Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.385
Filter
1.
Environ Geochem Health ; 46(7): 225, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849628

ABSTRACT

In this study, the freshwater microalgae Selenastrum sp. was assessed for the effective degradation of pyrene and simultaneous production of biodiesel from pyrene-tolerant biomass. The growth of algae was determined based on the cell dry weight, cell density, chlorophyll content, and biomass productivity under different pyrene concentrations. Further, lipids from pyrene tolerant culture were converted into biodiesel by acid-catalyzed transesterification, which was characterized for the total fatty acid profile by gas chromatography. Increased pyrene concentration revealed less biomass yield and productivity after 20 days of treatment, indicating potent pyrene biodegradation by Selenastrum sp. Biomass yield was unaffected till the 20 mg/L pyrene. A 95% of pyrene bioremediation was observed at 20 days of culturing. Lipid accumulation of 22.14%, as evident from the estimation of the total lipid content, indicated a marginal increase in corroborating pyrene stress in the culture. Fatty acid methyl esters yield of 63.06% (% per 100 g lipids) was noticed from the pyrene tolerant culture. Moreover, fatty acid profile analysis of biodiesel produced under 10 mg/L and 20 mg/L pyrene condition showed escalated levels of desirable fatty acids in Selenastrum sp., compared to the control. Further, Selenastrum sp. and other freshwater microalgae are catalogued for sustainable development goals attainment by 2030, as per the UNSDG (United Nations Sustainable Development Goals) agenda. Critical applications for the Selenastrum sp. in bioremediation of pyrene, along with biodiesel production, are enumerated for sustainable and renewable energy production and resource management.


Subject(s)
Biodegradation, Environmental , Biofuels , Biomass , Fresh Water , Microalgae , Pyrenes , Pyrenes/metabolism , Microalgae/metabolism , Fatty Acids/metabolism , Water Pollutants, Chemical/metabolism , Chlorophyll/metabolism
2.
Chemosphere ; 360: 142384, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797205

ABSTRACT

Interactions between polycyclic aromatic hydrocarbons (PAHs) and titanium dioxide (TiO2) nanoparticles (NPs) can produce unforeseen photoproducts in the aqueous phase. Both PAHs and TiO2-NPs are well-studied and highly persistent environmental pollutants, but the consequences of PAH-TiO2-NP interactions are rarely explored. We investigated PAH photoproduct formation over time for benzo[a]pyrene (BaP), fluoranthene (FLT), and pyrene (PYR) in the presence of ultraviolet A (UVA) using a combination of analytical and computational methods including, identification of PAH photoproducts, assessment of expression profiles for gene indicators of PAH metabolism, and computational evaluation of the reaction mechanisms through which certain photoproducts might be formed. Chemical analyses identified diverse photoproducts, but all PAHs shared a primary photoproduct, 9,10-phenanthraquinone (9,10-PQ), regardless of TiO2-NP presence. The computed reaction mechanisms revealed the roles photodissociation and singlet oxygen chemistry likely play in PAH mediated photochemical processes that result in the congruent production of 9,10-PQ within this study. Our investigation of PAH photoproduct formation has provided substantial evidence of the many, diverse and congruent, photoproducts formed from physicochemically distinct PAHs and how TiO2-NPs influence bioavailability and time-related formation of PAH photoproducts.


Subject(s)
Nanoparticles , Photochemical Processes , Polycyclic Aromatic Hydrocarbons , Titanium , Ultraviolet Rays , Titanium/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Nanoparticles/chemistry , Fluorenes/chemistry , Pyrenes/chemistry , Benzo(a)pyrene/chemistry , Environmental Pollutants/chemistry , Biological Availability
3.
Bioresour Technol ; 403: 130857, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763203

ABSTRACT

Immobilization technology is a promising way to improve effectiveness and stability of microbial remediation for polycyclic aromatic hydrocarbons (PAHs), in which carrier material is one of key factors restricting removal efficiency. In this study, fulvic acid-wheat straw biochar (FA/WS) composites were applied for immobilization of an efficient PAHs degrading bacterium Stenotrophomonas maltophilia (SPM). FA/WS&SPM showed superior degradation capacity than free bacteria and biochar-immobilized bacteria, with the removal efficiency of pyrene (20 mg L-1) reaching 90.5 % (7 days). Transcriptome analysis revealed that FA in the carrier materials can promote transportation and degradation of pyrene, and cell growth, as well as inhibit cell apoptosis. Enzyme activity and degradation products detection showed that SPM utilized both phthalic acid and salicylic acid metabolic pathways to degrade pyrene. Practicality of FA/WS&SPM for different kinds of PAHs remediation had been verified in contaminated soil, demonstrating a great potential in the field of PAHs polluted sites remediation.


