Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Epilepsy Res ; 201: 107338, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38447234

ABSTRACT

BACKGROUND: The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammatory pathway is implicated in the development of epilepsy and can be suppressed by the activation of the silent information regulator 1 (SIRT1). However, the expression and correlation of the NLRP3 pathway and SIRT1 in drug-resistant epilepsy (DRE) remain unknown. METHODS: This study evaluated the histopathology of the cerebral cortex from nine patients with DRE and eight patients with cavernous haemangioma undergoing surgical treatment. It analysed the expression of the NLRP3, interleukin-1ß (IL-1ß), caspase-1 and SIRT1 using immunohistochemistry. Additionally, the contents of NLRP3, caspase-1, IL-1ß and SIRT1 in the serum samples of the included study participants were determined using ELISA method. The correlation between the NLRP3 pathway and the SIRT1 was assessed using Spearman's correlation analysis. RESULTS: The expression of NLRP3, caspase-1 and IL-1ß in the cerebral cortex of patients with DRE was elevated, with the NLRP3 expression being negatively correlated with the SIRT1 expression. Furthermore, IL-1ß in serum was upregulated in patients with DRE. The correlation between the content of serum SIRT1 and NLRP3, caspase-1 and IL-1ß in patients with DRE was not significant. Notably, serum caspase-1 levels were obviously higher in patients with bilateral hippocampal sclerosis than in patients with unilateral hippocampal sclerosis. CONCLUSIONS: The current results indicate that the expression of the NLRP3/caspase-1/IL-1ß pathway is significantly upregulated in patients with DRE and that it is partially correlated with the SIRT1 expression. This study is important for understanding the pathophysiology of DRE and developing new treatment strategies for it.


Subject(s)
Hippocampal Sclerosis , Inflammasomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Pyrin Domain , Sirtuin 1/metabolism , Caspase 1/metabolism , Interleukin-1beta/metabolism
2.
World J Gastroenterol ; 30(6): 527-541, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38463022

ABSTRACT

Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease. Despite ongoing advances in our understanding of UC, its pathogenesis is yet unelucidated, underscoring the urgent need for novel treatment strategies for patients with UC. Exosomes are nanoscale membrane particles that mediate intercellular communication by carrying various bioactive molecules, such as proteins, RNAs, DNA, and metabolites. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytosolic tripartite protein complex whose activation induces the maturation and secretion of proinflammatory cytokines interleukin-1ß (IL-1ß) and IL-18, triggering the inflammatory response to a pathogenic agent or injury. Growing evidence suggests that exosomes are new modulators of the NLRP3 inflammasome, with vital roles in the pathological process of UC. Here, recent evidence is reviewed on the role of exosomes and NLRP3 inflammasome in UC. First, the dual role of exosomes on NLRP3 inflammasome and the effect of NLRP3 inflammasome on exosome secretion are summarized. Finally, an outlook on the directions of exosome-NLRP3 inflammasome crosstalk research in the context of UC is proposed and areas of further research on this topic are highlighted.


Subject(s)
Colitis, Ulcerative , Exosomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Exosomes/metabolism , Pyrin Domain
3.
J Tradit Chin Med ; 44(2): 303-314, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504536

ABSTRACT

OBJECTIVE: To investigate the impact of Yemazhui (Herba Eupatorii Lindleyani, HEL) against lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore its underlying mechanism in vivo. METHODS: The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry method. Then, HEL was found to suppress LPS-induced ALI in vivo. Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups: control, LPS, Dexamethasone (Dex), HEL low dose 6 g/kg (HEL-L), HEL medium dose 18 g/kg (HEL-M) and HEL high dose 54 g/kg (HEL-H) groups. The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model. Leukocyte counts, lung wet/dry weight ratio, as well as myeloperoxidase (MPO) activity were determined followed by the detection with hematoxylin and eosin staining, enzyme linked immunosorbent assay, quantitative real time polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence. Besides, to explore the effect of HEL on ALI-mediated intestinal flora, we performed 16s rRNA sequencing analysis of intestinal contents. RESULTS: HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance. Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats, inhibited leukocytes exudation and MPO activity, and improved the pathological injury of lung tissue. In addition, HEL reduced the expression of tumor necrosis factor-alpha, interleukin-1beta (IL-1ß) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid and serum, and inhibited nuclear displacement of nuclear factor kappa-B p65 (NF-κBp65). And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88, NF-κBp65, phosphorylated inhibitor kappa B alpha (phospho-IκBα), nod-like receptor family pyrin domain-containing 3 protein (NLRP3), IL-1ß, and interleukin-18 (IL-18) in lung tissue, and regulated intestinal flora disturbance. CONCLUSIONS: In summary, our findings revealed that HEL has a protective effect on LPS-induced ALI in rats, and its mechanism may be related to inhibiting TLR4/ NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.


