Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
J Biol Inorg Chem ; 29(3): 339-351, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38227199

ABSTRACT

Hyperthermophilic ('superheat-loving') archaea found in high-temperature environments such as Pyrobaculum aerophilum contain multicopper oxidases (MCOs) with remarkable efficiency for oxidizing cuprous and ferrous ions. In this work, directed evolution was used to expand the substrate specificity of P. aerophilum McoP for organic substrates. Six rounds of error-prone PCR and DNA shuffling followed by high-throughput screening lead to the identification of a hit variant with a 220-fold increased efficiency (kcat/Km) than the wild-type for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) without compromising its intrinsic activity for metal ions. The analysis of the X-ray crystal structure reveals four proximal mutations close to the T1Cu active site. One of these mutations is within the 23-residues loop that occludes this site, a distinctive feature of prokaryotic MCOs. The increased flexibility of this loop results in an enlarged tunnel and one additional pocket that facilitates bulky substrate-enzyme interactions. These findings underscore the synergy between mutations that modulate the dynamics of the active-site loop enabling enhanced catalytic function. This study highlights the potential of targeting loops close to the T1Cu for engineering improvements suitable for biotechnological applications.


Subject(s)
Catalytic Domain , Oxidoreductases , Substrate Specificity , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Oxidoreductases/genetics , Pyrobaculum/enzymology , Pyrobaculum/genetics , Models, Molecular , Crystallography, X-Ray
2.
Int J Biol Macromol ; 253(Pt 2): 126711, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37673141

ABSTRACT

The genome sequence of hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0039, which encodes a putative DNA ligase. Structural analysis disclosed the presence of signature sequences of ATP-dependent DNA ligases. We have heterologously expressed Pcal_0039 gene in Escherichia coli. The recombinant protein, majorly produced in soluble form, was purified and functionally characterized. Recombinant Pcal_0039 displayed nick-joining activity between 40 and 85 °C. Optimal activity was observed at 70 °C and pH 5.5. Nick-joining activity was retained even after heating for 1 h at 90 °C, indicating highly thermostable nature of Pcal_0039. The nick-joining activity, displayed by Pcal_0039, was metal ion dependent and Mg2+ was the most preferred. NaCl and KCl inhibited the nick-joining activity at or above 200 mmol/L. The activity catalyzed by recombinant Pcal_0039 was independent of addition of ATP or NAD+ or any other nucleotide cofactor. A mismatch adjacent to the nick, either at 3'- or 5'-end, abolished the nick-joining activity. These characteristics make Pcal_0039 a potential candidate for applications in DNA diagnostics. To the best of our knowledge, Pcal_0039 is the only DNA ligase, characterized from genus Pyrobaculum, which exhibits optimum nick-joining activity at pH below 6.0 and independent of any nucleotide cofactor.


Subject(s)
Pyrobaculum , Pyrobaculum/genetics , NAD/metabolism , Enzyme Stability , DNA Ligase ATP/metabolism , DNA Ligases/genetics , DNA Ligases/metabolism , Archaea/metabolism , Cloning, Molecular , Adenosine Triphosphate/metabolism
3.
Int J Biol Macromol ; 244: 125446, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37330102

ABSTRACT

Genome analysis of Pyrobaculum calidifontis revealed the presence of α-glucosidase (Pcal_0917) gene. Structural analysis affirmed the presence of signature sequences of Type II α-glucosidases in Pcal_0917. We have heterologously expressed the gene and produced recombinant Pcal_0917 in Escherichia coli. Biochemical characteristics of the recombinant enzyme resembled to that of Type I α-glucosidases, instead of Type II. Recombinant Pcal_0917 existed in a tetrameric form in solution and displayed highest activity at 95 °C and pH 6.0, independent of any metal ions. A short heat-treatment at 90 °C resulted in a 35 % increase in enzyme activity. A slight structural shift was observed by CD spectrometry at this temperature. Half-life of the enzyme was >7 h at 90 °C. Pcal_0917 exhibited apparent Vmax values of 1190 ± 5 and 3.9 ± 0.1 U/mg against p-nitrophenyl α-D-glucopyranoside and maltose, respectively. To the best of our knowledge, Pcal_0917 displayed the highest ever reported p-nitrophenyl α-D-glucopyranosidase activity among the characterized counterparts. Moreover, Pcal_0917 displayed transglycosylation activity in addition to α-glucosidase activity. Furthermore, in combination with α-amylase, Pcal_0917 was capable of producing glucose syrup from starch with >40 % glucose content. These properties make Pcal_0917 a potential candidate for starch hydrolyzing industry.