Subject(s)
Benzopyrans , Biodegradation, Environmental , Cells, Immobilized , Pyrenes , Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/metabolism , Pyrenes/metabolism , Benzopyrans/metabolism , Cells, Immobilized/metabolism , Charcoal/chemistry , Charcoal/pharmacology
4.
J Hazard Mater ; 473: 134589, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38772114

ABSTRACT

Epidemiological evidence indicates that exposure to halogenated polycyclic aromatic hydrocarbons (HPAHs) is associated with many adverse effects. However, the mechanisms of metabolic disorder of HPAHs remains limited. Herein, effects of pyrene (Pyr), and its halogenated derivatives (1-chloropyrene (1-Cl-Pyr), 1-bromopyrene (1-Br-Pyr)) on endogenous metabolic pathways were investigated, in human hepatoma (HepG2) and HepG2-derived cell lines expressing various human cytochrome P450s (CYPs). Non-targeted metabolomics results suggested that 1-Br-Pyr and Pyr exposure (625 nM) induced disruption in glutathione and riboflavin metabolism which associated with redox imbalance, through abnormal accumulation of oxidized glutathione, mediated by bioactivation of CYP2E1. Conversely, CYP2C9-mediated 1-Cl-Pyr significantly interfered with glutathione metabolism intermediates, including glycine, L-glutamic acid and pyroglutamic acid. Notably, CYP1A1-mediated Pyr-induced perturbation of amino acid metabolism which associated with nutrition and glycolipid metabolism, resulting in significant upregulation of most amino acids, whereas halogenated derivatives mediated by CYP1A2 substantially downregulated amino acids. In conclusion, this study suggested that Pyr and its halogenated derivatives exert potent effects on endogenous metabolism disruption under the action of various exogenous metabolic enzymes (CYPs). Thus, new evidence was provided to toxicological mechanisms of HPAHs, and reveals potential health risks of HPAHs in inducing diseases caused by redox and amino acid imbalances.


Subject(s)
Amino Acids , Cytochrome P-450 Enzyme System , Glutathione , Humans , Glutathione/metabolism , Cytochrome P-450 Enzyme System/metabolism , Amino Acids/metabolism , Hep G2 Cells , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/metabolism , Pyrenes/metabolism , Pyrenes/toxicity
5.
Carbohydr Polym ; 338: 122090, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763704

ABSTRACT

Size exclusion chromatography (SEC) and pyrene excimer formation (PEF) experiments were conducted to characterize the local density profile inside a glycogen sample before (Glycogen) and after (Gly-ß-LD) treatment with ß-amylase. These experiments were conducted to assess whether the density at the periphery of the glycogen particles was very high to limit access to proteins involved in the metabolism of glycogen as predicted by the Tier model or low as suggested by the Gilbert model. SEC analysis indicated that the density inside the Glycogen and Gly-ß-LD samples remained constant with particle size and was not affected by ß-amylolysis. Analysis of the PEF experiments conducted on the Glycogen and Gly-ß-LD samples labeled with 1-pyrenebutyric acid showed that the particles have a dense interior and loose corona. The conclusions reached by the SEC and PEF experiments agree with the Gilbert model and have implications for the association of glycogen ß-particles into larger α-particles.


Subject(s)
Chromatography, Gel , Glycogen , Particle Size , Pyrenes , Pyrenes/chemistry , Glycogen/chemistry , Chromatography, Gel/methods , beta-Amylase/metabolism , beta-Amylase/chemistry , Fluorescence
6.
ACS Appl Mater Interfaces ; 16(14): 17219-17231, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38561895

