Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.300
Filter
1.
J Agric Food Chem ; 72(28): 15427-15448, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38967261

ABSTRACT

With fungal diseases posing a major threat to agricultural production, the application of fungicides to control related diseases is often considered necessary to ensure the world's food supply. The search for new bioactive agents has long been a priority in crop protection due to the continuous development of resistance against currently used types of active compounds. Heterocyclic compounds are an inseparable part of the core structures of numerous lead compounds, these rings constitute pharmacophores of a significant number of fungicides developed over the past decade by agrochemists. Among heterocycles, nitrogen-based compounds play an essential role. To date, diazole (imidazole and pyrazole) and diazine (pyrimidine, pyridazine, and pyrazine) derivatives make up an important series of synthetic fungicides. In recent years, many reports have been published on the design, synthesis, and study of the fungicidal activity of these scaffolds, but there was a lack of a comprehensive classified review on nitrogen-containing scaffolds. Regarding this issue, here we have reviewed the published articles on the fungicidal activity of the diazole and diazine families. In current review, we have classified the molecules synthesized so far based on the size of the ring.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungi/drug effects , Fungi/growth & development , Pyrazoles/chemistry , Pyrazoles/pharmacology , Drug Design , Plant Diseases/microbiology , Plant Diseases/prevention & control , Pyrimidines/chemistry , Pyrimidines/pharmacology , Molecular Structure , Imidazoles/chemistry , Imidazoles/pharmacology
2.
Cell Rep Med ; 5(7): 101653, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39019009

ABSTRACT

Drug-induced liver injury (DILI) is a significant cause of acute liver failure (ALF) and liver transplantation in the Western world. Acetaminophen (APAP) overdose is a main contributor of DILI, leading to hepatocyte cell death through necrosis. Here, we identified that neddylation, an essential post-translational modification involved in the mitochondria function, was upregulated in liver biopsies from patients with APAP-induced liver injury (AILI) and in mice treated with an APAP overdose. MLN4924, an inhibitor of the neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8)-activating enzyme (NAE-1), ameliorated necrosis and boosted liver regeneration in AILI. To understand how neddylation interferes in AILI, whole-body biotinylated NEDD8 (bioNEDD8) and ubiquitin (bioUB) transgenic mice were investigated under APAP overdose with and without MLN4924. The cytidine diphosphate diacylglycerol (CDP-DAG) synthase TAM41, responsible for producing cardiolipin essential for mitochondrial activity, was found modulated under AILI and restored its levels by inhibiting neddylation. Understanding this ubiquitin-like crosstalk in AILI is essential for developing promising targeted inhibitors for DILI treatment.


Subject(s)
Acetaminophen , Cardiolipins , Chemical and Drug Induced Liver Injury , Cyclopentanes , NEDD8 Protein , Pyrimidines , Acetaminophen/adverse effects , Animals , NEDD8 Protein/metabolism , NEDD8 Protein/genetics , Humans , Pyrimidines/pharmacology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/drug therapy , Cardiolipins/metabolism , Mice , Cyclopentanes/pharmacology , Male , Liver/metabolism , Liver/pathology , Liver/drug effects , Mice, Inbred C57BL , Mice, Transgenic , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Signal Transduction/drug effects , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/antagonists & inhibitors
3.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000566

ABSTRACT

Staphylococcal toxic shock syndrome (STSS) is a rare, yet potentially fatal disease caused by Staphylococcus aureus (S. aureus) enterotoxins, known as superantigens, which trigger an intense immune response. Our previous study demonstrated the protective effect of tofacitinib against murine toxin-induced shock and a beneficial effect against S. aureus sepsis. In the current study, we examined the effects of tofacitinib on T-cell response in peripheral blood using a mouse model of enterotoxin-induced shock. Our data revealed that tofacitinib suppresses the activation of both CD4+ and CD8+ T cells in peripheral blood. Furthermore, both gene and protein levels of Th1 cytokines were downregulated by tofacitinib treatment in mice with enterotoxin-induced shock. Importantly, we demonstrated that CD4+ cells, but not CD8+ cells, are pathogenic in mice with enterotoxin-induced shock. In conclusion, our findings suggest that tofacitinib treatment suppresses CD4+ T-cell activation and Th1 response, thereby aiding in protection against staphylococcal toxic shock in mice. This insight may guide the future development of novel therapies for STSS.