Subject(s)
Acute Lung Injury , Gastrointestinal Microbiome , Rats , Male , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Lipopolysaccharides/adverse effects , NLR Family, Pyrin Domain-Containing 3 Protein , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Pyrin Domain , RNA, Ribosomal, 16S , Rats, Sprague-Dawley , Signal Transduction , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/genetics , Lung , Interleukin-6
4.
BMC Oral Health ; 24(1): 14, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172822

ABSTRACT

BACKGROUND: The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome has been reported to be highly expressed in oral lesions with the potential for malignant development such as oral lichen planus (OLP). And the NLRP3 inflammasome can be activated by galectin-3 (Gal-3) in immune-mediated chronic inflammatory diseases. This study aimed to explore the inter-relationships among Gal-3, NLRP3 inflammasome, and OLP. METHODS: A cross-sectional analysis of oral biopsy specimens from 30 patients with Erosive OLP and 30 healthy controls was performed. Immunohistochemical staining was used to evaluate the expression of Gal-3 and NLRP3 inflammasome. Two-sample t-test and Pearson correlation test were applied to analyze the data. RESULTS: Erosive OLP patients had significantly higher Gal-3 levels compared with controls (p < 0.0001). A similar pattern emerged for NLRP3 inflammasome. In the overall sample, a positive correlation was observed between Gal-3 and NLRP3 (r = 0.92, p < 0.01). CONCLUSIONS: Patients with Erosive OLP lesions showed increased protein expression levels of Gal-3. A positive correlation was observed between Gal-3 and NLRP3 inflammasome.


Subject(s)
Inflammasomes , Lichen Planus, Oral , Humans , Cross-Sectional Studies , Galectin 3/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrin Domain
5.
J Pharmacol Exp Ther ; 388(3): 798-812, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38253384

ABSTRACT

The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a central regulator of innate immunity, essential for processing and release of interleukin-1ß and pyroptotic cell death. As endogenous NLRP3 activating triggers are hallmarks of many human chronic inflammatory diseases, inhibition of NLRP3 has emerged as a therapeutic target. Here we identify NDT-19795 as a novel carboxylic acid-containing NLRP3 activation inhibitor in both human and mouse monocytes and macrophages. Remarkably, conversion of the carboxylate to an isopropyl-ester (NT-0796) greatly enhances NLRP3 inhibitory potency in human monocytes. This increase is attributed to the ester-containing pharmacophore being more cell-penetrant than the acid species and, once internalized, the ester being metabolized to NDT-19795 by carboxylesterase-1 (CES-1). Mouse macrophages do not express CES-1, and NT-0796 is ineffective in these cells. Mice also contain plasma esterase (Ces1c) activity which is absent in humans. To create a more human-like model, we generated a mouse line in which the genome was modified, removing Ces1c and replacing this segment of DNA with the human CES-1 gene driven by a mononuclear phagocyte-specific promoter. We show human CES-1 presence in monocytes/macrophages increases the ability of NT-0796 to inhibit NLRP3 activation both in vitro and in vivo. As NLRP3 is widely expressed by monocytes/macrophages, the co-existence of CES-1 in these same cells affords a unique opportunity to direct ester-containing NLRP3 inhibitors precisely to target cells of interest. Profiling NT-0796 in mice humanized with respect to CES-1 biology enables critical modeling of the pharmacokinetics and pharmacodynamics of this novel therapeutic candidate. SIGNIFICANCE STATEMENT: Inhibition of NLRP3 represents a desirable therapeutic strategy for the treatment of multiple human disorders. In this study pharmacological properties of a structurally-novel, ester-containing NLRP3 inhibitor NT-0796 are characterized. To study pharmacodynamics of NT-0796 in vivo, a mouse line was engineered possessing more human-like traits with respect to carboxylesterase biology. In the context of these hCES-1 mice, NT-0796 serves as a more effective inhibitor of NLRP3 activation than the corresponding acid, highlighting the full translational potential of the ester strategy.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , NLR Proteins , Humans , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrin Domain , Inflammasomes/metabolism , Caspase 1/metabolism , Esters , Carboxylic Ester Hydrolases/metabolism , Interleukin-1beta/metabolism
6.
Chem Biol Drug Des ; 103(1): e14325, 2024 01.
Article in English | MEDLINE | ID: mdl-37907334