ABSTRACT

Herein, we demonstrate the detection of glucose in a noninvasive and nonenzymatic manner by utilizing an extended gate field-effect transistor (EGFET) based on the organic molecule pyrene phosphonic acid (PyP4OH8) incorporated nickel metal-organic framework (NiOM-MOF). The prepared electrode responds selectively to glucose instead of sucrose, fructose, maltose, ascorbic acid, and uric acid in a 1× phosphate buffer saline solution. Also, utilizing the scanning Kelvin probe system, the sensing electrode's work function (Φ) is measured to validate the glucose-sensing mechanism. The sensitivity, detection range, response time, limit of detection, and limit of quantification of the electrode are determined to be 24.5 µA mM-1 cm-2, 20 µM to 10 mM, less than 5 s, 2.73 µM, and 8.27 µM, respectively. Most interestingly, the developed electrode follows the Michaelis-Menten kinetics, and the calculated rate constant (km) 0.07 mM indicates a higher affinity of NiOM-MOF toward glucose. The real-time analysis has revealed that the prepared electrode is sensitive to detect glucose in real human saliva, and it can be an alternative device for the noninvasive detection of glucose. Overall, the outcomes of the EGFET studies demonstrate that the prepared electrodes are well-suited for expeditious detection of glucose levels in saliva.


Subject(s)
Diabetes Mellitus , Metal-Organic Frameworks , Humans , Glucose/analysis , Electrodes , Pyrenes
7.
Chemosphere ; 356: 141875, 2024 May.
Article in English | MEDLINE | ID: mdl-38583532

ABSTRACT

While passive sampling of ultra-low aqueous concentrations of hydrophobic organic compounds in environmental aqueous media has emerged as a promising analytical technique, there is a lack of good understanding of the fundamental diffusive processes. In this research, we used a fluorophore, pyrene, as a model compound to track diffusion in polymers through absorption and environmental media exchange processes. We directly tracked the penetration of pyrene into polyethylene (PE) and polyoxymethylene (POM) rods during absorption from water by sectioning the rod after different stages of absorption and observing the fluorescence signal through a microscope. Diffusion profiles of pyrene in polymers were simulated by numerical integration of Fickian diffusion. The results indicated that the uptake process in PE is governed by Fick's law and the absorption and desorption kinetics are similar in this polymer. However, the observed uptake profiles of pyrene in POM were non-Fickian and the release kinetics out of POM was slower compared to uptake into the polymer. We show that slower desorption from POM makes corrections for nonequilibrium using performance reference compounds (PRCs) problematic for deployments in water or sediment where there is significant advection. However, for static sediment deployments, the overall kinetics of exchange is controlled by slow transport through sediment and the hysteretic behavior of POM may not preclude the use of PRCs to interpret equilibrium status.


Subject(s)
Environmental Monitoring , Polyethylene , Pyrenes , Resins, Synthetic , Water Pollutants, Chemical , Pyrenes/chemistry , Polyethylene/chemistry , Diffusion , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Environmental Monitoring/methods , Kinetics , Polymers/chemistry
8.
Chemosphere ; 356: 141886, 2024 May.
Article in English | MEDLINE | ID: mdl-38582159

ABSTRACT

The concentration of polycyclic aromatic hydrocarbons (PAHs) in the air inside residential houses in Iran along with measuring the amount of 1-OHpyrene metabolite in the urine of the participants in the study was investigated by gas chromatography-mass spectrometry (GC-MS). Demographic characteristics (including age, gender, and body composition), equipment affecting air quality, and wealth index were also investigated. The mean ± standard error (SE) concentration of particulate matter 10 (PM10) and ∑PAHs in the indoor environment was 43.2 ± 1.98 and 1.26 ± 0.15 µg/m3, respectively. The highest concentration of PAHs in the indoor environment in the gaseous and particulate phase related to Naphthalene was 1.1 ± 0.16 µg/m3 and the lowest was 0.01 ± 0. 0.001 µg/m3 Pyrene, while the most frequent compounds in the gas and particle phase were related to low molecular weight hydrocarbons. 30% of the samples in the indoor environment have BaP levels higher than the standards provided by WHO guidelines. 68% of low molecular weight hydrocarbons were in the gas phase and 73 and 75% of medium and high molecular weight hydrocarbons were in the particle phase. There was a significant relationship between the concentration of some PAH compounds with windows, evaporative coolers, printers, and copiers (p < 0.05). The concentration of PAHs in houses with low economic status was higher than in houses with higher economic status. The average concentration of 1-hydroxypyrene metabolite in the urine of people was 7.10 ± 0.76 µg/L, the concentration of this metabolite was higher in men than in women, and there was a direct relationship between the amount of this metabolite in urine and the amount of some hydrocarbon compounds in the air, PM10, visceral fat and body fat. This relationship was significant for age (p = 0.01). The concentration of hydrocarbons in the indoor environment has been above the standard in a significant number of non-smoking indoor environments, and the risk assessment of these compounds can be significant. Also, various factors have influenced the amount of these compounds in the indoor air, and paying attention to them can be effective in reducing these hydrocarbons in the air.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Biological Monitoring , Particulate Matter , Polycyclic Aromatic Hydrocarbons , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/urine , Humans , Iran , Male , Female , Air Pollutants/analysis , Air Pollutants/urine , Adult , Particulate Matter/analysis , Middle Aged , Environmental Monitoring , Pyrenes/analysis , Pyrenes/urine , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Young Adult , Housing , Gas Chromatography-Mass Spectrometry
9.
J Colloid Interface Sci ; 665: 934-943, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38569310