Subject(s)
CD4-Positive T-Lymphocytes , Lymphocyte Activation , Piperidines , Pyrimidines , Shock, Septic , Staphylococcal Infections , Th1 Cells , Animals , Piperidines/pharmacology , Piperidines/therapeutic use , Th1 Cells/immunology , Th1 Cells/drug effects , Th1 Cells/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Shock, Septic/drug therapy , Shock, Septic/immunology , Shock, Septic/chemically induced , Mice , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Lymphocyte Activation/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Enterotoxins , Staphylococcus aureus/drug effects , Cytokines/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL , Female , Disease Models, Animal , Superantigens/immunology
4.
Cells ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38995006

ABSTRACT

Immunotherapies have shown significant promise as an impactful strategy in cancer treatment. However, in glioblastoma multiforme (GBM), the most prevalent primary brain tumor in adults, these therapies have demonstrated lower efficacy than initially anticipated. Consequently, there is an urgent need for strategies to enhance the effectiveness of immune treatments. AURKA has been identified as a potential drug target for GBM treatment. An analysis of the GBM cell transcriptome following AURKA inhibition revealed a potential influence on the immune system. Our research revealed that AURKA influenced PD-L1 levels in various GBM model systems in vitro and in vivo. Disrupting AURKA function genetically led to reduced PD-L1 levels and increased MHC-I expression in both established and patient-derived xenograft GBM cultures. This process involved both transcriptional and non-transcriptional pathways, partly implicating GSK3ß. Interfering with AURKA also enhanced NK-cell-mediated elimination of GBM by reducing PD-L1 expression, as evidenced in rescue experiments. Furthermore, using a mouse model that mimics GBM with patient-derived cells demonstrated that Alisertib decreased PD-L1 expression in living organisms. Combination therapy involving anti-PD-1 treatment and Alisertib significantly prolonged overall survival compared to vehicle treatment. These findings suggest that targeting AURKA could have therapeutic implications for modulating the immune environment within GBM cells.


Subject(s)
Aurora Kinase A , B7-H1 Antigen , Glioblastoma , Killer Cells, Natural , Aurora Kinase A/metabolism , Aurora Kinase A/antagonists & inhibitors , Humans , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/immunology , Glioblastoma/genetics , B7-H1 Antigen/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Animals , Mice , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Azepines/pharmacology , Pyrimidines/pharmacology , Cytotoxicity, Immunologic/drug effects , Brain Neoplasms/pathology , Brain Neoplasms/immunology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Xenograft Model Antitumor Assays
5.
Molecules ; 29(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999049

ABSTRACT

Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at the GLI1 transcription factor level. GANT61 was the first small molecule identified to directly suppress GLI-mediated activity; however, its development as a potential anti-cancer agent has been hindered by its modest activity and aqueous chemical instability. Our study aimed to identify novel GLI1 inhibitors. JChem searches identified fifty-two compounds similar to GANT61 and its active metabolite, GANT61-D. We combined high-throughput cell-based assays and molecular docking to evaluate these analogs. Five of the fifty-two GANT61 analogs inhibited activity in Hh-responsive C3H10T1/2 and Gli-reporter NIH3T3 cellular assays without cytotoxicity. Two of the GANT61 analogs, BAS 07019774 and Z27610715, reduced Gli1 mRNA expression in C3H10T1/2 cells. Treatment with BAS 07019774 significantly reduced cell viability in Hh-dependent glioblastoma and lung cancer cell lines. Molecular docking indicated that BAS 07019774 is predicted to bind to the ZF4 region of GLI1, potentially interfering with its ability to bind DNA. Our findings show promise in developing more effective and potent GLI inhibitors.


Subject(s)
Hedgehog Proteins , Molecular Docking Simulation , Pyridines , Pyrimidines , Zinc Finger Protein GLI1 , Pyridines/pharmacology , Pyridines/chemistry , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Pyrimidines/pharmacology , Pyrimidines/chemistry , Hedgehog Proteins/metabolism , Humans , Animals , Mice , Cell Line, Tumor , NIH 3T3 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Signal Transduction/drug effects , Cell Survival/drug effects
6.
Signal Transduct Target Ther ; 9(1): 181, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992067