ABSTRACT

Gastric cancer (GC) is a gastric epithelium-derived malignancy insensitive to post-surgical radiotherapy. Paclitaxel, an anti-microtubule drug, has been proven to induce apoptosis of GC cells; however, its exact mechanism of action is unclear. Therefore, the molecular mechanism by which paclitaxel inhibits the proliferation, migration and invasion of GC cells was investigated in this study. First off, SNU-719 cells were co-cultured with paclitaxel and/or Caspase1 inhibitor VX765. Then the proliferation ability of the cells was detected by MTT after paclitaxel treatment (0, 10, 20, 40, and 80 nM), the migration ability by scratch assay, and the invasion ability by Transwell assay. Next, the levels of interleukin (IL)-1ß and IL-18 in cell culture supernatant were detected by the enzyme linked immunosorbent assay (ELISA). And the level of lactate dehydrogenase (LDH) in the supernatant was measured by a corresponding kit. Finally, western blot was performed to detect the concentrations of Gasdermin E (GSDME), GSDME-N, nod-like receptor family pyrin domain-containing 3 (NLRP3), caspase-1, cleaved caspase-1 protein in GC cells. As a result, paclitaxel inhibited the proliferation, migration, and invasion of SNU-719 cells in a concentration-dependent manner. Moreover, it induced the pyroptosis of SNU-719 cells. After cell co-culture with VX765 paclitaxel showed decreased inhibitory effect on the migration and invasion of SNU-719 cells. VX765, additionally, suppressed the NLRP3/caspase-1/GSDME mediated pyroptosis pathway activated by paclitaxel. In a nutshell, paclitaxel may inhibit the migration and invasion of GC cells SNU-719 through the NLRP3/caspase-1/GSDME mediated pyroptosis pathway.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Stomach Neoplasms , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , NLR Proteins/metabolism , Caspase 1/metabolism , Caspase 1/pharmacology , Paclitaxel/pharmacology , Gasdermins , Stomach Neoplasms/drug therapy , Pyrin Domain
7.
Curr Eye Res ; 49(2): 180-187, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38014534

ABSTRACT

PURPOSE: Diabetic retinopathy, a prevalent complication of diabetes, represents the leading cause of vision loss and blindness among middle-aged and elderly populations. Recent research has demonstrated the ameliorating effects of scutellarin on diabetes-associated complications such as diabetic retinopathy and type 2 diabetic cardiomyopathy. However, investigations into its protective impact and underlying mechanisms on diabetic retinopathy are scant. This study aims to explore the therapeutic potential of scutellarin in diabetic retinopathy treatment. METHODS: Diabetic retinopathy was induced in rats through intraperitoneal injections of streptozotocin (STZ, 60 mg/kg) administered daily for three consecutive days. Following this, diabetic retinopathy rats received daily intragastric administration of scutellarin (40 mg/kg) for 42 days. RESULTS: Our findings suggest that scutellarin alleviates histological damage in the retinal tissues of streptozotocin-challenged rats. Furthermore, scutellarin effectively enhances total retinal thickness and increases the number of ganglion cell layer (GCL) cells in the retinal tissues of streptozotocin-treated rats. Scutellarin also demonstrated anti-inflammatory and antioxidant effects in the retinal tissues of STZ-induced rats, as indicated by reduced levels of tumor necrosis factor-α, interleukin-1ß, and interleukin-6, and elevated levels of glutathione peroxidase, superoxide dismutase, and catalase. Additionally, scutellarin effectively inhibited the expression of NOD-like receptor pyrin domain containing protein 3 inflammasome-related markers in the retinal tissues of streptozotocin-administered rats. CONCLUSIONS: Collectively, our results indicate that scutellarin significantly reduces streptozotocin-induced retinal inflammation, an effect that may be partially attributed to the suppression of NLRP3 inflammasome activation.


Subject(s)
Apigenin , Diabetes Mellitus, Experimental , Diabetic Retinopathy , Glucuronates , Humans , Rats , Animals , Middle Aged , Aged , Diabetic Retinopathy/metabolism , Inflammasomes/metabolism , Streptozocin/therapeutic use , Pyrin Domain , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism
8.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003567