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are excellent alternative luminophores for electrochemiluminescence (ECL) immunoassays. However, they are inevitably limited by the aggregation-caused quenching effect. In this study, aimed at eliminating the aggregation quenching of PAHs, luminescent metal-organic frameworks (MOFs) with 1,3,6,8-tetra(4-carboxybenzene)pyrene (H4TBAPy) as the ligand were exploited as a novel nano-emitter for the construction of ECL immunoassays. The luminophore exhibits efficient aggregation-induced emission enhancement, good acid-base resistance property and unusual ECL reactivity. In addition, the simultaneous use of potassium persulfate and hydrogen peroxide as dual co-reactants resulted in a synergistic enhancement of the cathodic ECL efficiency. The use of magnetic iron-nickel alloys as the multifunctional sensing platform can further enhance the ECL activity, and its enriched zero-valent iron as a co-reactant accelerator effectively drives ECL analytical performance. Profiting from the excellent characteristics, signal-on ECL immunoassays have been constructed. With carcinoembryonic antigen as the model analysis target, a detection limit of 0.63 pg/mL was obtained within the linear range of 1 pg/mL to 50 ng/mL, accompanied by excellent analytical performance. This report opens a new window for the rational design of efficient ECL illuminators, and the proposed ECL immunoassays may find promising applications in the detection of disease markers.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Metal-Organic Frameworks , Polycyclic Aromatic Hydrocarbons , Pyrenes , Immunoassay , Iron , Luminescent Measurements , Electrochemical Techniques , Limit of Detection
10.
Biomed Pharmacother ; 173: 116393, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461684

ABSTRACT

Urinary extracellular vesicles (uEVs) play important roles in physiologic condition and various renal/urological disorders. However, their roles in kidney stone disease remain unclear. This study aimed to examine modulatory effects of large and small uEVs derived from normal human urine on calcium oxalate (CaOx) crystals (the main component in kidney stones). After isolation, large uEVs, small uEVs and total urinary proteins (TUPs) with equal (protein equivalent) concentration were added into various crystal assays to compare with the control (without uEVs or TUPs). TUPs strongly inhibited CaOx crystallization, growth, aggregation and crystal-cell adhesion. Large uEVs had lesser degree of inhibition against crystallization, growth and crystal-cell adhesion, and comparable degree of aggregation inhibition compared with TUPs. Small uEVs had comparable inhibitory effects as of TUPs for all these crystal assays. However, TUPs and large uEVs slightly promoted CaOx invasion through extracellular matrix, whereas small uEVs did not affect this. Matching of the proteins reported in six uEVs datasets with those in the kidney stone modulator (StoneMod) database revealed that uEVs contained 18 known CaOx stone modulators (mainly inhibitors). These findings suggest that uEVs derived from normal human urine serve as CaOx stone inhibitors to prevent healthy individuals from kidney stone formation.


