therapy , Candidiasis/microbiology , Drug Resistance, Fungal , Fluconazole/pharmacology , Fluconazole/therapeutic use , Fungal Proteins/metabolism , Pyrazolones/pharmacology , Transcription Factors/metabolism , Thioamides
10.
J Comput Aided Mol Des ; 37(10): 479-489, 2023 10.
Article in English | MEDLINE | ID: mdl-37488458

ABSTRACT

Owing to the emergence of antibiotic resistance, the polymyxin colistin has been recently revived to treat acute, multidrug-resistant Gram-negative bacterial infections. Positively charged colistin binds to negatively charged lipids and damages the outer membrane of Gram-negative bacteria. However, the MCR-1 protein, encoded by the mobile colistin resistance (mcr) gene, is involved in bacterial colistin resistance by catalysing phosphoethanolamine (PEA) transfer onto lipid A, neutralising its negative charge, and thereby reducing its interaction with colistin. Our preliminary results showed that treatment with a reference pyrazolone compound significantly reduced colistin minimal inhibitory concentrations in Escherichia coli expressing mcr-1 mediated colistin resistance (Hanpaibool et al. in ACS Omega, 2023). A docking-MD combination was used in an ensemble-based docking approach to identify further pyrazolone compounds as candidate MCR-1 inhibitors. Docking simulations revealed that 13/28 of the pyrazolone compounds tested are predicted to have lower binding free energies than the reference compound. Four of these were chosen for in vitro testing, with the results demonstrating that all the compounds tested could lower colistin MICs in an E. coli strain carrying the mcr-1 gene. Docking of pyrazolones into the MCR-1 active site reveals residues that are implicated in ligand-protein interactions, particularly E246, T285, H395, H466, and H478, which are located in the MCR-1 active site and which participate in interactions with MCR-1 in ≥ 8/10 of the lowest energy complexes. This study establishes pyrazolone-induced colistin susceptibility in E. coli carrying the mcr-1 gene, providing a method for the development of novel treatments against colistin-resistant bacteria.


Subject(s)
Escherichia coli Proteins , Pyrazolones , Colistin/pharmacology , Colistin/chemistry , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Pyrazolones/pharmacology , Microbial Sensitivity Tests
11.
Molecules ; 28(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298754

ABSTRACT

The desymmetrization of N-pyrazolyl maleimides was realized through an asymmetric Michael addition by using pyrazolones under mild conditions, leading to the formation of a tri-N-heterocyclic pyrazole-succinimide-pyrazolone assembly in high yields with excellent enantioselectivities (up to 99% yield, up to 99% ee). The use of a quinine-derived thiourea catalyst was essential for achieving stereocontrol of the vicinal quaternary-tertiary stereocenters together with the C-N chiral axis. Salient features of this protocol included a broad substrate scope, atom economy, mild conditions and simple operation. Moreover, a gram-scale experiment and derivatization of the product further illustrated the practicability and potential application value of this methodology.


Subject(s)
Pyrazolones , Thiourea , Molecular Structure , Maleimides , Stereoisomerism
12.
J Org Chem ; 88(13): 9584-9593, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37262311

ABSTRACT

Herein we report a catalytic asymmetric inverse-electron-demand Diels-Alder reaction between alkylidene pyrazolones and allyl ketones. Allyl ketone gets activated by a bifunctional thiourea catalyst and acts as a dienolate in this reaction. The trisubstituted tetrahydropyrano[2,3-c]pyrazoles were obtained in moderate to good yields with high diastereo- and enantioselectivities. Few applications, including a decarbonylation reaction, have been demonstrated.


Subject(s)
Pyrazolones , Pyrazoles , Ketones , Electrons , Cycloaddition Reaction , Molecular Structure , Stereoisomerism
13.
Eur J Med Chem ; 250: 115216, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36857812

ABSTRACT

Based on previous work, a series of novel 5-(2-hydroxyphenyl)-2-phthalide-3(3H)-pyrazolones derivatives were identified as potential multifunctional therapeutic agents for Alzheimer's disease. Biological evaluation exhibited that these derivatives had great performance against MAO-B, Aß1-42 aggregation, oxidative stress and metal ion dyshomeostasis. Among them, 10x was selected as the optimal agent for its excellent MAO-B inhibitory activity (IC50 = 0.41 µM, SI > 24.4), good antioxidant activity (1.16 Trolox equivalent) and anti-Aß aggregation activity (56.03% and 57.51% for inhibition of self- and Cu2+-induced Aß1-42 aggregation; 81.91% and 82.40% for disaggregation of self- and Cu2+-induced Aß1-42 fibrils at 25.0 µM). Besides, 10x also exhibited obvious metal-ion chelating ability, anti-neuroinflammation (NO, TNF-α), neuroprotective activity and BBB permeability. More importantly, in vivo behavioral assessment demonstrated 10x could remarkably improve the memory and cognitive impairment in Aß1-42 induced AD mice model. Overall, these test results indicated 10x could serve as a balanced multifunctional anti-AD agent and deserved further research.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Pyrazolones , Mice , Animals , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Structure-Activity Relationship , Cholinesterase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Chelating Agents/pharmacology , Chelating Agents/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Acetylcholinesterase/metabolism , Drug Design
14.
J Biomol Struct Dyn ; 41(21): 12411-12425, 2023.
Article in English | MEDLINE | ID: mdl-36661285