ABSTRACT

Mitotic catastrophe (MC), which occurs under dysregulated mitosis, represents a fascinating tactic to specifically eradicate tumor cells. Whether pyroptosis can be a death form of MC remains unknown. Proteasome-mediated protein degradation is crucial for M-phase. Bortezomib (BTZ), which inhibits the 20S catalytic particle of proteasome, is approved to treat multiple myeloma and mantle cell lymphoma, but not solid tumors due to primary resistance. To date, whether and how proteasome inhibitor affected the fates of cells in M-phase remains unexplored. Here, we show that BTZ treatment, or silencing of PSMC5, a subunit of 19S regulatory particle of proteasome, causes G2- and M-phase arrest, multi-polar spindle formation, and consequent caspase-3/GSDME-mediated pyroptosis in M-phase (designated as mitotic pyroptosis). Further investigations reveal that inhibitor of WEE1/PKMYT1 (PD0166285), but not inhibitor of ATR, CHK1 or CHK2, abrogates the BTZ-induced G2-phase arrest, thus exacerbates the BTZ-induced mitotic arrest and pyroptosis. Combined BTZ and PD0166285 treatment (named BP-Combo) selectively kills various types of solid tumor cells, and significantly lessens the IC50 of both BTZ and PD0166285 compared to BTZ or PD0166285 monotreatment. Studies using various mouse models show that BP-Combo has much stronger inhibition on tumor growth and metastasis than BTZ or PD0166285 monotreatment, and no obvious toxicity is observed in BP-Combo-treated mice. These findings disclose the effect of proteasome inhibitors in inducing pyroptosis in M-phase, characterize pyroptosis as a new death form of mitotic catastrophe, and identify dual inhibition of proteasome and WEE family kinases as a promising anti-cancer strategy to selectively kill solid tumor cells.


Subject(s)
Bortezomib , Cell Cycle Proteins , Mitosis , Proteasome Endopeptidase Complex , Protein-Tyrosine Kinases , Pyroptosis , Pyroptosis/drug effects , Humans , Mice , Animals , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Mitosis/drug effects , Mitosis/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Bortezomib/pharmacology , Cell Line, Tumor , Cell Cycle Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Proteasome Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrazoles/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Xenograft Model Antitumor Assays , Gasdermins , Pyrimidinones
7.
Drug Dev Res ; 85(5): e22232, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992915

ABSTRACT

The human aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, plays a pivotal role in a diverse array of pathways in biological and pathophysiological events. This position AhR as a promising target for both carcinogenesis and antitumor strategies. In this study we utilized computational modeling to screen and identify FDA-approved drugs binding to the allosteric site between α2 of bHLH and PAS-A domains of AhR, with the aim of inhibiting its canonical pathway activity. Our findings indicated that nilotinib effectively fits into the allosteric pocket and forms interactions with crucial residues F82, Y76, and Y137. Binding free energy value of nilotinib is the lowest among top hits and maintains stable within its pocket throughout entire (MD) simulations time. Nilotinib has also substantial interactions with F295 and Q383 when it binds to orthosteric site and activate AhR. Surprisingly, it does not influence AhR nuclear translocation in the presence of AhR agonists; instead, it hinders the formation of the functional AhR-ARNT-DNA heterodimer assembly, preventing the upregulation of regulated enzymes like CYP1A1. Importantly, nilotinib exhibits a dual impact on AhR, modulating AhR activity via the PAS-B domain and working as a noncompetitive allosteric antagonist capable of blocking the canonical AhR signaling pathway in the presence of potent AhR agonists. These findings open a new avenue for the repositioning of nilotinib beyond its current application in diverse diseases mediated via AhR.


Subject(s)
Allosteric Site , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Receptors, Aryl Hydrocarbon/chemistry , Humans , Allosteric Regulation/drug effects , Pyrimidines/pharmacology , Pyrimidines/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Basic Helix-Loop-Helix Transcription Factors/chemistry , Molecular Dynamics Simulation , Drug Approval , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/antagonists & inhibitors
8.
Biochemistry (Mosc) ; 89(6): 1094-1108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38981703

ABSTRACT

Despite significant progress made over the past two decades in the treatment of chronic myeloid leukemia (CML), there is still an unmet need for effective and safe agents to treat patients with resistance and intolerance to the drugs used in clinic. In this work, we designed 2-arylaminopyrimidine amides of isoxazole-3-carboxylic acid, assessed in silico their inhibitory potential against Bcr-Abl tyrosine kinase, and determined their antitumor activity in K562 (CML), HL-60 (acute promyelocytic leukemia), and HeLa (cervical cancer) cells. Based on the analysis of computational and experimental data, three compounds with the antitumor activity against K562 and HL-60 cells were identified. The lead compound efficiently suppressed the growth of these cells, as evidenced by the low IC50 values of 2.8 ± 0.8 µM (K562) and 3.5 ± 0.2 µM (HL-60). The obtained compounds represent promising basic structures for the design of novel, effective, and safe anticancer drugs able to inhibit the catalytic activity of Bcr-Abl kinase by blocking the ATP-binding site of the enzyme.


