Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36279779

ABSTRACT

Vitamin B6 and its metabolites play a crucial role in the development and interaction of brain metabolism. Following diagnostic improvements additional inherited disorders in vitamin B6 metabolism have been identified, most of them leading to a severe epileptic disorder accompanied by progressive neurological deficits including intellectual disability and microcephaly. Since early treatment can improve the outcome, fast and reliable detection of metabolic biomarkers is important. Therefore, the analysis of vitamin B6 metabolites has become increasingly important, but is, however, still challenging and limited to a few specialized laboratories. Until today, vitamin B6 metabolites are measured by liquid chromatography tandem mass spectrometry (LC-MS/MS) using trichloroacetic acid for protein precipitation. In this work, we present the development and validation of a new, accurate and reliable method for analysis and quantification of the vitamin B6 vitamers pyridoxal 5́-phosphate (PLP), pyridoxal (PL), pyridoxine (PN), pyridoxamine (PM) and pyridoxic acid (PA) in human CSF samples using acetonitrile for protein precipitation. The method is based on ultra-performance liquid chromatography-tandem mass spectrometry using electrospray ionization (UPLC-ESI-MS/MS). The calibration was performed in surrogate matrix Ringer solution and metabolites were quantified by their corresponding isotopically labelled internal standards. A protein precipitation by acetonitrile was applied greatly improving chromatographic separation of the metabolites in a 4.7 min chromatographic run. The method was validated following the European Medical Agency (EMA) and Food and Drug Administration (FDA) guidelines for bioanalytical method validation. The metabolites were quantified from 5 to 200 nmol/L with a seven-point calibration curve and minimum coefficient of regression of 0.99. The validation was performed with quality control samples at four concentration levels with surrogate matrix ringer solution and pooled CSF material. Within- and inter-day accuracy and precision in Ringer solution were within 85.4 % (PLP) and 114.5 % (PM) and from 2.6 % (PA) to 16.5 % (PLP). Within- and inter-day accuracy and precision in pooled CSF material were within 90.5 % (PN) and 120.1 % (PL) and from 1.7 % (PA) to 19.0 % (PM). The method was tested by measuring of 158 CSF samples to determine reference ranges. The B6 vitamers PLP and PL were determined in all CSF samples above 5 nmol/L while PN, PM and PA showed concentrations below or near LOQ. Probable supplementation of PLP was detected in eight CSF samples, which revealed high concentrations of PM, PN, PL, or PA, whereas PLP was in the reference range or slightly elevated. The method is suitable for the application within a routine diagnostic laboratory.


Subject(s)
Pyridoxic Acid , Vitamin B 6 , Humans , Pyridoxic Acid/cerebrospinal fluid , Pyridoxal/cerebrospinal fluid , Pyridoxal Phosphate/cerebrospinal fluid , Pyridoxamine/cerebrospinal fluid , Tandem Mass Spectrometry/methods , Pyridoxine , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods , Ringer's Solution , Acetonitriles , Vitamins
2.
Clin Chim Acta ; 472: 118-122, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28778380

ABSTRACT

BACKGROUND: We quantified pyridoxal 5'-phosphate (PLP), pyridoxal (PL), and 4-pyridoxic acid (PA) in paired serum and cerebrospinal fluid (CSF) samples from children and investigated the effect of age on the concentrations and CSF-to-serum ratios of these vitamers. METHODS: Serum and CSF samples prospectively collected from 49 pediatric patients were analyzed. PLP, PL, and PA were measured using high-performance liquid chromatography with fluorescence detection, using pre-column derivatization by semicarbazide. Effects of age on these vitamers, the PLP-to-PL ratio, CSF-to-serum PLP ratio, and CSF-to-serum PL ratio were evaluated using correlation analysis. RESULTS: The PLP, PL, and PA concentrations in the serum and CSF were higher at younger ages, except for CSF PA concentrations that were mostly below the limit of detection (<1.2nmol/l). The PLP-to-PL ratios in the serum and CSF correlated positively with age. The CSF-to-serum PLP ratio and CSF-to-serum PL ratio were independent of age. CONCLUSIONS: Age-related changes in PLP, PL, and PA in serum and in CSF from pediatric patients and CSF-to-serum ratios of PLP and PL demonstrated in this study will provide valuable information for evaluating PLP supply to the central nervous system from the peripheral blood.