Subject(s)
Calcium Oxalate , Kidney Calculi , Pyrenes , Humans , Calcium Oxalate/metabolism , Crystallization , Kidney Calculi/metabolism , Proteins , Extracellular Matrix/metabolism
11.
Bioresour Technol ; 399: 130633, 2024 May.
Article in English | MEDLINE | ID: mdl-38552862

ABSTRACT

The remediation for polycyclic aromatic hydrocarbons contaminated soil with cost-effective method has received significant public concern, a composite material, therefore, been fabricated by loading humic acid into biochar in this study to activate persulfate for naphthalene, pyrene and benzo(a)pyrene remediation. Experimental results proved the hypothesis that biochar loaded humic acid combined both advantages of individual materials in polycyclic aromatic hydrocarbons adsorption and persulfate activation, achieved synergistic performance in naphthalene, pyrene and benzo(a)pyrene removal from aqueous solution with efficiency reached at 98.2%, 99.3% and 90.1%, respectively. In addition, degradation played a crucial role in polycyclic aromatic hydrocarbons remediation, converting polycyclic aromatic hydrocarbons into less toxic intermediates through radicals of ·SO4-, ·OH, ·O2-, and 1O2 generated from persulfate activation process. Despite pH fluctuation and interfering ions inhibited remediation efficiency in some extent, the excellent performances of composite material in two field soil samples (76.7% and 91.9%) highlighted its potential in large-scale remediation.


Subject(s)
Charcoal , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Humic Substances , Soil , Benzo(a)pyrene , Soil Pollutants/analysis , Soil Pollutants/metabolism , Pyrenes , Naphthalenes
12.
J Chem Inf Model ; 64(8): 3192-3204, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38500402

ABSTRACT

This work presents new experimental viscosity and density data for aromatic and polyaromatic compounds in binary and ternary pyrene, 1-methylnaphthalene, and dodecane mixtures. The lack of experimental viscosity data for these mixtures requires the development of a new database, which is vital for understanding the behavior of mixtures in more complex systems, such as asphaltenes and fuels. The mixtures proposed in this work have been measured over a temperature range of (293.15 to 343.15) K at atmospheric pressure. Several mixture compositions have been studied at these conditions: 1.0, 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0% pyrene mass fraction. The concentration of pyrene correlates with an increase in the viscosity and density values. At the lowest temperature in binary mixtures, the corresponding values reach 4.4217 mPa·s for viscosity and 1.0447 × 103 kg·m-3 for density, respectively. In ternary mixtures, the introduction of dodecane leads to the lowest maximum values of 3.5555 mPa·s for viscosity and 1.0112 × 103 kg·m-3 for density at the same temperature. The experimental data have been employed for the specific modification of viscosity models. These modifications could facilitate the prediction of the viscosity of mixtures that are more complex than those presented in this work. Various viscosity models have been employed, such as Linear, Ratcliff and Khan, modified UNIFAC-Visco, and Krieger-Dougherty. The settings in the models used reliably reproduce the experiment reliably. However, the Ratcliff model agrees excellently with the experiment, having a low standard deviation (2.0%) compared to other models. Furthermore, a model based on the equation of state of Guo is proposed to predict the viscosity values by modifying the specific parameters and adjusting them to the mixtures proposed in this work. The results from this study are compared to previous work, where pyrene, toluene, and heptane mixtures were analyzed. In this case, we find that the decrease of aggregation grade in the present systems is predicted by the model fixed in this work.


Subject(s)
Alkanes , Naphthalenes , Pyrenes , Temperature , Pyrenes/chemistry , Viscosity , Naphthalenes/chemistry , Alkanes/chemistry , Models, Chemical , Polycyclic Aromatic Hydrocarbons/chemistry
13.
Sci Total Environ ; 925: 171769, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38499104

ABSTRACT

Aquatic ecosystems continue to be threatened by chemical pollution. To what extent organisms are able to cope with chemical exposure depends on their ability to display mechanisms of defense across different organs. Among these mechanisms, biotransformation processes represent key physiological responses that facilitate detoxification and reduce the bioaccumulation potential of chemicals. Biotransformation does not only depend on the ability of different organs to display biotransformation enzymes but also on the affinity of chemicals towards these enzymes. In the present study, we explored the ability of different organs and of two freshwater fish to support biotransformation processes through the determination of in vitro phase I and II biotransformation enzyme activity, and their role in supporting intrinsic clearance and the formation of biotransformation products. Three environmentally relevant pollutants were evaluated: the polycyclic aromatic hydrocarbon (PAH) pyrene (as recommended by the OECD 319b test guideline), the fungicide azoxystrobin, and the pharmaceutical propranolol. Comparative studies using S9 sub-cellular fractions derived from the liver, intestine, gills, and brain of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) revealed significant phase I and II enzyme activity in all organs. However, organ- and species-specific differences were found. In brown trout, significant extrahepatic biotransformation was observed for pyrene but not for azoxystrobin and propranolol. In rainbow trout, the brain appeared to biotransform azoxystrobin. In this same species, propranolol appeared to be biotransformed by the intestine and gills. Biotransformation products could be detected only from hepatic biotransformation, and their profiles and formation rates displayed species-specific patterns and occurred at different magnitudes. Altogether, our findings further contribute to the current understanding of organ-specific biotransformation capacity, beyond the expression and activity of enzymes, and its dependence on specific enzyme-chemical interactions to support mechanisms of defense against exposure.