ABSTRACT

Vitamin D (VD) deficiency has been associated with inflammation and dysregulation of the immune system. The NLRP3 inflammasome, a critical immune response component, plays a pivotal role in developing inflammatory diseases. VD hinders NLRP3 inflammasome activation and thus exerts anti-inflammatory effects. This study aimed to analyze the effect of VD deficiency on circulating levels of NLRP3 inflammasomes (NLRP3 and caspase-1) and associated interleukins (IL-1α, IL-1ß, IL-18, IL-33 and IL-37) in Saudi adults. Methods: A total of 338 Saudi adults (128 males and 210 females) (mean age = 41.2 ± 9.1 years and mean BMI 31.2 ± 6.5 kg/m2) were included. Overnight-fasting serum samples were collected. Participants were stratified according to their VD status. Serum levels of NLRP3 inflammasomes and interleukins of interest were assessed using commercially available immuno-assays. Individuals with VD deficiency had significantly lower mean 25(OH)D levels than those with a normal VD status (29.3 nmol/L vs. 74.2 nmol/L, p < 0.001). The NLRP3 levels were higher in the VD-deficient group than their VD-sufficient counterparts (0.18 vs. 0.16, p = 0.01). Significant inverse associations were observed between NLRP3 levels with age (r = -0.20, p = 0.003) and BMI (r = -0.17, p = 0.01). Stepwise regression analysis identified insulin (ß = 0.38, p = 0.005) and NLRP3 (ß = -1.33, p = 0.03) as significant predictors of VD status, explaining 18.3% of the variance. The findings suggest that the VD status modestly regulates NLRP3 inflammasome and interleukin activities. This may provide novel insights into the pathogenesis and management of inflammatory disorders.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Male , Female , Adult , Humans , Middle Aged , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , NLR Proteins , Vitamin D , Arabs , Pyrin Domain , Caspase 1/metabolism , Vitamins , Interleukin-1beta
9.
Cardiovasc Res ; 119(13): 2368-2381, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37523743

ABSTRACT

AIMS: Vascular calcification (VC) is prevalent in pathological processes such as diabetes, chronic kidney disease (CKD), and atherosclerosis, but effective therapies are still lacking by far. Canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor, has been approved for the treatment of type 2 diabetes mellitus and exhibits beneficial effects against cardiovascular disease. However, the effect of CANA on VC remains unknown. In this study, we hypothesize that CANA protects against VC. METHODS AND RESULTS: Micro-computed tomography analysis and alizarin red staining revealed that CANA treatment prevented aortic calcification in CKD rats and in VitD3-overloaded mice. Moreover, CANA alleviated the calcification of rat and human arterial rings. Alizarin red staining revealed that calcification of rat and human vascular smooth muscle cells (VSMCs) was attenuated by CANA treatment and this phenomenon was confirmed by calcium content assay. In addition, CANA downregulated the expression of osteogenic differentiation markers Runx2 and BMP2. Of interest, qPCR and western blot analysis revealed that CANA downregulated the expression of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3), and the downstream signalling molecules Caspase-1 and IL-1ß in VSMCs as well. Both NLRP3 inhibitor MCC950 and knockdown of NLRP3 by siRNA independently resulted in decreased calcification of VSMCs. By contrast, activation of NLRP3 exacerbated VSMC calcification, and this effect was prevented by the addition of CANA. CONCLUSIONS: Our study for the first time demonstrates that CANA exerts a protective effect on VC at least partially via suppressing the NLRP3 signalling pathway. Therefore, supplementation of CANA as well as inhibition of NLRP3 inflammasome presents a potential therapy for VC.


Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Vascular Calcification , Rats , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Canagliflozin/pharmacology , Leucine/metabolism , Leucine/pharmacology , Osteogenesis , Diabetes Mellitus, Type 2/metabolism , Pyrin Domain , X-Ray Microtomography , Vascular Calcification/drug therapy , Vascular Calcification/genetics , Vascular Calcification/prevention & control , Renal Insufficiency, Chronic/metabolism , Glucose/metabolism , Nucleotides/metabolism , Nucleotides/pharmacology , Sodium/metabolism , Myocytes, Smooth Muscle/metabolism
10.
J Pharmacol Exp Ther ; 386(2): 242-258, 2023 08.
Article in English | MEDLINE | ID: mdl-37308266