Subject(s)
Antineoplastic Agents , Drug Design , Fusion Proteins, bcr-abl , Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , K562 Cells , HeLa Cells , Pyrimidines/pharmacology , Pyrimidines/chemistry , Molecular Docking Simulation , HL-60 Cells , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Computer Simulation
9.
J Nanobiotechnology ; 22(1): 429, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033109

ABSTRACT

Pazopanib (PAZ), an oral multi-tyrosine kinase inhibitor, demonstrates promising cytostatic activities against various human cancers. However, its clinical utility is limited by substantial side effects and therapeutic resistance. We developed a nanoplatform capable of delivering PAZ for enhanced anti-breast cancer therapy. Nanometer-sized PAZ@Fe-MOF, compared to free PAZ, demonstrated increased anti-tumor therapeutic activities in both syngeneic murine 4T1 and xenograft human MDA-MB-231 breast cancer models. High-throughput single-cell RNA sequencing (scRNAseq) revealed that PAZ@Fe-MOF significantly reduced pro-tumorigenic M2-like macrophage populations at tumor sites and suppressed M2-type signaling pathways, such as ATF6-TGFBR1-SMAD3, as well as chemokines including CCL17, CCL22, and CCL24. PAZ@Fe-MOF reprogramed the inhibitory immune microenvironment and curbed tumorigenicity by blocking the polarization of M2 phenotype macrophages. This platform offers a promising and new strategy for improving the cytotoxicity of PAZ against breast cancers. It provides a method to evaluate the immunological response of tumor cells to PAZ-mediated treatment.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Indazoles , Macrophages , Metal-Organic Frameworks , Nanoparticles , Pyrimidines , Sulfonamides , Animals , Female , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Breast Neoplasms/drug therapy , Humans , Macrophages/drug effects , Indazoles/pharmacology , Indazoles/chemistry , Mice , Pyrimidines/pharmacology , Pyrimidines/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Inbred BALB C , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
10.
Sci Adv ; 10(27): eadg3747, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959314

ABSTRACT

Vaccination can help prevent infection and can also be used to treat cancer, allergy, and potentially even drug overdose. Adjuvants enhance vaccine responses, but currently, the path to their advancement and development is incremental. We used a phenotypic small-molecule screen using THP-1 cells to identify nuclear factor-κB (NF-κB)-activating molecules followed by counterscreening lead target libraries with a quantitative tumor necrosis factor immunoassay using primary human peripheral blood mononuclear cells. Screening on primary cells identified an imidazopyrimidine, dubbed PVP-037. Moreover, while PVP-037 did not overtly activate THP-1 cells, it demonstrated broad innate immune activation, including NF-κB and cytokine induction from primary human leukocytes in vitro as well as enhancement of influenza and SARS-CoV-2 antigen-specific humoral responses in mice. Several de novo synthesis structural enhancements iteratively improved PVP-037's in vitro efficacy, potency, species-specific activity, and in vivo adjuvanticity. Overall, we identified imidazopyrimidine Toll-like receptor-7/8 adjuvants that act in synergy with oil-in-water emulsion to enhance immune responses.


Subject(s)
Adjuvants, Immunologic , Pyrimidines , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Humans , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/metabolism , Animals , Mice , Adjuvants, Immunologic/pharmacology , Toll-Like Receptor 7/agonists , Pyrimidines/pharmacology , Pyrimidines/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Imidazoles/pharmacology , Imidazoles/chemistry , THP-1 Cells , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , COVID-19/virology , COVID-19/immunology , NF-kappa B/metabolism , Female , Drug Discovery/methods , Immunity, Innate/drug effects
11.
Nagoya J Med Sci ; 86(2): 292-303, 2024 May.
Article in English | MEDLINE | ID: mdl-38962405

ABSTRACT

Endothelial dysfunction is important in the pathology of pulmonary hypertension, and circulating endothelial progenitor cells (EPCs) have been studied to evaluate endothelial dysfunction. In patients with chronic thromboembolic pulmonary hypertension (CTEPH), riociguat reportedly increases the number of circulating EPCs. However, the relationship between EPC numbers at baseline and changes in clinical parameters after riociguat administration has not been fully elucidated. Here, we evaluated 27 treatment-naïve patients with CTEPH and analyzed the relationships between EPC number at diagnosis and clinical variables (age, hemodynamics, atrial blood gas parameters, brain natriuretic peptide, and exercise tolerance) before and after riociguat initiation. EPCs were defined as CD45dim CD34+ CD133+ cells and measured by flow cytometry. A low number of circulating EPCs at diagnosis was significantly correlated with increased reductions in mean pulmonary arterial pressure (mPAP) (correlation coefficient = 0.535, P = 0.004) and right atrial pressure (correlation coefficient = 0.618, P = 0.001) upon riociguat treatment. We then divided the study population into two groups according to the mPAP change: a weak-response group (a decrease in mPAP of 4 mmHg or less) and a strong-response group (a decrease in mPAP of more than 4 mmHg). The number of EPCs at diagnosis was significantly lower in the strong-response group than in the weak-response group (P = 0.022), but there were no significant differences in other clinical variables or in medication profiles. In conclusion, circulating EPC numbers could be a potential predictor of the therapeutic effect of riociguat in CTEPH patients.