Subject(s)
Pyrobaculum , alpha-Glucosidases , alpha-Glucosidases/genetics , Enzyme Stability , Pyrobaculum/genetics , Archaea , Glucose , Starch , Substrate Specificity
4.
Nat Commun ; 14(1): 666, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36750723

ABSTRACT

Conjugation is a major mechanism of horizontal gene transfer promoting the spread of antibiotic resistance among human pathogens. It involves establishing a junction between a donor and a recipient cell via an extracellular appendage known as the mating pilus. In bacteria, the conjugation machinery is encoded by plasmids or transposons and typically mediates the transfer of cognate mobile genetic elements. Much less is known about conjugation in archaea. Here, we determine atomic structures by cryo-electron microscopy of three conjugative pili, two from hyperthermophilic archaea (Aeropyrum pernix and Pyrobaculum calidifontis) and one encoded by the Ti plasmid of the bacterium Agrobacterium tumefaciens, and show that the archaeal pili are homologous to bacterial mating pili. However, the archaeal conjugation machinery, known as Ced, has been 'domesticated', that is, the genes for the conjugation machinery are encoded on the chromosome rather than on mobile genetic elements, and mediates the transfer of cellular DNA.


Subject(s)
Aeropyrum , Agrobacterium tumefaciens , Conjugation, Genetic , DNA, Archaeal , Pyrobaculum , Agrobacterium tumefaciens/genetics , Bacterial Proteins/genetics , Cryoelectron Microscopy , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Gene Transfer, Horizontal , Plasmids , Aeropyrum/genetics , Pyrobaculum/genetics
5.
Int J Biol Macromol ; 233: 123545, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36740112

ABSTRACT

Positively charged amino acids in the DNA polymerase domain are important for interaction with DNA. Two potential residues in the palm domain of Pca-Pol, a DNA polymerase from Pyrobaculum calidifontis, were identified and mutated to arginine in order to improve the properties of this enzyme. The mutant proteins were heterologously produced in Escherichia coli. Biochemical characterization revealed that there was no significant difference in pH, metal ion, buffer preferences, 3' - 5' exonuclease activity and error rate of the wild-type and the mutant enzymes. However, the specific activity, processivity and extension rate of the mutant enzymes increased significantly. Specific activity of one of the mutants (G522R-E555R) was nearly 9-fold higher than that of the wild-type enzyme. These properties make G522R-E555R mutant enzyme a potential candidate for commercial applications.


Subject(s)
Pyrobaculum , Pyrobaculum/genetics , DNA-Directed DNA Polymerase/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Amino Acids
6.
Prep Biochem Biotechnol ; 53(6): 704-711, 2023.
Article in English | MEDLINE | ID: mdl-36306256