ABSTRACT

Treatment options for the management of breast cancer are still inadequate. This inadequacy is attributed to the lack of effective targeted medications, often resulting in the recurrence of metastatic disorders. Cumulative evidence suggests that epidermal growth factor receptor (EGFR-TK) and cyclin-dependent kinases-9 (CDK-9) overexpression correlates with worse overall survival in breast cancer patients. Pyranopyrazole and pyrazolone are privileged options for the development of anticancer agents. Inspired by this proven scientific fact, we report here the synthesis of two new series of suggested anticancer molecules incorporating both heterocycles together with their characterization by IR, 1H NMR, 13C NMR, 13C NMR-DEPT, and X-ray diffraction methods. An attempt to get the pyranopyrazole-gold complexes was conducted but unexpectedly yielded benzylidene-2,4-dihydro-3H-pyrazol-3-one instead. This unexpected result was confirmed by X-ray crystallographic analysis. All newly synthesized compounds were assessed for their anti-proliferative activity against two different human breast cancer cells, and the obtained results were compared with the reference drug Staurosporine. The target compounds revealed variable cytotoxicity with IC50 at a low micromolar range with superior selectivity indices. Target enzyme EGFR-TK and CDK-9 assays showed that compounds 22 and 23 effectively inhibited both biological targets with IC50 values of 0.143 and 0.121 µM, respectively. Molecular docking experiments and molecular dynamics simulation were also conducted to further rationalize the in vitro obtained results.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Pyrazolones , Humans , Female , Structure-Activity Relationship , Cell Proliferation , Crystallography, X-Ray , Molecular Docking Simulation , Cell Line, Tumor , ErbB Receptors/metabolism , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Pyrazolones/pharmacology , Drug Screening Assays, Antitumor , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry
15.
Eur J Med Chem ; 247: 115024, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36543033

ABSTRACT

Sirtiun 5 (SIRT5) is a NAD+-dependent protein lysine deacylase. It is emerging as a promising target for the development of drugs to treat cancer and metabolism-related diseases. In this study, we screened 5000 compounds and identified a hit compound 14 bearing a pyrazolone functional group as a novel SIRT5-selective inhibitor. Structure-based optimization of 14 resulted in compound 47 with an IC50 value of 0.21 ± 0.02 µM and a 100-fold improved potency. Compound 47 showed substantial selectivity for SIRT5 over SIRT1-3 and SIRT6. Biochemical studies suggest that 47 does not occupy the NAD + -binding pocket and acts as a substrate-competitive inhibitor. The identified potent and selective SIRT5 inhibitors allow further studies as research tools and therapeutic agents.


Subject(s)
Neoplasms , Pyrazolones , Sirtuins , Humans , Sirtuins/metabolism , NAD/chemistry , NAD/metabolism , Lysine , Pyrazolones/pharmacology
16.
J Org Chem ; 88(1): 60-74, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36563107

ABSTRACT

Presented herein is a controllable selective construction of spiro or fused heterocyclic scaffolds through the one-pot cascade reactions of 1-phenylpyrazolidinones with maleimides. To be specific, succinimide spiro pyrazolo[1,2-a]pyrazolones were effectively formed via [4 + 1] spiroannulation of 1-phenylpyrazolidinones with maleimides through simultaneous C(sp2)-H bond activation/functionalization and intramolecular cyclization along with the traceless fusion of the pyrazolidinonyl unit into the final product. In this reaction, air acts as a cost-effective and environmentally sustainable oxidant to assist the regeneration of the Rh(III) catalyst. Alternatively, succinimide-fused pyrazolidinonylcinnolines were formed from the same starting materials through an initial [4 + 1] spiroannulation followed by base-promoted skeleton rearrangement of the in situ formed spiro product without isolation. Notable features of these protocols include easily tunable selectivity, broad substrate scope, cost-effective and sustainable oxidant, excellent atom economy, and facile scalability.


Subject(s)
Oxidants , Pyrazolones , Maleimides/chemistry , Molecular Structure , Succinimides
17.
J Biomol Struct Dyn ; 41(5): 1730-1744, 2023 03.
Article in English | MEDLINE | ID: mdl-35021958