Subject(s)
Endothelial Progenitor Cells , Hypertension, Pulmonary , Pyrazoles , Pyrimidines , Humans , Pyrimidines/therapeutic use , Pyrimidines/pharmacology , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Male , Female , Middle Aged , Hypertension, Pulmonary/drug therapy , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/metabolism , Aged , Chronic Disease , Pulmonary Embolism/drug therapy , Pulmonary Embolism/blood , Treatment Outcome
12.
Sci Rep ; 14(1): 15436, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965280

ABSTRACT

Alzheimer disease (AD) is the cause of dementia and accounts for 60-80% cases. Tumor Necrosis Factor-alpha (TNF-α) is a multifunctional cytokine that provides resistance to infections, inflammation, and cancer. It developed as a prospective therapeutic target against multiple autoimmune and inflammatory disorders. Cholinergic insufficiency is linked to Alzheimer's disease, and several cholinesterase inhibitors have been created to treat it, including naturally produced inhibitors, synthetic analogs, and hybrids. In the current study, we tried to prepared compounds may also support the discovery and development of novel therapeutic and preventative drugs for Alzheimer's using manganese tetroxide nanoparticles (Mn3O4-NPs) as a catalyst to generate compounds with excellent reaction conditions. The Biginelli synthesis yields 4-(4-cyanophenyl)-6-oxo-2-thioxohexahydropyrimidine-5-carbonitrile when the 4-cyanobenzaldehyde, ethyl cyanoacetate, and thiourea were coupled with Mn3O4-NPs to produce compound 1. This multi-component method is non-toxic, safe, and environmentally friendly. The new approach reduced the amount of chemicals used and preserved time. Compound 1 underwent reactions with methyl iodide, acrylonitrile, chloroacetone, ethyl chloroacetate, and chloroacetic acid/benzaldehyde, each of the synthetized compounds was docked with TNF-α converting enzyme. These compounds may also support the discovery and development of novel therapeutic and preventative drugs for Alzheimer's disease. The majority of the produced compounds demonstrated pharmacokinetic features, making them potentially attractive therapeutic candidates for Alzheimer's disease treatment.


Subject(s)
Alzheimer Disease , Manganese Compounds , Molecular Docking Simulation , Nanoparticles , Oxides , Pyrimidines , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Animals , Nanoparticles/chemistry , Oxides/chemistry , Oxides/pharmacology , Humans , Rats , Male
13.
Mol Biol Rep ; 51(1): 832, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037638

ABSTRACT

BACKGROUND: JAK/STAT signaling plays an important role in regulating cell proliferation. Reducing proliferation and inducing cell death with gene-specific inhibitors such as ruxolitinib, Receptor tyrosine kinases (RTK) inhibitor targeting JAK1/2, are therapeutic approaches. The use of nanoparticles can reduce the toxicity and side effects of drugs, as they act directly on cancer cells and can selectively increase drug accumulation in tumor cells. Poly-ɛ-caprolactone (PCL) is a polymer that is frequently used in drug development. In this study, Rux-PCL-NPs were synthesized to increase the effectiveness of ruxolitinib. In addition, this study aimed to determine the effect of Rux-PCL-NPs on JAK/STAT signaling and apoptotic cell death. METHODS AND RESULTS: Rux-PCL-NPs were synthesized by nanoprecipitation. The Rux-PCL-NPs had a spherical and mean particle size of 219 ± 88.66 nm and a zeta potential of 0.471 ± 0.453 mV. In vitro cytotoxicity and antiproliferative effects were determined by MTT and soft agar colony formation assays, respectively. The effects of ruxolitinib, PCL-NPs, and Rux-PCL-NPs on apoptosis and the JAK/STAT pathway in cells were examined by western blot analysis. PCL-NPs did not have a toxic effect on the cells. The IC50 value of Rux-PCL-NPs was decreased 50-fold compared to that of ruxolitinib. Rux-PCL-NPs promoted cell death by downregulating JAK2 and STAT5, thereby inhibiting the JAK/STAT pathway. CONCLUSIONS: Our results revealed that Rux-PCL-NPs, which increased the efficacy of ruxolitinib, regulated apoptosis and the JAK2/STAT5 pathway.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Proliferation , Janus Kinase 2 , Nanoparticles , Nitriles , Polyesters , Pyrazoles , Pyrimidines , STAT5 Transcription Factor , Signal Transduction , Nitriles/pharmacology , Humans , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Janus Kinase 2/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , Cell Line, Tumor , Polyesters/chemistry , Nanoparticles/chemistry , Female , Cell Proliferation/drug effects , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism
14.
Bioorg Chem ; 150: 107622, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996545