ABSTRACT

Polymerase Chain Reaction (PCR) is widely used for cloning, genetic engineering, mutagenesis, detection and diagnosis. A thermostable DNA polymerase is required for PCR. Here we describe low-cost and high-recovery production of Pyrobaculum calidifontis DNA polymerase (Pca-Pol). The gene was cloned in pET-28a and expressed in Escherichia coli BL21CodonPlus. Gene expression conditions were optimized. Eventually, gene expression was induced with 0.1 mM IPTG for 3 hours at 37 °C. Recombinant Pca-Pol produced was purified to homogeneity by immobilized metal-ion affinity chromatography yielding around 9000 U of Pca-Pol per liter of the culture with a recovery of 92%. Stability and PCR amplification efficiency of Pca-Pol was tested under various storage conditions with highest efficiency in 25 mM Tris-Cl buffer (pH 8.5) containing 0.1% Tween 20, 0.2 mg/mL BSA and 20% glycerol. Under this condition, no loss in PCR activity of Pca-Pol was observed, even after one year of storage. Repeated freeze-thaw, however, deteriorated enzyme activity of Pca-Pol. 55% PCR amplification activity retained after 7 prolong freeze-thaw cycles (freezing overnight at -20 °C and thawing for 45 minutes at 28 °C). Purified Pca-Pol possessed 3'-5' exonuclease (proofreading) activity and is expected to have greater fidelity as compared to Taq polymerase which does not have proofreading activity.


Subject(s)
Pyrobaculum , Pyrobaculum/genetics , Cost-Benefit Analysis , Polymerase Chain Reaction/methods , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , Genetic Engineering , Escherichia coli/metabolism
7.
Carbohydr Res ; 523: 108711, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36395717

ABSTRACT

The gene encoding a repressor open reading frame sugar kinase (ROK) family protein from hyperthermophilic crenarchaeon Pyrobaculum calidifontis, Pcal-HK, was cloned and expressed in Escherichia coli. The recombinant protein was produced in soluble and highly active form. Purified Pcal-HK was highly thermostable and existed in a monomeric form in solution. The enzyme was specific to ATP as phosphoryl donor but showed broad specificity to phosphoryl acceptors. It catalyzed the phosphorylation of a number of hexoses, including glucose, glucosamine, N-acetyl glucosamine, fructose and mannose, at nearly the same rate and similar affinity. The enzyme was metal ion dependent exhibiting highest activity at 90-95 °C and pH 8.5. Mg2+ was most effective metal ion, which could be partially replaced by Mn2+, Ni2+ or Zn2+. Kinetic parameters were determined at 90 °C and the enzyme showed almost similar catalytic efficiency (kcat/Km) towards the above mentioned hexoses. To the best of our knowledge, Pcal-HK is the most active thermostable ROK family hexokinase characterized to date which catalyzes the phosphorylation of various hexoses with nearly similar affinity.


Subject(s)
Hexokinase , Pyrobaculum , Enzyme Stability , Hexokinase/genetics , Hexokinase/metabolism , Kinetics , Phosphorylation , Pyrobaculum/enzymology , Pyrobaculum/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Escherichia coli/genetics
8.
Proc Natl Acad Sci U S A ; 119(26): e2207037119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35727984

ABSTRACT

While biofilms formed by bacteria have received great attention due to their importance in pathogenesis, much less research has been focused on the biofilms formed by archaea. It has been known that extracellular filaments in archaea, such as type IV pili, hami, and cannulae, play a part in the formation of archaeal biofilms. We have used cryo-electron microscopy to determine the atomic structure of a previously uncharacterized class of archaeal surface filaments from hyperthermophilic Pyrobaculum calidifontis. These filaments, which we call archaeal bundling pili (ABP), assemble into highly ordered bipolar bundles. The bipolar nature of these bundles most likely arises from the association of filaments from at least two different cells. The component protein, AbpA, shows homology, both at the sequence and structural level, to the bacterial protein TasA, a major component of the extracellular matrix in bacterial biofilms, contributing to biofilm stability. We show that AbpA forms very stable filaments in a manner similar to the donor-strand exchange of bacterial TasA fibers and chaperone-usher pathway pili where a ß-strand from one subunit is incorporated into a ß-sheet of the next subunit. Our results reveal likely mechanistic similarities and evolutionary connection between bacterial and archaeal biofilms, and suggest that there could be many other archaeal surface filaments that are as yet uncharacterized.