Subject(s)
Pyridoxal Phosphate/blood , Pyridoxal Phosphate/cerebrospinal fluid , Pyridoxal/blood , Pyridoxal/cerebrospinal fluid , Pyridoxic Acid/blood , Pyridoxic Acid/cerebrospinal fluid , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male
3.
Clin Chim Acta ; 466: 1-5, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28040557

ABSTRACT

BACKGROUND: We quantified pyridoxal 5'-phosphate (PLP), pyridoxal (PL), and 4-pyridoxic acid (PA) in the cerebrospinal fluid (CSF) of children and to investigate the effect of age, sex, epilepsy, and anti-epileptic drug (AED) therapy on these vitamers. METHODS: CSF samples prospectively collected from 116 pediatric patients were analyzed. PLP, PL, and PA were measured using high-performance liquid chromatography with fluorescence detection, using pre-column derivatization by semicarbazide. Effects of age, sex, epilepsy, and AEDs on these vitamers and the PLP/PL ratio were evaluated using multiple linear regression models. RESULTS: The PLP, PL, and PA concentrations were correlated negatively with age and the PLP/PL ratio was correlated positively with age. Multiple regression analysis revealed that the presence of epilepsy was associated with lower PLP concentrations and PLP/PL ratios but sex and AED therapy had no influence on these values. The observed ranges of these vitamers in epileptic and non-epileptic patients were demonstrated. CONCLUSIONS: We showed the age dependence of PLP and PL in CSF from pediatric patients. Epileptic patients had lower PLP concentrations and PLP/PL ratios than non-epileptic patients, but it is unknown whether this is the cause, or a result, of epilepsy.


Subject(s)
Epilepsy/cerebrospinal fluid , Pyridoxal Phosphate/cerebrospinal fluid , Pyridoxal/cerebrospinal fluid , Pyridoxic Acid/cerebrospinal fluid , Age Factors , Child , Chromatography, High Pressure Liquid , Epilepsy/etiology , Female , Humans , Linear Models , Male , Prospective Studies , Sex Factors
4.
PLoS One ; 10(3): e0120972, 2015.
Article in English | MEDLINE | ID: mdl-25760040

ABSTRACT

BACKGROUND: Over the past years, the essential role of vitamin B6 in brain development and functioning has been recognized and genetic metabolic disorders resulting in functional vitamin B6 deficiency have been identified. However, data on B6 vitamers in children are scarce. MATERIALS AND METHODS: B6 vitamer concentrations in simultaneously sampled plasma and cerebrospinal fluid (CSF) of 70 children with intellectual disability were determined by ultra performance liquid chromatography-tandem mass spectrometry. For ethical reasons, CSF samples could not be obtained from healthy children. The influence of sex, age, epilepsy and treatment with anti-epileptic drugs, were investigated. RESULTS: The B6 vitamer composition of plasma (pyridoxal phosphate (PLP) > pyridoxic acid > pyridoxal (PL)) differed from that of CSF (PL > PLP > pyridoxic acid > pyridoxamine). Strong correlations were found for B6 vitamers in and between plasma and CSF. Treatment with anti-epileptic drugs resulted in decreased concentrations of PL and PLP in CSF. CONCLUSION: We provide concentrations of all B6 vitamers in plasma and CSF of children with intellectual disability (±epilepsy), which can be used in the investigation of known and novel disorders associated with vitamin B6 metabolism as well as in monitoring of the biochemical effects of treatment with vitamin B6.