Subject(s)
Ecosystem , Oncorhynchus mykiss , Pyrimidines , Strobilurins , Animals , Propranolol , Liver/metabolism , Oncorhynchus mykiss/metabolism , Pyrenes/metabolism , Biotransformation
14.
Environ Sci Pollut Res Int ; 31(17): 25659-25670, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38483714

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) were typical environmental contaminants that accumulated continuously in sediment. Microbial degradation is the main way of PAH degradation in the natural environment. Therefore, expanding the available pool of microbial resources and investigating the molecular degrading mechanisms of PAHs are critical to the efficient control of PAH-polluted sites. Here, a strain (identified as Xanthobacteraceae bacterium) with the ability to degrade pyrene was screened from the rhizosphere sediment of Vallisneria natans. Response surface analysis showed that the strain could degrade pyrene at pH 5-7, NaCl addition 0-1.5%, and temperature 25-40 °C, and the maximum pyrene degradation (~ 95.4%) was obtained under the optimum conditions (pH 7.0, temperature 28.5 °C, and NaCl-free addition) after 72 h. Also, it was observed that the effect of temperature on the degradation ratio was the most significant. Furthermore, eighteen metabolites were identified by mass spectrometry, among which (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid, 7-(carboxymethyl)-8-formyl-1-naphthyl acetic acid, phthalic acid, naphthalene-1,2-diol, and phenol were the main metabolites. And the degradation pathway of pyrene was proposed, suggesting that pyrene undergoes initial ortho-cleavage under the catalysis of metapyrocatechase to form (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid. Subsequently, this intermediate was progressively oxidized and degraded to phthalic acid or phenol, which could enter the tricarboxylic acid cycle. Furthermore, the pyrene biodegradation by the strain followed the first-order kinetic model and the degradation rate changed from fast to slow, with the rate remaining mostly slow in the later stages. The slow biodegradation rate was probably caused by a significant amount of phenol accumulation in the initial stage of degradation, which resulted in a decrease in bacterial activity or death.


Subject(s)
Alphaproteobacteria , Phthalic Acids , Polycyclic Aromatic Hydrocarbons , Rhizosphere , Pyrenes/chemistry , Polycyclic Aromatic Hydrocarbons/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Alphaproteobacteria/metabolism , Phenols
15.
Colloids Surf B Biointerfaces ; 237: 113859, 2024 May.
Article in English | MEDLINE | ID: mdl-38547794

ABSTRACT

The main goal of bone tissue engineering research is to replace the allogenic and autologous bone graft substitutes that can promote bone repair. Owing to excellent biocompatibility and osteoconductivity, hydroxyapatite is in extensive research and high demand for both medical and non-medical applications. Although various methods have been developed for the synthesis of hydroxyapatite, in the present study we have shown the use of nanosecond laser energy in the wet precipitation method of nano-hydroxyapatite (nHAP) synthesis without using ammonium solution or any other chemicals for pH maintenance. Here, the present study aimed to fabricate the nanohydroxyapatite using a nanosecond laser. The X-ray diffraction and Fourier transform infrared spectroscopy have confirmed the hydroxyapatite formation under laser irradiation in less time without aging. A transmission electron microscopy confirmed the nano size of synthesized nHAP, which is comparable to conventional nHAP. The length and width of the laser-assisted nHAP were found to be in the range of 50-200 nm and 15-20 nm, respectively, at various laser parameters. The crystallite size obtained by Debye Scherrer formulae was found to be in the range of ∼ 16-36 nm. In addition, laser-assisted nHAP based composite cryogel (nanohydroxyapatite/gelatin/collagen I) was synthesized and impregnated with bioactive molecules (bone morphogenic protein and zoledronic acid) that demonstrated significant osteogenic potential both in vitro in cell experiment and in vivo rat muscle pouch model (abdomen and tibia muscles). Dual-energy X-ray analysis, micro-CT, and histological analysis confirmed ectopic bone regeneration. Micro-CT based histomorphometry showed a higher amount (more than 10-fold) of mineralization for animal groups implanted with composite cryogels loaded with bioactive molecules compared to only composite cryogels groups. Our findings thus demonstrate a controlled and rapid synthetic method for the synthesis of nHAP with various physical, chemical, and biological properties exhibited as comparable to conventionally synthesized nHAP.