ABSTRACT

The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a multiprotein complex and component of the innate immune system that is activated by exogenous and endogenous danger signals to promote activation of caspase-1 and the maturation and release of the proinflammatory cytokines interleukin (IL)-1ß and IL-18. Inappropriate activation of NLRP3 has been implicated in the pathophysiology of multiple inflammatory and autoimmune diseases, including cardiovascular disease, neurodegenerative diseases, and nonalcoholic steatohepatitis (NASH), thus increasing the clinical interest of this target. We describe in this study the preclinical pharmacologic, pharmacokinetic, and pharmacodynamic properties of a novel and highly specific NLRP3 inhibitor, JT001 (6,7-dihydro-5H-pyrazolo[5,1-b][1,3]oxazine-3-sulfonylurea). In cell-based assays, JT001 potently and selectively inhibited NLRP3 inflammasome assembly, resulting in the inhibition of cytokine release and the prevention of pyroptosis, a form of inflammatory cell death triggered by active caspase-1. Oral administration of JT001 to mice inhibited IL-1ß production in peritoneal lavage fluid at plasma concentrations that correlated with mouse in vitro whole blood potency. Orally administered JT001 was effective in reducing hepatic inflammation in three different murine models, including the Nlrp3A350V /+CreT model of Muckle-Wells syndrome (MWS), a diet-induced obesity NASH model, and a choline-deficient diet-induced NASH model. Significant reductions in hepatic fibrosis and cell damage were also observed in the MWS and choline-deficient models. Our findings demonstrate that blockade of NLRP3 attenuates hepatic inflammation and fibrosis and support the use of JT001 to investigate the role of NLRP3 in other inflammatory disease models. SIGNIFICANCE STATEMENT: Persistent inflammasome activation is the consequence of inherited mutations of NLRP3 and results in the development of cryopyrin-associated periodic syndromes associated with severe systemic inflammation. NLRP3 is also upregulated in nonalcoholic steatohepatitis, a metabolic chronic liver disease currently missing a cure. Selective and potent inhibitors of NLRP3 hold great promise and have the potential to overcome an urgent unmet need.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Pyrin Domain , Liver Cirrhosis/drug therapy , Liver Cirrhosis/prevention & control , Caspase 1/metabolism , Inflammation , Choline/adverse effects , Interleukin-1beta/metabolism
11.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 679-684, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37248605

ABSTRACT

Inflammasomes are important components of the innate immune system. They are assembled by cytoplasmic pattern recognition receptors and play a critical role in the pathogenesis and progression of various inflammatory diseases through regulating the release and activation of inflammatory cytokines and inducing cell prytosis. NOD-like receptor family pyrin domain containing protein 3 (NLRP3) inflammasome has been widely studied and has been shown to be closely associated with cardiovascular diseases and metabolic disorders. Bone and joint diseases, such as osteoarthritis and rheumatoid arthritis show high prevalence worldwide and can cause bone and cartilage damage, pain, and dysfunction, adversely affecting the patients' quality of life. The reported findings of some studies indicate that the pathogenesis of various bone and articular diseases is associated with NLRP3 inflammasome. Small molecule antagonists targeting NLRP3 inflammasome have shown considerable therapeutic potentials, but their clinical application still needs further exploration. Herein, we reviewed the composition and function of NLRP3 inflammasome and its association with bone and articular diseases.


Subject(s)
Arthritis, Rheumatoid , Inflammasomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Pyrin Domain , Quality of Life
12.
J Physiol Pharmacol ; 74(1)2023 02.
Article in English | MEDLINE | ID: mdl-37245232

ABSTRACT

Prodigiosin (PRO) is a natural pigment that possesses multiple activities, covering anti-tumor, anti-bacteria, and immunosuppression. This study is committed to an investigation into the underlying function and the certain mechanism of PRO in acute lung damage followed by rheumatoid arthritis (RA). Cecal ligation and puncture (CLP) method was implemented to trigger a rat lung injury model, and a rat RA model was constructed with the help of rheumatoid arthritis induced by collagen. Prodigiosin was administered to intervene in the rats' lung tissues post-treatment. The expressions of pro-inflammatory cytokines (interleukin-1beta, interleukin-6, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1 were determined. Western blot was carried out to detect anti-surfactant protein A (SPA), anti-surfactant protein D (SPD), apoptosis-concerned proteins (Bax, cleaved-caspase-3, Bcl-2, and pro-caspase-3), the nuclear factor-kappaB (NF-κB)/nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3)/apoptosis-concerned speckle-like protein (ASC)/caspase-1 signaling pathway. The apoptosis of pulmonary epithelial tissues was checked via TUNEL assay, as corresponding kits were adopted to confirm the activity of lactate dehydrogenase (LDH) and the levels of oxidative stress markers malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). Prodigiosin ameliorated the pathological damage of CLP rats. Prodigiosin alleviated the production of inflammatory and oxidative stress mediators. In the RA rats with acute lung injury, prodigiosin hampered apoptosis in the lung. Mechanistically, prodigiosin hinders the activation of the NF-κB/NLRP3 signaling axis. In conclusion: prodigiosin relieves acute lung injury in a rat model of rheumatoid arthritis by exerting anti-inflammatory and anti-oxidative effects through downregulating the NF-κB/NLRP3 signaling axis.