Subject(s)
Anticonvulsants/therapeutic use , Intellectual Disability/drug therapy , Intellectual Disability/metabolism , Vitamin B 6/blood , Vitamin B 6/cerebrospinal fluid , Adolescent , Child , Child, Preschool , Chromatography, Liquid , Cross-Sectional Studies , Female , Humans , Infant , Male , Pyridoxal/blood , Pyridoxal/cerebrospinal fluid , Pyridoxal Phosphate/blood , Pyridoxal Phosphate/cerebrospinal fluid , Pyridoxamine/cerebrospinal fluid , Pyridoxic Acid/blood , Pyridoxic Acid/cerebrospinal fluid , Tandem Mass Spectrometry
5.
Am J Clin Nutr ; 100(2): 587-92, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24808484

ABSTRACT

BACKGROUND: Vitamin B-6 comprises a group of 6 interrelated vitamers and is essential for numerous physiologic processes, including brain functioning. Genetic disorders disrupting vitamin B-6 metabolism have severe clinical consequences. OBJECTIVE: To adequately diagnose known and novel disorders in vitamin B-6 metabolism, a reference set is required containing information on all vitamin B-6 vitamers in plasma and cerebrospinal fluid (CSF). DESIGN: Concentrations of vitamin B-6 vitamers in the plasma and CSF of 533 adult subjects were measured by ultra high-performance liquid chromatography-tandem mass spectrometry. RESULTS: The relative vitamin B-6 vitamer composition of plasma [pyridoxal phosphate (PLP) > pyridoxic acid (PA) > pyridoxal] differed from that of CSF (pyridoxal > PLP > PA > pyridoxamine). Sex influenced vitamin B-6 vitamer concentrations in plasma and CSF and should therefore be taken into account when interpreting vitamin B-6 vitamer concentrations. The strict ratios and strong correlations between vitamin B-6 vitamers point to a tight regulation of vitamin B-6 vitamer concentrations in blood and CSF. Given the unique design of this study, with simultaneously withdrawn blood and CSF from a large number of subjects, reliable CSF:plasma ratios and correlations of vitamin B-6 vitamers could be established. CONCLUSIONS: We provide an extensive reference set of vitamin B-6 vitamer concentrations in plasma and CSF. In addition to providing insight on the regulation of individual vitamers and their intercompartmental distribution, we anticipate that these data will prove to be a valuable reference set for the diagnosis and treatment of conditions associated with altered vitamin B-6 metabolism.


Subject(s)
Vitamin B 6/blood , Vitamin B 6/cerebrospinal fluid , Adolescent , Adult , Algorithms , Chromatography, High Pressure Liquid , Female , Humans , Limit of Detection , Male , Middle Aged , Netherlands , Pyridoxal/blood , Pyridoxal/cerebrospinal fluid , Pyridoxal Phosphate/blood , Pyridoxal Phosphate/cerebrospinal fluid , Pyridoxamine/cerebrospinal fluid , Pyridoxic Acid/blood , Pyridoxic Acid/cerebrospinal fluid , Reference Values , Reproducibility of Results , Sex Characteristics , Tandem Mass Spectrometry , Young Adult
6.
J Chromatogr ; 578(1): 45-51, 1992 Jul 01.
Article in English | MEDLINE | ID: mdl-1400785

ABSTRACT

For the determination of vitamin B6 vitamers (pyridoxal phosphate, pyridoxamine phosphate, pyridoxal, pyridoxine, pyridoxamine) and 4-pyridoxic acid in biological samples such as plasma, cerebrospinal fluid and rat brain regions, a sensitive micromethod using high-performance liquid chromatography (HPLC) with fluorescence detection in combination with post-column derivatization is described. Metaphosphoric acid tissue extracts with deoxypyridoxine as an internal standard were injected into the HPLC system with a binary gradient elution at a flow-rate of 1.2 ml/min. The excitation wavelength of the fluorescence detector was set at 328 nm and the emission wavelength at 393 nm with a 15-nm slit width for the photocell. This method allows the assay of vitamin B6 vitamers within 30 min in one chromatographic run. The present method has been applied extensively for the measurement of vitamin B6 vitamer levels in discrete brain regions of small animals, cells in culture and biopsy samples.


Subject(s)
Pyridoxic Acid/analysis , Pyridoxine/analysis , Animals , Cells, Cultured/chemistry , Cerebral Cortex/chemistry , Chromatography, High Pressure Liquid/methods , Humans , Kidney/chemistry , Liver/chemistry , Pyridoxal/analysis , Pyridoxal Phosphate/analysis , Pyridoxamine/analogs & derivatives , Pyridoxamine/analysis , Pyridoxic Acid/blood , Pyridoxic Acid/cerebrospinal fluid , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...