ABSTRACT

Novel thieno[2,3-d]pyrimidine analogues were designed, synthesized and evaluated for anti-proliferative activity against HepG-2, PC-3 and MCF-7 cancer cell lines. In addition, WI-38 normal cell line was used to explore the safety of all the tested compounds. Compounds 2 (IC50 = 4.29 µM HePG-2, 10.84 µM MCF-7), 6 (IC50 = 14.86 µM HePG-2, 8.04 µM PC-3 and 12.90 µM MCF-7) and 17 (IC50 = 9.98 µM HePG-2, 33.66 µM PC-3 and 14.62 µM MCF-7) were the most promising candidates on the tested cancer cells with high selective toxicity-sparing normal cells. A further mechanistic evaluation revealed promising kinase inhibitory activity, where compound 2 inhibited VEGFR-2 and AKT at IC50 = 0.161 and 1.06 µM, respectively, Furthermore, derivative 6 inhibited VEGFR-2 and AKT at IC50 = 0.487 and 0.364 µM, respectively, while compound 17 showed IC50 = 0.164 and 0.452 µM, respectively. Moreover, compounds 2, 6 resulted in G1 phase cell cycle arrest while candidate 17 arrest cell cycle at G2/M phase. Similar to the apoptosis results, compound 17 showed the highest autophagic induction among the evaluated derivatives. Finally, docking studies were conducted to assess the binding patterns of these active derivatives. The results showed that the binding patterns inside the active sites of both the VEGFR-2 and AKT-1 (allosteric pocket) crystal structures were identical to the reference ligands.


Subject(s)
Antineoplastic Agents , Apoptosis , Autophagy , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt , Pyrimidines , Vascular Endothelial Growth Factor Receptor-2 , Humans , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Autophagy/drug effects , Structure-Activity Relationship , Cell Proliferation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Molecular Structure , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Molecular Docking Simulation , Cell Line, Tumor
15.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000375

ABSTRACT

Angiogenesis is critical for rheumatoid arthritis (RA) progression. The effects of tofacitinib, a JAK-STAT inhibitor used for RA treatment, on angiogenesis in RA are unclear. We, therefore, evaluated the levels of angiogenic factors in two systems of a human co-culture of fibroblast (HT1080) and monocytic (U937) cell lines treated with tofacitinib and in serum samples from RA patients before and after six months of tofacitinib treatment. Tofacitinib reduced CD147 levels, matrix metalloproteinase-9 (MMP-9) activity, and angiogenic potential but increased endostatin levels and secreted proteasome 20S activity. In vitro, tofacitinib did not change CD147 mRNA but increased miR-146a-5p expression and reduced STAT3 phosphorylation. We recently showed that CD147 regulates the ability of MMP-9 and secreted proteasome 20S to cleave collagen XVIIIA into endostatin. We show here that tofacitinib-enhanced endostatin levels are mediated by CD147, as CD147-siRNA or an anti-CD147 antibody blocked proteasome 20S activity. The correlation between CD147 and different disease severity scores supported this role. Lastly, tofacitinib reduced endostatin' s degradation by inhibiting cathepsin S activity and recombinant cathepsin S reversed this in both systems. Thus, tofacitinib inhibits angiogenesis by reducing pro-angiogenic factors and enhancing the anti-angiogenic factor endostatin in a dual effect mediated partly through CD147 and partly through cathepsin S.


Subject(s)
Arthritis, Rheumatoid , Basigin , Cathepsins , Endostatins , Piperidines , Pyrimidines , Humans , Basigin/metabolism , Basigin/genetics , Piperidines/pharmacology , Endostatins/metabolism , Endostatins/pharmacology , Pyrimidines/pharmacology , Cathepsins/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , STAT3 Transcription Factor/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/drug therapy , Angiogenesis Inhibitors/pharmacology , Female , Middle Aged , Male , Pyrroles/pharmacology , Cell Line
16.
Proc Natl Acad Sci U S A ; 121(28): e2320655121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959043