Subject(s)
Cryogels , Durapatite , Pyrenes , Rats , Animals , Durapatite/pharmacology , Durapatite/chemistry , Bone Regeneration/physiology , Bone and Bones , Tissue Scaffolds/chemistry
16.
J Hazard Mater ; 469: 133907, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38471380

ABSTRACT

Pyrene is a high molecular weight polycyclic aromatic hydrocarbon (HMW-PAHs). It is a ubiquitous, persistent, and carcinogenic environmental contaminant that has raised concern worldwide. This research explored synergistic bacterial communities for efficient pyrene degradation in seven typical Southern China mangroves. The bacterial communities of seven typical mangroves were enriched by pyrene, and enriched bacterial communities showed an excellent pyrene degradation capacity of > 95% (except for HK mangrove and ZJ mangrove). Devosia, Hyphomicrobium, Flavobacterium, Marinobacter, Algoriphahus, and Youhaiella all have significant positive correlations with pyrene (R>0, p < 0.05) by 16SrRNA gene sequencing and metagenomics analysis, indicated that these genera play a vital role in pyrene metabolism. Meanwhile, the functional genes were involved in pyrene degradation that was enriched in the bacterial communities, including the genes of nagAa, ndoR, pcaG, etc. Furthermore, the analyses of functional genes and binning genomes demonstrated that some bacterial communities as a unique teamwork to cooperatively participate in pyrene degradation. Interestingly, the genes related to biogeochemical cycles were enriched, such as narG , soxA, and cyxJ, suggested that bacterial communities were also helpful in maintaining the stability of the ecological environment. In addition, some novel species with pyrene-degradation potential were identified in the pyrene-degrading bacterial communities, which can enrich the resource pool of pyrene-degrading strains. Overall, this study will help develop further research strategies for pollutant removal.


Subject(s)
Microbiota , Polycyclic Aromatic Hydrocarbons , Pyrenes/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Bacteria/metabolism , Biodegradation, Environmental
17.
J Hazard Mater ; 469: 133858, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38493626

ABSTRACT

An enhanced in vitro human dermal bioavailability method was developed to measure the release of twenty parent and seven alkylated high molecular weight (HMW) polycyclic aromatic hydrocarbons (PAHs) from contaminated soils collected from five former manufactured Gas Plants (MGP) in England. GC-MS/MS was used to quantify HMW PAHs in soil, Strat-M artificial membrane representing skin, and synthetic receptor solution (RS) representing systemic circulation at 1-h, 10-h, and 24-h timesteps. Fluoranthene and pyrene exhibited the highest fluxes from soils to membrane (ranging from 9.5 - 281 ng/cm2/h) and soil to RS (

Subject(s)
Fluorenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Soil , Tandem Mass Spectrometry , Molecular Weight , Soil Pollutants/analysis , Pyrenes , Environmental Monitoring/methods
18.
Macromol Rapid Commun ; 45(11): e2400029, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477018

ABSTRACT

Organic and polymer fluorescent nanomaterials are a frontier research focus. Here in this work, a series of fluorinated zwitterionic random copolymers end-attached with a quasi-chromophoric group of pyrene or tetraphenylethylene (TPE) are well synthesized via atom transfer radical polymerization with activators regenerated by electron transfer (ARGET ATRP). Those random copolymers with total degree of polymerization 100 or 200 are able to produce fluorescent single-chain nanoparticles (SCNPs) through intra-chain self-folding assembly with quite uniform diameters in the range of 10-20 nm as characterized by dynamic light scattering and transmission electron microscopy. By virtue of the segregation or confinement effect, both SCNPs functionalized with pyrene or TPE group are capable of emitting fluorescence, with pyrene tethered SCNPs exhibiting stronger fluorescence emission reaching the highest quantum yield ≈20%. Moreover, such kind of fluorescent SCNPs manifest low cytotoxicity and good cell imaging performance for Hela cells. The creation of fluorescent SCNPs through covalently attached one quasi-chromophore to the end of one fluorinated zwitterionic random copolymer provides an alternative strategy for preparing polymeric luminescence nanomaterials, promisingly serving as a new type of fluorescent nanoprobes for biological imaging applications.