Subject(s)
Archaeal Proteins , Biofilms , Fimbriae, Bacterial , Pyrobaculum , Archaeal Proteins/chemistry , Cryoelectron Microscopy , Fimbriae, Bacterial/chemistry , Protein Conformation, beta-Strand , Pyrobaculum/chemistry , Pyrobaculum/physiology
9.
Int J Biol Macromol ; 209(Pt A): 1410-1421, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35472364

ABSTRACT

This manuscript describes recombinant production, characterization and structural analysis of wild-type and mutant Pcal_0029, a pyruvate kinase from Pyrobaculum calidifontis. Recombinant Pcal_0029 was produced in soluble and highly active form in Escherichia coli. Purified protein exhibited divalent metal-dependent activity which increased with the increase in temperature till 85 °C. Recombinant Pcal_0029 was highly thermostable with no significant loss in activity even after an incubation of 120 min at 100 °C. The enzyme exhibited apparent S0.5 and Vmax values of 0.44 ± 0.05 mM and 840 ± 39 units, respectively, towards phosphoenolpyruvate. These values towards adenosine-5'-diphosphate were 0.5 ± 0.07 mM and 870 ± 26 units, respectively. In silico structural analysis and comparison with the characterized enzymes revealed the presence of eight conserved regions. Two substitutions, K130E and S155G, resulted in a 10-fold decrease in activity. Secondary structure analysis indicated similar structures for the wild-type and the mutant enzymes. Bioinformatics analysis revealed disruption of interatomic interactions and hydrogen bonds, leading to a decreased flexibility and solvent accessibility, which may have led to decrease in activity. To the best of our knowledge, Pcal_0029 is the most thermostable pyruvate kinase reported so far. Moreover, this is the first study on the role of non-catalytic residues in a pyruvate kinase.


Subject(s)
Archaeal Proteins , Pyrobaculum , Archaeal Proteins/chemistry , Cloning, Molecular , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Pyrobaculum/genetics , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
J Struct Biol ; 213(2): 107735, 2021 06.
Article in English | MEDLINE | ID: mdl-33831508

ABSTRACT

Protein structures are directly linked to biological functions. However, there is a gap of knowledge between the decoded genome and the structure. To bridge the gap, we focused on the secondary structure (SS). From a comprehensive analysis of predicted SS of proteins in different types of organisms, we have arrived at the following findings: The proportions of SS in genomes were different among phylogenic domains. The distributions of strand lengths indicated structural limitations in all of the species. Different from bacteria and archaea, eukaryotes have an abundance of α-helical and random coil proteins. Interestingly, there was a relationship between SS and post-translational modifications. By calculating hydrophobicity moments of helices and strands, highly amphipathic fragments of SS were found, which might be related to the biological functions. In conclusion, comprehensive predictions of SS will provide valuable perspectives to understand the entire protein structures in genomes and will help one to discover or design functional proteins.


Subject(s)
Protein Structure, Secondary , Proteins/chemistry , Proteins/metabolism , Amino Acids/chemistry , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Databases, Protein , Hydrophobic and Hydrophilic Interactions , Intrinsically Disordered Proteins/chemistry , Methanocaldococcus/genetics , Nuclear Export Signals , Nuclear Localization Signals , Phosphorylation , Protein Conformation, alpha-Helical , Protein Processing, Post-Translational , Proteins/classification , Proteins/genetics , Pyrobaculum/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Species Specificity
11.
J Phys Chem A ; 125(1): 139-145, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33389998

ABSTRACT

Mössbauer spectroscopy, nuclear forward scattering, and Raman spectroscopy were applied to study redox transformations of the synthesized mixed-valence (III/V) antimony oxide. The transformations were induced by a culture of a hyperthermophilic archaeon of the genus Pyrobaculum. The applied methods allowed us to reveal the minor decrease of ca. 11.0 ± 1.2% of the antimony(V) content of the mixed-valence oxide with the concomitant increase of antimony(III). The method sensitivities for the quantitative assessment of the Sb(III/V) ratio have been considered.