Subject(s)
Acute Lung Injury , Arthritis, Rheumatoid , Rats , Animals , NF-kappa B/metabolism , Leucine , Prodigiosin/pharmacology , Prodigiosin/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrin Domain , Signal Transduction , Acute Lung Injury/drug therapy , Nucleotides
13.
World J Gastroenterol ; 29(14): 2153-2171, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37122606

ABSTRACT

BACKGROUND: The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a significant component of the innate immune system that plays a vital role in the development of various parasitic diseases. However, its role in hepatic alveolar echinococcosis (HAE) remains unclear. AIM: To investigate the NLRP3 inflammasome and its mechanism of activation in HAE. METHODS: We assessed the expression of NLRP3, caspase-1, interleukin (IL)-1ß, and IL-18 in the marginal zone and corresponding normal liver of 60 patients with HAE. A rat model of HAE was employed to investigate the role of the NLRP3 inflammasome in the marginal zone of HAE. Transwell experiments were conducted to investigate the effect of Echinococcus multilocularis (E. multilocularis) in stimulating Kupffer cells and hepatocytes. Furthermore, immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assay were used to evaluate NLRP3, caspase-1, IL-1ß, and IL-18 expression; flow cytometry was used to detect apoptosis and reactive oxygen species (ROS). RESULTS: NLRP3 inflammasome activation was significantly associated with ROS. Inhibition of ROS production decreased NLRP3-caspase-1-IL-1ß pathway activation and mitigated hepatocyte damage and inflammation. CONCLUSION: E. multilocularis induces hepatocyte damage and inflammation by activating the ROS-mediated NLRP3-caspase-1-IL-1ß pathway in Kupffer cells, indicating that ROS may serve as a potential target for the treatment of HAE.


Subject(s)
Echinococcosis, Hepatic , Inflammasomes , Animals , Rats , Inflammasomes/metabolism , Reactive Oxygen Species/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18 , NLR Proteins , Pyrin Domain , Signal Transduction , Inflammation/metabolism , Caspase 1/metabolism , Interleukin-1beta/metabolism
14.
J Am Heart Assoc ; 12(8): e024397, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37026550

ABSTRACT

Background Chronic intermittent hypoxia (CIH) has been regarded as an important cause of atherosclerotic disease. In our study, we set out to investigate whether CIH regulated the high mobility group box 1/receptor for advanced glycation endproducts/NOD-like receptor family pyrin domain-containing 3 (HMGB1/RAGE/NLRP3) axis to affect the progression of atherosclerosis. Methods and Results Initially, peripheral blood samples were collected from patients with single obstructive sleep apnea, atherosclerosis complicated with obstructive sleep apnea, and healthy volunteers. In vitro cell experiments were conducted using human monocyte cell line THP-1 and human umbilical vein endothelial cells to explore the role of HMGB1 in cell migration, apoptosis, adhesion, and transendothelial migration. In addition, a CIH-induced atherosclerosis mouse model was established for further identifying the critical role of the HMGB1/RAGE/NLRP3 axis in atherosclerosis. Upregulated HMGB1 and RAGE were found in patients with atherosclerosis complicated with obstructive sleep apnea. CIH induction increased HMGB1 expression by inhibiting HMGB1 methylation, activating the RAGE/NLRP3 axis. After inhibition of the HMGB1/RAGE/NLRP3 axis, monocyte chemotaxis and adhesion were repressed, and macrophage-derived foam cell formation was inhibited, accompanied by suppression of endothelial and foam cell apoptosis and inflammatory factor secretion. In vivo animal experiments also noted that the progression of atherosclerosis was prevented by inhibition of the HMGB1/RAGE/NLRP3 axis in CIH-induced ApoE-/- mice. Conclusions Taken together, CIH induction can upregulate HMGB1 through inhibition of HMGB1 methylation, which activates the RAGE/NLRP3 axis to promote inflammatory factor secretion, thereby promoting the progression of atherosclerosis.


Subject(s)
Atherosclerosis , HMGB1 Protein , NLR Family, Pyrin Domain-Containing 3 Protein , Receptor for Advanced Glycation End Products , Sleep Apnea, Obstructive , Animals , Humans , Mice , Atherosclerosis/metabolism , HMGB1 Protein/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Hypoxia/complications , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrin Domain , Receptor for Advanced Glycation End Products/metabolism , Mice, Knockout, ApoE
15.
J Agric Food Chem ; 71(18): 7119-7130, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37115810