ABSTRACT

SLC7A11 is a cystine transporter and ferroptosis inhibitor. How the stability of SLC7A11 is coordinately regulated in response to environmental cystine by which E3 ligase and deubiquitylase (DUB) remains elusive. Here, we report that neddylation inhibitor MLN4924 increases cystine uptake by causing SLC7A11 accumulation, via inactivating Cullin-RING ligase-3 (CRL-3). We identified KCTD10 as the substrate-recognizing subunit of CRL-3 for SLC7A11 ubiquitylation, and USP18 as SLC7A11 deubiquitylase. Upon cystine deprivation, the protein levels of KCTD10 or USP18 are decreased or increased, respectively, contributing to SLC7A11 accumulation. By destabilizing or stabilizing SLC7A11, KCTD10, or USP18 inversely regulates the cystine uptake and ferroptosis. Biologically, MLN4924 combination with SLC7A11 inhibitor Imidazole Ketone Erastin (IKE) enhanced suppression of tumor growth. In human breast tumor tissues, SLC7A11 levels were negatively or positively correlated with KCTD10 or USP18, respectively. Collectively, our study defines how SLC7A11 and ferroptosis is coordinately regulated by the CRL3KCTD10/E3-USP18/DUB axis, and provides a sound rationale of drug combination to enhance anticancer efficacy.


Subject(s)
Amino Acid Transport System y+ , Cystine , Ferroptosis , Pyrimidines , Ubiquitin Thiolesterase , Humans , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Pyrimidines/pharmacology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Animals , Cystine/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Cell Line, Tumor , Ubiquitination , Female , Mice , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Piperazines/pharmacology , HEK293 Cells
17.
Environ Sci Pollut Res Int ; 31(32): 44789-44799, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954331

ABSTRACT

Cyprodinil, a globally utilized broad-spectrum pyrimidine amine fungicide, has been observed to elicit cardiac abnormality. Resveratrol (RSV), a naturally occurring polyphenolic compound, showcases remarkable defensive properties in nurturing cardiac development. To investigate whether RSV could protect against cyprodinil-induced cardiac defects, we exposed zebrafish embryos to cyprodinil (500 µg/L) in the presence or absence of RSV (1 µM). Our results showed that RSV significantly mitigated the decrease of survival rate and embryo movement and the hatching delay induced by cyprodinil. In addition, RSV also improved cyprodinil-induced zebrafish cardiac developmental toxicity, including pericardial edema and cardiac function impairment. In mechanism, RSV attenuated the cyprodinil-induced changes in mRNA expression involved in cardiac development, such as myh6, myl7, tbx5, and gata4, and calcium ion channels, such as ncx1h, slc8a4a, and atp2a2b. We further showed that RSV might inhibit the activity of aryl hydrocarbon receptor (AhR) signaling pathways induced by cyprodinil. In summary, our findings establish that the protective effects of RSV against the cardiac developmental toxicity are induced by cyprodinil due to its remarkable ability to inhibit AhR activity. Our findings not only shed light on a new avenue for regulating and ensuring the safe utilization of cyprodinil but also presents a novel concept to promote its responsible use.


Subject(s)
Heart , Pyrimidines , Receptors, Aryl Hydrocarbon , Resveratrol , Zebrafish , Animals , Zebrafish/embryology , Resveratrol/pharmacology , Pyrimidines/toxicity , Pyrimidines/pharmacology , Heart/drug effects , Embryo, Nonmammalian/drug effects
18.
Mol Cell Probes ; 76: 101969, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964425

ABSTRACT

The progression and pathogenesis of membranous glomerulonephritis (MGN) are inextricably linked to chronic inflammation. Despite improving clinical remission rates due to the application of cyclophosphamide (CYC), treatment of MGN still requires further exploration. Ruxolitinib (Ruxo) negatively affects the signaling pathways participating in the production of pro-inflammatory cytokines. Hence, we investigated whether the combination of CYC and Ruxo can modulate inflammation through influencing T helper 17 (Th17) lineages and regulatory T cells (Tregs). Passive Heymann nephritis (PHN), an experimental model of MGN, was induced in a population of rats. Then, the animals were divided into five groups: PHN, CYC-receiving, Ruxo-receiving, CYC-Ruxo-receiving PHN rats, and healthy controls. After 28 days of treatment, biochemistry analysis was performed and splenocytes were isolated for flowcytometry investigation of Th17 cells and Tregs. The correlative transcription factors of the cells, alongside their downstream cytokine gene expressions, were also assessed using real-time PCR. Furthermore, serum cytokine signatures for the lymphocytes were determined through ELISA. The combination of CYC and Ruxo significantly reduced the serum values of urea in rats versus the PHN group (24.62 ± 7.970 vs. 40.60 ± 10.81 mg/dL). In contrast to Treg's activities, the functionality of Th17 cells noticeably increased not only in PHN rats but also in CYC or Ruxo-receiving PHN animals when compared with the control (10.60 ± 2.236, 8.800 ± 1.465, 8.680 ± 1.314 vs. 4.420 ± 1.551 %). However, in comparison to the PHN group, the incidence of Th17 cells notably fell in rats receiving CYC and Ruxo (10.60 ± 2.236 vs. 6.000 ± 1.373 %) in favor of the Treg's percentage (5.020 ± 1.761 vs. 8.980 ± 1.178 %), which was verified by the gene expressions and cytokine productions correlative to these lymphocytes. The combination of CYC and Ruxo was able to decline Th17 cells in favor of Tregs improvement in PHN rats, suggesting an innovative combination therapy in MGN treatment approaches.