Subject(s)
Antimony/analysis , Oxides/analysis , Pyrobaculum/chemistry , Antimony/metabolism , Oxidation-Reduction , Oxides/metabolism , Pyrobaculum/metabolism , Spectroscopy, Mossbauer , Spectrum Analysis, Raman
12.
Biotechnol Prog ; 37(1): e3087, 2021 01.
Article in English | MEDLINE | ID: mdl-33016618

ABSTRACT

Biofuel cells generate electric energy using an enzyme as a catalyst for an electrode but their stability and low battery output pose problems for practical use. To solve these problems, this study aimed to build a long-lasting and high-output biocathode as a catalyst using a highly stable hyperthermophilic archaeal enzyme, multi-copper oxidase, from Pyrobaculum aerophilum (McoP). To increase output, McoP was oriented and immobilized on single-walled carbon nanotubes (SWCNT) with a high specific surface area, and the electrode interface was designed to achieve highly efficient electron transfer between the enzyme and electrode. Type 1 copper (T1Cu), an electron-accepting site in the McoP molecule, is located near the C-terminus. Therefore, McoP was prepared by genetically engineering a CNT-binding peptide with the sequence LLADTTHHRPWT, at the C-terminus of McoP (McoP-CBP). We then constructed an electrode using a complex in which McoP-CBP was aligned and immobilized on SWCNT, and then clarified the effect of CBP. The amounts of immobilized enzymes on McoP-SWCNT and (McoP-CBP)-SWCNT complexes were almost equal. CV measurement of the electrode modified with both complexes showed 5.4 times greater current density in the catalytic reaction of the (McoP-CBP)-SWCNT/GC electrode than in the McoP-SWCNT/GC electrode. This is probably because CBP fusion immobilize the enzyme on SWCNTs in an orientational manner, and T1Cu, the oxidation-reduction site in McoP, is close to the electrode, which improves electron transfer efficiency.


Subject(s)
Bioelectric Energy Sources , Enzymes, Immobilized/metabolism , Nanotubes, Carbon/chemistry , Oxidoreductases/metabolism , Peptides/metabolism , Pyrobaculum/enzymology , Catalysis , Electrodes , Enzymes, Immobilized/chemistry , Oxidoreductases/chemistry , Peptides/chemistry
13.
Appl Biochem Biotechnol ; 193(2): 492-501, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33025566

ABSTRACT

Enzymes from hyperthermophilic archaea are potential candidates for industrial use because of their superior pH, thermal, and long-term stability, and are expected to improve the long-term stability of biofuel cells (BFCs). However, the reported multicopper oxidase (MCO) from hyperthermophilic archaea has lower redox potential than MCOs from other organisms, which leads to a decrease in the cell voltage of BFCs. In this study, we attempted to positively shift the redox potential of the MCO from hyperthermophilic archaeon Pyrobaculum aerophilum (McoP). Mutations (M470L and M470F) were introduced into the axial ligand of the T1 copper atom of McoP, and the enzymatic chemistry and redox potentials were compared with that of the parent (M470). The redox potentials of M470L and M470F shifted positively by about 0.07 V compared with that of M470. In addition, the catalytic activity of the mutants towards 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) increased 1.2-1.3-fold. The thermal stability of the mutants and the electrocatalytic performance for O2 reduction of M470F was slightly reduced compared with that of M470. This research provides useful enzymes for application as biocathode catalysts for high-voltage BFCs.