Subject(s)
Fluorescent Dyes , Nanoparticles , Optical Imaging , Polymers , Humans , HeLa Cells , Nanoparticles/chemistry , Polymers/chemistry , Fluorescent Dyes/chemistry , Stilbenes/chemistry , Molecular Structure , Fluorescence , Halogenation , Pyrenes/chemistry , Particle Size , Cell Survival/drug effects , Polymerization
19.
World J Surg ; 48(4): 978-988, 2024 04.
Article in English | MEDLINE | ID: mdl-38502051

ABSTRACT

BACKGROUND: Inferior vena cava (IVC) resection is essential for complete (R0) excision of some malignancies. However, the optimal material for IVC reconstruction remains unclear. Our objective is to demonstrate the efficacy, safety, and advantages of using Non-Fascial Autologous Peritoneum (NFAP) for IVC reconstruction. To conduct a literature review of surgical strategies for tumors involving the IVC. METHODS: We reviewed all IVC reconstructions performed at our institution between 2015 and 2023. Preoperative, operative, postoperative, and follow-up data were collected and analyzed. RESULTS: A total of 33 consecutive IVC reconstructions were identified: seven direct sutures, eight venous homografts (VH), and 18 NFAP. With regard to NFAP, eight tubular (mean length, 12.5 cm) and 10 patch (mean length, 7.9 cm) IVC reconstructions were performed. Resection was R0 in 89% of the cases. Two patients had Clavien-Dindo grade I complications, 2 grade II, 2 grade III and 2 grade V complications. The only graft-related complication was a case of early partial thrombosis, which was conservatively treated. At a mean follow-up of 25.9 months, graft patency was 100%. There were seven recurrences and six deaths. Mean overall survival (OS) was 23.4 months and mean disease-free survival (DFS) was 14.4 months. According to our results, no statistically significant differences were found between NFAP and VH. CONCLUSIONS: NFAP is a safe and effective alternative for partial or complete IVC reconstruction and has many advantages over other techniques, including its lack of cost, wide and ready availability, extreme handiness, and versatility. Further comparative studies are required to determine the optimal technique for IVC reconstruction.


Subject(s)
Peritoneum , Pyrenes , Vena Cava, Inferior , Humans , Vena Cava, Inferior/surgery , Vena Cava, Inferior/pathology , Peritoneum/surgery , Retrospective Studies , Veins , Treatment Outcome
20.
Talanta ; 274: 125940, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38537354

ABSTRACT

Dopamine, the main catecholamine neurotransmitter plays an important role in renal, cardiovascular, central nervous systems, and pathophysiological processes. The abnormal dopamine levels can result in neurological disorders such as Parkinson's, Alzheimer's, schizophrenia, acute anxiety, neuroblastoma and also contribute to cognitive dysfunctions. Given the widespread importance of dopamine concentration levels, it is imperative to develop sensors that are able to monitor dopamine. Herein, we have developed pre-anodized disposable paper electrode modified with 1-pyrenebutyric acid, for the selective and sensitive determination of dopamine. The sensor was characterized with Fourier transform infrared spectroscopy, Energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electrochemical techniques for addressing the robust formation and electrochemical activity. The modified electrode exhibited excellent electrocatalytic activity towards dopamine without the common interference from ascorbic acid. The calibration plot for the dopamine sensor resulted linear range from 0.003 µM to 0.5 µM with a detection limit of 0.11 nM. The sensor's potential utility was tested by monitoring dopamine concentration changes in rat brain homogenates when subjected to neurotoxicity. The developed sensor was validated with gold-standard UV-Vis spectroscopy studies and computational studies were performed to understand the interaction between 1-pyrenebutyric acid and dopamine.


Subject(s)
Brain , Dopamine , Electrodes , Animals , Dopamine/analysis , Dopamine/metabolism , Rats , Brain/metabolism , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Pyrenes/chemistry , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...