Subject(s)
Cyclophosphamide , Cytokines , Glomerulonephritis, Membranous , Nitriles , Pyrazoles , Pyrimidines , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Glomerulonephritis, Membranous/drug therapy , Glomerulonephritis, Membranous/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Th17 Cells/drug effects , Th17 Cells/immunology , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Nitriles/pharmacology , Nitriles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Rats , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Cytokines/metabolism , Male , Disease Models, Animal , Drug Therapy, Combination
19.
Int J Oral Sci ; 16(1): 46, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886342

ABSTRACT

Oral squamous cell carcinoma (OSCC) associated pain commonly predicts adverse events among patients. This clinical feature indicates the engagement of nociceptors on sensory neurons during the development of malignancy. However, it is yet to be determined if targeting oncometabolite-associated nociception processes can hinder OSCC progression. In this study, we reported that nociceptive endings infiltrating both clinical samples and mouse tumor xenografts were associated with poorer clinical outcomes and drove tumor progression in vivo, as evidenced by clinical tissue microarray analysis and murine lingual denervation. We observed that the OSCC microenvironment was characteristic of excessive adenosine due to CD73 upregulation which negatively predicted clinical outcomes in the TCGA-HNSC patient cohort. Notably, such adenosine concentrative OSCC niche was associated with the stimulation of adenosine A2A receptor (A2AR) on trigeminal ganglia. Antagonism of trigeminal A2AR with a selective A2AR inhibitor SCH58261 resulted in impeded OSCC growth in vivo. We showed that trigeminal A2AR overstimulation in OSCC xenograft did not entail any changes in the transcription level of CGRP in trigeminal ganglia but significantly triggered the release of CGRP, an effect counteracted by SCH58261. We further demonstrated the pro-tumor effect of CGRP by feeding mice with the clinically approved CGRP receptor antagonist rimegepant which inhibited the activation of ERK and YAP. Finally, we diminished the impact of CGRP on OSCC with istradefylline, a clinically available drug that targets neuronal A2AR. Therefore, we established trigeminal A2AR-mediated CGRP release as a promising druggable circuit in OSCC treatment.


Subject(s)
Calcitonin Gene-Related Peptide , Carcinoma, Squamous Cell , Disease Progression , Mouth Neoplasms , Receptor, Adenosine A2A , Animals , Humans , Mice , Adenosine A2 Receptor Antagonists/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Mouth Neoplasms/metabolism , Pyrimidines/pharmacology , Receptor, Adenosine A2A/metabolism , Triazoles , Trigeminal Nerve/metabolism
20.
J Med Chem ; 67(12): 10401-10424, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38866385

ABSTRACT

We previously reported trisubstituted pyrimidine lead compounds, namely, ARN22089 and ARN25062, which block the interaction between CDC42 with its specific downstream effector, a PAK protein. This interaction is crucial for the progression of multiple tumor types. Such inhibitors showed anticancer efficacy in vivo. Here, we describe a second class of CDC42 inhibitors with favorable drug-like properties. Out of the 25 compounds here reported, compound 15 (ARN25499) stands out as the best lead compound with an improved pharmacokinetic profile, increased bioavailability, and efficacy in an in vivo PDX tumor mouse model. Our results indicate that these CDC42 inhibitors represent a promising chemical class toward the discovery of anticancer drugs, with ARN25499 as an additional lead candidate for preclinical development.


Subject(s)
Antineoplastic Agents , cdc42 GTP-Binding Protein , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Humans , Mice , cdc42 GTP-Binding Protein/antagonists & inhibitors , cdc42 GTP-Binding Protein/metabolism , Cell Line, Tumor , Drug Discovery , Structure-Activity Relationship , Xenograft Model Antitumor Assays , Pyrimidines/pharmacokinetics , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...