Subject(s)
Archaeal Proteins , Bioelectric Energy Sources , Mutagenesis, Site-Directed , Mutation, Missense , Oxidoreductases , Pyrobaculum , Amino Acid Substitution , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Oxidoreductases/chemistry , Oxidoreductases/genetics , Pyrobaculum/enzymology , Pyrobaculum/genetics
14.
J Biotechnol ; 325: 226-232, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33164755

ABSTRACT

Although multicopper oxidase from the hyperthermophilic archaeon Pyrobaculum aerophilum (McoP) can be particularly useful in biotechnological applications, e.g., as a specific catalyst at the biocathode of biofuel cells (BFCs), owing to its high stability against extremely high temperatures and across a wide range of pH values, this application potential remains limited due to the enzyme's low catalytic activity. A directed evolution strategy was conducted to improve McoP catalytic activity, and the No. 571 mutant containing four amino acid substitutions was identified, with specific activity approximately 9-fold higher than that of the wild type enzyme. Among the substitutions, the single amino acid mutant F290I was essential in enhancing catalytic activity, with a specific activity approximately 12-fold higher than that of the wild type enzyme. F290I thermostability and pH stability were notably comparable with values obtained for the wild type. Crystal structure analysis suggested that the F290I mutant increased loop flexibility near the T1 Cu center, and affected electron transfer between the enzyme and substrate. Additionally, electric current density of the F290I mutant-immobilized electrode was 7-fold higher than that of the wild type-immobilized one. These results indicated that F290I mutant was a superior catalyst with potential in practical biotechnological applications.


Subject(s)
Oxidoreductases , Pyrobaculum , Amino Acid Substitution , Archaea/metabolism , Enzyme Stability , Kinetics , Oxidoreductases/metabolism , Pyrobaculum/genetics , Pyrobaculum/metabolism
15.
Int J Biol Macromol ; 165(Pt B): 1745-1754, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33039537

ABSTRACT

The gene encoding Pcal_0842, annotated as a cellulase (accession no. ABO08268), was cloned and expressed in Escherichia coli. The gene product was produced in insoluble form in E. coli in high amounts even without addition of the inducer isopropyl ß-D-1-thiogalactopyranoside. The recombinant protein was solubilized in 8 M urea and refolded by gradual removal of urea. The refolded protein exhibited both α-1,4- and ß-1,4-glycosidic cleavage activities. The enzyme activity increased with the increase in temperature till 120 °C. Apart from very high optimal temperature, recombinant Pcal_0842 was extremely thermostable. There was no significant loss in activity even after heating for 100 h at 100 °C. The half-lives of Pcal_0842 were 6 and 2.5 h at 110 and 120 °C, respectively. To the best of our knowledge, Pcal_0842 is the most thermostable glycosidase characterized to date and this is the first report on cloning and characterization of an enzyme from archaea that displays both α-1,4- and ß-1,4-glycosidic cleavage activities.


Subject(s)
Archaeal Proteins/metabolism , Glycoside Hydrolases/metabolism , Glycosides/metabolism , Pyrobaculum/enzymology , Temperature , Amino Acid Sequence , Circular Dichroism , Enzyme Stability , Gene Expression , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Models, Molecular , Pyrobaculum/genetics , Recombinant Proteins/isolation & purification , Solubility , Substrate Specificity
16.
Int J Biol Macromol ; 165(Pt A): 645-653, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32950528

ABSTRACT

Pcal_0768 gene encoding an amylomaltase, a 4-α-glucanatransferase belonging to family 77 of glycosyl hydrolases, from Pyrobaculum calidifontis was cloned and expressed in Escherichia coli. The recombinant protein was produced in E. coli in soluble and active form. However, the expression level was not very high. Analysis of the mRNA of initial seven codons at the 5'-end of the gene revealed the presence of a hair pin like secondary structure. This secondary structure was removed by site directed mutagenesis, without altering the amino acids, which resulted in enhanced expression of the cloned gene. Recombinant Pcal_0768 exhibited optimal amylomaltase activity at 80 °C and pH 6.9. Under these conditions, the specific activity was 690 U/ mg. Recombinant Pcal_0768 was highly thermostable with a half-life of 6 h at 100 °C. It exhibited the highest kcat value among the characterized glucanotransferases. No metal ions were required for activity or stability of the enzyme. Recombinant Pcal_0768 was successfully employed in the synthesis of modified starch for producing thermoreversible gel. To the best of our knowledge, till now this is the most thermostable enzyme among the characterized amylomaltases. High thermostability and starch modification potential make it a novel and distinct amylomaltase.


