Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Toxicol Pathol ; 44(4): 552-4, 2016 06.
Article in English | MEDLINE | ID: mdl-26951162

ABSTRACT

Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPDs), DNA photoproducts usually created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. Surprisingly, we found that, in melanocytes, CPDs were generated for hours after UVA or UVB exposure. These "dark CPDs" constituted the majority of CPDs in cultured human and murine melanocytes and in mouse skin, and they were most prominent in skin containing pheomelanin, the melanin responsible for blonde and red hair. The mechanism was also a surprise. Dark cyclobutane pyrimidine dimers (CPDs) arise when ultraviolet (UV)-induced superoxide and nitric oxide combine to form peroxynitrite, one of the few biological molecules capable of exciting an electron. This process, termed "chemiexcitation," is the source of bioluminescence in lower organisms. Excitation occurred in fragments of melanin, creating a quantum triplet state that had the energy of a UV photon but which induced CPDs by radiationless energy transfer to DNA. UVA and peroxynitrite also solubilized melanin and permeabilized the nuclear membrane, allowing melanin to enter. Melanin is evidently carcinogenic as well as protective. Chemiexcitation may also trigger pathogenesis in internal tissues because the same chemistry should arise wherever superoxide and nitric oxide arise near cells that contain melanin.


Subject(s)
Melanins/radiation effects , Melanocytes/radiation effects , Melanoma/etiology , Skin Neoplasms/etiology , Ultraviolet Rays/adverse effects , Animals , DNA Damage/radiation effects , Humans , Melanins/chemistry , Melanocytes/chemistry , Melanocytes/pathology , Mice , Pyrimidine Dimers/adverse effects , Pyrimidine Dimers/radiation effects
2.
J Invest Dermatol ; 115(1): 37-41, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10886505

ABSTRACT

Sunscreens prevent sunburn and may also prevent skin cancer by protecting from ultraviolet-induced DNA damage. We assessed the ability of two sunscreens, with different spectral profiles, to inhibit DNA photodamage in human epidermis in situ. One formulation contained the established ultraviolet B filter octyl methoxycinnamate, whereas the other contained terephthalylidene dicamphor sulfonic acid, a new ultraviolet A filter. Both formulations had sun protection factors of 4 when assessed with solar simulating radiation in volunteers of skin type I/II. We tested the hypothesis that sun protection factors would indicate the level of protection against DNA photodamage. Thus, we exposed sunscreen-treated sites to four times the minimal erythema dose of solar simulating radiation, whereas vehicle and control sites were exposed to one minimal erythema dose. We used monoclonal antibodies against thymine dimers and 6-4 photoproducts and image analysis to quantify DNA damage in skin sections. A dose of four times the minimal erythema dose, with either sunscreen, resulted in comparable levels of thymine dimers and 6-4 photoproducts to one minimal erythema dose +/- vehicle, providing evidence that the DNA protection factor is comparable to the sun protection factor. The lack of difference between the sunscreens indicates similar action spectra for erythema and DNA photodamage and that erythema is a clinical surrogate for DNA photodamage that may lead to skin cancer.


Subject(s)
Pyrimidine Dimers/adverse effects , Skin Aging/drug effects , Skin/radiation effects , Sunburn/prevention & control , Sunscreening Agents/therapeutic use , Ultraviolet Rays , Adolescent , Adult , DNA Damage/drug effects , DNA Damage/radiation effects , Erythema/prevention & control , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...