ABSTRACT

Clostridium perfringens is a major cause of infectious foodborne disease, frequently associated with the consumption of raw and undercooked food. Despite intensive studies on clarifying C. perfringens pathogenesis, the molecular mechanisms of host-pathogen interactions remain poorly understood. In soft tissue and mucosal infection models, Gpr120-/- mice, G protein-coupled receptor 120 (GPR120), are more susceptible to C. perfringens infection. Gpr120 deficiency leads to a low survival rate (30 and 10%, p < 0.01), more bacterial loads in the muscle (2.26 × 108 ± 2.08 × 108 CFUs/g, p < 0.01), duodenum (2.80 × 107 ± 1.61 × 107 CFUs/g, p < 0.01), cecum (2.50 × 108 ± 2.05 × 108 CFUs/g, p < 0.01), and MLN (1.23 × 106 ± 8.06 × 105 CFUs/g, p < 0.01), less IL-18 production in the muscle (8.54 × 103 ± 1.20 × 103 pg/g, p < 0.01), duodenum (3.34 × 103 ± 2.46 × 102 pg/g, p < 0.01), and cecum (3.81 × 103 ± 5.29 × 102 pg/g, p < 0.01), and severe organ injury. Obviously, GPR120 facilitates IL-18 production and pathogen control via potassium efflux-dependent NOD-like receptor family pyrin domain-containing 3 (NLRP3) signaling. Mechanistically, GPR120 interaction with NLRP3 potentiates the NLRP3 inflammasome assembly. Thus, this study uncovers a novel role of GPR120 in host protection and reveals that GPR120 may be a potential therapeutic target for limiting pathogen infection.


Subject(s)
Clostridium Infections , Inflammasomes , Animals , Mice , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Proteins , Pyrin Domain , Interleukin-18 , Receptors, G-Protein-Coupled/genetics , Clostridium Infections/genetics , Interleukin-1beta
16.
Free Radic Biol Med ; 202: 46-61, 2023 06.
Article in English | MEDLINE | ID: mdl-36990300

ABSTRACT

Spasmolytic polypeptide-expressing metaplasia (SPEM), as a pre-neoplastic precursor of intestinal metaplasia (IM), plays critical roles in the development of chronic atrophic gastritis (CAG) and gastric cancer (GC). However, the pathogenetic targets responsible for the SPEM pathogenesis remain poorly understood. Gene associated with retinoid-IFN-induced mortality 19 (GRIM-19), an essential subunit of the mitochondrial respiratory chain complex I, was progressively lost along with malignant transformation of human CAG, little is known about the potential link between GRIM-19 loss and CAG pathogenesis. Here, we show that lower GRIM-19 is associated with higher NF-кB RelA/p65 and NLR family pyrin domain-containing 3 (NLRP3) levels in CAG lesions. Functionally, GRIM-19 deficiency fails to drive direct differentiation of human GES-1 cells into IM or SPEM-like cell lineages in vitro, whereas parietal cells (PCs)-specific GRIM-19 knockout disturbs gastric glandular differentiation and promotes spontaneous gastritis and SPEM pathogenesis without intestinal characteristics in mice. Mechanistically, GRIM-19 loss causes chronic mucosal injury and aberrant NRF2 (Nuclear factor erythroid 2-related factor 2)- HO-1 (Heme oxygenase-1) activation via reactive oxygen species (ROS)-mediated oxidative stress, resulting in aberrant NF-кB activation by inducing p65 nuclear translocation via an IKK/IкB partner, while NRF2-HO-1 activation contributes to GRIM-19 loss-driven NF-кB activation via a positive feedback NRF2-HO-1 loop. Furthermore, GRIM-19 loss did not cause obvious PCs loss but triggers NLRP3 inflammasome activation in PCs via a ROS-NRF2-HO-1-NF-кB axis, leading to NLRP3-dependent IL-33 expression, a key mediator for SPEM formation. Moreover, intraperitoneal administration of NLRP3 inhibitor MCC950 drastically attenuates GRIM-19 loss-driven gastritis and SPEM in vivo. Our study suggests that mitochondrial GRIM-19 maybe a potential pathogenetic target for the SPEM pathogenesis, and its deficiency promotes SPEM through NLRP3/IL-33 pathway via a ROS-NRF2-HO-1-NF-кB axis. This finding not only provides a causal link between GRIM-19 loss and SPEM pathogenesis, but offers potential therapeutic strategies for the early prevention of intestinal GC.


Subject(s)
Gastritis , NADH, NADPH Oxidoreductases , NF-kappa B , Animals , Humans , Mice , Gastritis/genetics , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Inflammasomes/genetics , Inflammasomes/metabolism , Interleukin-33 , Metaplasia , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrin Domain , Reactive Oxygen Species/metabolism , NADH, NADPH Oxidoreductases/genetics
17.
Exp Anim ; 72(3): 324-335, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-36740252