Subject(s)
Archaeal Proteins , Cloning, Molecular , Gene Expression , Glycogen Debranching Enzyme System , Hot Temperature , Pyrobaculum , Archaeal Proteins/biosynthesis , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/isolation & purification , Enzyme Stability , Escherichia coli/enzymology , Escherichia coli/genetics , Glycogen Debranching Enzyme System/biosynthesis , Glycogen Debranching Enzyme System/chemistry , Glycogen Debranching Enzyme System/genetics , Glycogen Debranching Enzyme System/isolation & purification , Pyrobaculum/enzymology , Pyrobaculum/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
17.
J Mol Biol ; 432(16): 4658-4672, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32569746

ABSTRACT

Protein glycosylation constitutes a critical post-translational modification that supports a vast number of biological functions in living organisms across all domains of life. A seemingly boundless number of enzymes, glycosyltransferases, are involved in the biosynthesis of these protein-linked glycans. Few glycan-biosynthetic glycosyltransferases have been characterized in vitro, mainly due to the majority being integral membrane proteins and the paucity of relevant acceptor substrates. The crenarchaeote Pyrobaculum calidifontis belongs to the TACK superphylum of archaea (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) that has been proposed as an eukaryotic ancestor. In archaea, N-glycans are mainly found on cell envelope surface-layer proteins, archaeal flagellins and pili. Archaeal N-glycans are distinct from those of eukaryotes, but one noteworthy exception is the high-mannose N-glycan produced by P. calidifontis, which is similar in sugar composition to the eukaryotic counterpart. Here, we present the characterization and crystal structure of the first member of a crenarchaeal membrane glycosyltransferase, PcManGT. We show that the enzyme is a GDP-, dolichylphosphate-, and manganese-dependent mannosyltransferase. The membrane domain of PcManGT includes three transmembrane helices that topologically coincide with "half" of the six-transmembrane helix cellulose-binding tunnel in Rhodobacter spheroides cellulose synthase BcsA. Conceivably, this "half tunnel" would be suitable for binding the dolichylphosphate-linked acceptor substrate. The PcManGT gene (Pcal_0472) is located in a large gene cluster comprising 14 genes of which 6 genes code for glycosyltransferases, and we hypothesize that this cluster may constitute a crenarchaeal N-glycosylation (PNG) gene cluster.


Subject(s)
Mannosyltransferases/chemistry , Mannosyltransferases/metabolism , Polysaccharides/metabolism , Pyrobaculum/enzymology , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Crystallography, X-Ray , Glycosylation , Models, Molecular , Protein Conformation , Protein Processing, Post-Translational , Pyrobaculum/chemistry
18.
Biosci Biotechnol Biochem ; 84(10): 2045-2053, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32538302

ABSTRACT

NDP-forming type acyl-CoA synthetase superfamily proteins are known to have six essential subdomains (1, 2, 3, a, b, c) of which partition and order are varied, suggesting yet-to-be-defined subdomain rearrangement happened in its evolution. Comparison in physicochemical and biochemical characteristics between the recombinant proteins which we made from fragmented subdomains and wild-type protein, acetate-CoA ligase in a hyperthermophilic archaeon, consisting of two distinct subunits (α1-2-3 and ßa-b-c) provided a clue to the mystery of its molecular evolutionary passage. Although solubility and thermostability of each fragmented subdomain turned out to be lower than that of wild-type, mixture of the three synthetic subunits of α1-2, α3, and ßa-b-c had quaternary structure, thermostability, and enzymatic activity comparable to those of the wild-type. This suggests that substantial independence and mobility of subdomain 3 have enabled rearrangement of the subdomains; and thermostability of the subdomains has constrained the composition of the subunits.