ABSTRACT

Pyrazolone derivatives play a significant role in the treatment of cancer. The synergic effect which emerges from the combination of pyrazolone moiety with hydrazone functionality was investigated. The objective of this study was to explore the antiproliferative potential of copper(II), cobalt(II), nickel(II) and zinc(II) metal chelates synthesized from pyrazolone based hydrazone derivative. The ligand and the metal chelates were characterized by various spectroscopic and analytical studies. The ligand was characterized by single crystal X-ray diffraction analysis.The results were in line with the spectroscopic methods. The geometry optimization of ligand and metal chelates were performed using density functional theory (DFT). The invitro cytotoxicity of ligand and metal chelates against different cancer cell lines was investigated by MTT assay. The cell-viability experiments showed that copper(II) complex is an efficient cytotoxic agent against HeLa cell line. Moreover, possible inhibition mechanism of synthesized compounds was evaluated in silico against HPV16-E6 receptor.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Pyrazolones , Humans , Hydrazones/pharmacology , Hydrazones/chemistry , Copper/chemistry , HeLa Cells , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Metals , Zinc/chemistry , Pyrazolones/pharmacology , Pyrazolones/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
18.
Ann Hematol ; 101(12): 2611-2616, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36220881

ABSTRACT

Hetrombopag is the only CFDA-approved thrombopoietin (TPO) receptor agonist for severe aplastic anemia (SAA) in China. Its chemical structure has an iron chelation domain. To explore the iron chelation effect of hetrombopag, we performed a post hoc analysis of the phase II clinical trial (NCT03557099). Thirty-five immunosuppressive therapy (IST)-refractory SAA patients were enrolled in the study, and the longitudinal changes of serum ferritin (SF) were assessed. At 18 weeks post-hetrombopag initiation, 51.4% of patients showed decreased SF levels by a median of 49.0 (18.1-95.5) % from baseline (median ΔSF decrease value, 917.2 ng/ml, range from 104.0 to 7030.0 ng/ml). A decrease in SF was found in 75.0% of hematologic responders and 31.6% of non-responders. Among the 24 patients with iron overload, 12 had decreased SF levels by up to 51% of the baseline. Patients with normal SF levels also showed decreased SF levels, and iron deficiency occurred in two patients. In conclusion, hetrombopag showed a powerful and rapid iron chelation effect.


Subject(s)
Anemia, Aplastic , Pyrazolones , Humans , Anemia, Aplastic/drug therapy , Pyrazolones/therapeutic use , Hydrazones/therapeutic use , Thrombopoietin/therapeutic use , Iron Chelating Agents/therapeutic use
19.
Molecules ; 27(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36296577

ABSTRACT

A series of N-Boc ketimines derived from pyrazolin-5-ones have been used as electrophiles in enantioselective Mannich reactions with different 1,3-dicarbonyl compounds. This method provides a direct pathway to access the 4-amino-5-pyrazolone derivatives bearing a quaternary substituted stereocenter and containing two privileged structure motifs, the ß-diketone and pyrazolinone substructures. The adducts were obtained in excellent yields (up to 90%) and enantioselectivities (up to 94:6 er) by employing a very low loading of 2 mol% of a quinine-derived bifunctional squaramide as an organocatalyst for a wide range of substrates. In addition, the utility of the obtained products was demonstrated through one step transformations to enantioenriched diheterocyclic systems (4-pyrazolyl-pyrazolone and 4-isoxazolyl-pyrazolone), potentially promising candidates for drug discovery.


Subject(s)
Pyrazolones , Quinine , Quinine/chemistry , Stereoisomerism , Molecular Structure , Catalysis , Pyrazolones/chemistry
20.
Dalton Trans ; 51(37): 14165-14181, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36053151

ABSTRACT

Hydrazones and their metal derivatives are very important compounds in medicinal chemistry due to their reported variety of biological activities, such as antibacterial, antifungal and anticancer action. Five hydrazone-pyrazolone ligands H2Ln (n = 1-5) were prepared and fully characterized and their tautomerism was investigated in the solid state and solution. Five zinc(II) complexes 1-5 of composition [Zn(HLn)2] (n = 1 and 2), [Zn(HLn)2(H2O)2] (n = 3 and 5) and [Zn(HL4)2]n were synthesized and characterized by elemental analysis, IR, 1H, 19F, 13C, and 15N NMR spectroscopy, and ESI mass spectrometry. In addition, the structures of two ligands and three complexes were determined by single-crystal X-ray diffraction. The ligands H2L2 and H2L4 exist both in the NH,NH tautomeric form. Complexes 1 and 2 are mononuclear compounds, while complex 4 is a one-dimensional coordination compound. Density functional theory (DFT) calculations were carried out on proligands, their anions and all zinc complexes, confirming the experimental results, supporting IR and NMR assignments and giving proofs of the mononuclear diaqua structure of complexes 3 and 5. The antibacterial activity of the free ligands and the Zn(II) complexes was established against Escherichia coli and Staphylococcus aureus, and a strong efficiency has been found for Zn(II) complexes, particularly for the polynuclear 4 and the mononuclear diaqua complex 5, the latter containing a ligand with aliphatic and fluorinated substituents able to compromise the permeability of and disrupt the bacterial cell membrane.


Subject(s)
Coordination Complexes , Pyrazolones , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Escherichia coli , Hydrazones/chemistry , Hydrazones/pharmacology , Ligands , Microbial Sensitivity Tests , Molecular Structure , Pyrazolones/chemistry , Pyrazolones/pharmacology , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...