ABSTRACT

Intracerebral hemorrhage (ICH) is an incurable neurological disease. Microglia activation and its related inflammation contribute to ICH-associated brain damage. FERM domain containing kindlin 1 (FERMT1) is an integrin-binding protein that participates in microglia-associated inflammation, but its role in ICH is unclear. An ICH model was constructed by injecting 50 µl of autologous blood into the bregma of rats. FERMT1 siRNA was injected into the right ventricle of the rat for knockdown of FERMT1. A significant striatal hematoma was observed in ICH rats. FERMT1 knockdown reduced the water content of brain tissue, alleviated brain hematoma and improved behavioral function in ICH rats. FERMT1 knockdown reduced microglia activity, inhibited NLR family pyrin domain containing 3 (NLRP3) inflammasome activity and decreased the expression of inflammatory factors including IL-1ß and IL-18 in the peri-hematoma tissues. BV2 microglial cells were transfected with FERMT1 siRNA and incubated with 60 µM Hemin for 24 h. Activation of NLRP3 inflammasome induced by hemin were reduced in microglia when FERMT1 was knocked down, leading to decreased production of inflammatory factors IL-1ß and IL-18. In addition, knockdown of FERMT1 prevented the activation of nuclear factor kappa B (NF-κB) signaling pathway in vivo and in vitro. Our findings suggested that down-regulation of FERMT1 attenuated microglial inflammation and brain damage induced by ICH via NLRP3/NF-κB pathway. FERMT1 is a key regulator of inflammatory damage in rats after ICH.


Subject(s)
Brain Injuries , NF-kappa B , Animals , Rats , Brain Injuries/metabolism , Cerebral Hemorrhage , FERM Domains , Hemin , Inflammasomes/metabolism , Inflammation , Interleukin-18 , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrin Domain , RNA, Small Interfering
18.
Anim Biotechnol ; 34(9): 4547-4552, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36651576

ABSTRACT

NLR family pyrin domain containing 9 (NLRP9) is a mammalian reproduction-related gene. In this study, we researched the associations between polymorphisms located in the coding sequence (CDS) of the NLRP9 gene, and both the total number of piglets born per litter (TNB) and the number of piglets born alive per litter (NBA) in Canada Large White pigs (CLW). We detected a single nucleotide polymorphism (SNP) within exon 3 (g.10910C > T). The allele frequencies at the NLRP9 locus were 0.474 for the C allele and 0.526 for the T allele. Three genotypes, CC, CT, and TT, occurred with frequencies of 0.216, 0.515, and 0.269, respectively. Sows with the CC genotype had the largest TNB and NBA, sows with TT had the smallest, and those with CT were in-between. This difference was statistically significant (p < 0.05). Furthermore, CC females grew faster than CT or TT females, and there was a significant relationship between NLRP9 polymorphism and the average daily gain (p < 0.05). Here, we provide the first evidence for a novel SNP in NLRP9 associated with litter size in CLW sows, which could be used as a genetic marker to improve litter size in pig breeding and production.


Subject(s)
Polymorphism, Single Nucleotide , Pyrin Domain , Pregnancy , Swine/genetics , Animals , Female , Litter Size/genetics , Polymorphism, Single Nucleotide/genetics , Gene Frequency , Genotype , Mammals
20.
BMC Cardiovasc Disord ; 23(1): 10, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627567

ABSTRACT

Cardiomyocytes injury has been considered as a key contributor for myocardial infarction (MI). Uric acid (UA) can induce cardiomyocytes injury, which is closely related to NLRP3 activation and inflammatory factor generation. However, the mechanism how UA modulates cardiomyocytes remains elusive. Western blotting and qRT-PCR were applied for measuring protein and mRNA expression, respectively. ROS production and Ca2+ influx were measured by flow cytometry. Patch clamp technique was used for measuring transient receptor potential melastatin 2 (TRPM2) channel. Ligation of left anterior descending for 2 h was performed to induce MI animal model. The rats were treated by different concentration of uric acid. The artery tissues were stained by HE and collected for measurement of NLRP3 and inflammatory factors. Supplementation of UA significantly promoted apoptosis, and augmented the expression of intercellular adhesion molecule-1, chemoattractant protein-1, vascular cell adhesion molecule-1, and NLRP3 inflammasome. Knockdown of NLRP3 reversed the influence of UA on MI by decreasing collagen deposition, fibrotic area, apoptosis. The expression of NLRP3 inflammasome increased markedly after treatment of UA. UA activated ROS/TRPM2/Ca2+ pathway through targeting NLRP3. UA activated NLRP3 inflammasome and augments inflammatory factor production, which in turn exacerbates cardiomyocytes injury. Knockdown of NLRP3 reversed the influence of UA on apoptosis and cell cycle. UA may promote cardiomyocytes injury through activating NLRP3 inflammasome and ROS/TRPM2 channel/Ca2+ pathway.


Subject(s)
Myocardial Infarction , TRPM Cation Channels , Rats , Animals , Inflammasomes/metabolism , Reactive Oxygen Species/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Uric Acid/pharmacology , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Pyrin Domain , Carrier Proteins , Myocardial Infarction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...