Subject(s)
Acetate-CoA Ligase/chemistry , Acetate-CoA Ligase/metabolism , Enzyme Stability , Protein Domains , Pyrobaculum/enzymology , Temperature
19.
Extremophiles ; 24(1): 53-62, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31278423

ABSTRACT

The genome of the archaeon Pyrobaculum aerophilum (Topt ~ 100 °C) contains an operon (PAE2859-2861) encoding a putative pyranopterin-containing oxidoreductase of unknown function and metal content. These genes (with one gene modified to encode a His-affinity tag) were inserted into the fermentative anaerobic archaeon, Pyrococcus furiosus (Topt ~ 100 °C). Dye-linked assays of cytoplasmic extracts from recombinant P. furiosus show that the P. aerophilum enzyme is a thiosulfate reductase (Tsr) and reduces thiosulfate but not polysulfide. The enzyme (Tsr-Mo) from molybdenum-grown cells contains Mo (Mo:W = 9:1) while the enzyme (Tsr-W) from tungsten-grown cells contains mainly W (Mo:W = 1:6). Purified Tsr-Mo has over ten times the activity (Vmax = 1580 vs. 141 µmol min-1 mg-1) and twice the affinity for thiosulfate (Km = ~ 100 vs. ~ 200 µM) than Tsr-W and is reduced at a lower potential (Epeak = - 255 vs - 402 mV). Tsr-Mo and Tsr-W proteins are heterodimers lacking the membrane anchor subunit (PAE2861). Recombinant P. furiosus expressing P. aerophilum Tsr could not use thiosulfate as a terminal electron acceptor. P. furiosus contains five pyranopterin-containing enzymes, all of which utilize W. P. aerophilum Tsr-Mo is the first example of an active Mo-containing enzyme produced in P. furiosus.


Subject(s)
Pyrobaculum , Pyrococcus furiosus , Sulfurtransferases , Tungsten
20.
Biotechnol Prog ; 36(2): e2943, 2020 03.
Article in English | MEDLINE | ID: mdl-31756290

ABSTRACT

Micro total analysis system (µTAS) is expected to be applied in various fields. In particular, since electrochemical measurement is inexpensive and easy, electrochemical measurement can be integrated with a microchannel. However, electrochemical detection sensitivity in a microchannel is lowered because the diffusion of the detection target is limited. In an ordinary electrochemical detection system, using a stirrer in a beaker can overcome limited diffusion. We previously proposed a new detection system that combines a microliquid solution agitation technology using surface acoustic waves (SAWs) with the µTAS. The SAWs function as microstirrers, thus making electrochemical detection possible by overcoming limited diffusion of the sample. However, when the solution is stirred by the SAWs, the temperature of the solution increases to 70°C due to vibrational energy. This leads to enzyme inactivation and impaired electrochemical response. Therefore, in this study, we used a hyperthermophile-derived enzyme. Temperature and electrochemical characteristics of the detection system using SAWs and a multi-copper oxidase (MCO) derived from the hyperthermophilic archaea Pyrobaculum aerophilum were studied. Laccase, which is an MCO derived from the thermophilic fungus Trametes versicolor, was also studied. We also characterized the enzyme-electrochemical reaction using SAWs by comparing the magnitude of the reduction current obtained using the two enzymes with different heat resistances. We observed an increase in the electrochemical response with the SAWs, without impaired enzyme activity. Thus, the use of a thermostable enzyme is suitable for the development of a biosensor that uses SAWs for agitation.


Subject(s)
Electrochemical Techniques , Laccase/metabolism , Oxidoreductases/metabolism , Sound , Temperature , Particle Size , Polyporaceae/enzymology , Pyrobaculum/enzymology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...