Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.769
Filter
1.
Mar Drugs ; 22(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667788

ABSTRACT

A new tetramic acid glycoside, aurantoside L (1), was isolated from the sponge Siliquariaspongia japonica collected at Tsushima Is., Nagasaki Prefecture, Japan. The structure of aurantoside L (1) composed of a tetramic acid bearing a chlorinated polyene system and a trisaccharide part was elucidated using spectral analysis. Aurantoside L (1) showed anti-parasitic activity against L. amazonensis with an IC50 value of 0.74 µM.


Subject(s)
Glycosides , Leishmania , Porifera , Porifera/chemistry , Animals , Glycosides/pharmacology , Glycosides/chemistry , Glycosides/isolation & purification , Leishmania/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Pyrrolidinones/pharmacology , Pyrrolidinones/chemistry , Pyrrolidinones/isolation & purification , Japan , Inhibitory Concentration 50
2.
J Agric Food Chem ; 72(18): 10218-10226, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38666644

ABSTRACT

In this work, a series of pyrrolidinone-containing 2-phenylpyridine derivatives were synthesized and evaluated as novel protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) inhibitors for herbicide development. At 150 g ai/ha, compounds 4d, 4f, and 4l can inhibit the grassy weeds of Echinochloa crus-galli (EC), Digitaria sanguinalis (DS), and Lolium perenne (LP) with a range of 60 to 90%. Remarkably, at 9.375 g ai/ha, these compounds showed 100% inhibition effects against broadleaf weeds of Amaranthus retroflexus (AR) and Abutilon theophrasti (AT), which were comparable to the performance of the commercial herbicides flumioxazin (FLU) and saflufenacil (SAF) and better than that of acifluorfen (ACI). Molecular docking analyses revealed significant hydrogen bonding and π-π stacking interactions between compounds 4d and 4l with Arg98, Asn67, and Phe392, respectively. Additionally, representative compounds were chosen for in vivo assessment of PPO inhibitory activity, with compounds 4d, 4f, and 4l demonstrating excellent inhibitory effects. Notably, compounds 4d and 4l induced the accumulation of reactive oxygen species (ROS) and a reduction in the chlorophyll (Chl) content. Consequently, compounds 4d, 4f, and 4l are promising lead candidates for the development of novel PPO herbicides.


Subject(s)
Drug Design , Enzyme Inhibitors , Herbicides , Molecular Docking Simulation , Plant Weeds , Protoporphyrinogen Oxidase , Pyrrolidinones , Protoporphyrinogen Oxidase/antagonists & inhibitors , Protoporphyrinogen Oxidase/chemistry , Protoporphyrinogen Oxidase/metabolism , Herbicides/pharmacology , Herbicides/chemistry , Herbicides/chemical synthesis , Plant Weeds/drug effects , Plant Weeds/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Pyrrolidinones/chemical synthesis , Plant Proteins/chemistry , Plant Proteins/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Amaranthus/drug effects , Amaranthus/chemistry , Echinochloa/drug effects , Echinochloa/enzymology , Digitaria/drug effects , Digitaria/enzymology , Digitaria/chemistry , Lolium/drug effects , Lolium/enzymology , Molecular Structure
3.
Food Chem ; 450: 139328, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38626712

ABSTRACT

N-Ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) are a newly discovered compound class in tea with various bioactivities. This study aimed to develop a novel processing technique to enhance EPSF contents in white tea efficiently. Using optimal processing parameters of 125 °C and 30 min in a high-temperature sterilizing oven, total EPSF content significantly increased by 1.42-18.80-fold to 1.57-6.22 mg/g without impacting sensory characteristics. Metabolomics analysis revealed elevated levels of nucleosides, nucleotides, bases, theaflavins, flavonol aglycones, EPSFs, and most flavone-C-glycosides, as well as decreased levels of amino acids, procyanidins, theasinensins, several flavanols, and flavonol-O-glycosides after EPSF-enrichment treatment. Furthermore, the EPSF-enriched white tea exhibited notable anti-inflammatory effects, mitigating xylene-induced ear edema in mice and carrageenan-induced paw edema and cotton ball-induced granulomas in rats. This study developed a new processing technique for highly efficient enhancement of EPSFs in white tea and demonstrated that EPSF-enriched white tea has a potential to serve as effective anti-inflammatory dietary supplement.


Subject(s)
Anti-Inflammatory Agents , Camellia sinensis , Flavonoids , Plant Extracts , Tea , Animals , Mice , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Rats , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Male , Camellia sinensis/chemistry , Tea/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Edema/drug therapy , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Rats, Sprague-Dawley , Humans , Food Handling
4.
Epilepsy Res ; 202: 107332, 2024 May.
Article in English | MEDLINE | ID: mdl-38518434

ABSTRACT

BACKGROUND: An adult population pharmacokinetic/pharmacodynamic (PK/PD) model for the antiseizure medication (ASM) brivaracetam (BRV) was previously extended to children aged 4-16 years by using a pediatric BRV population PK model. Effects were scaled using information from a combined adult-pediatric PK/PD model of a related ASM, levetiracetam (LEV). OBJECTIVE: To scale an existing adult population PK/PD model for BRV to children aged 1 month to < 4 years using information from a combined adult-pediatric PK/PD model for LEV, and to predict the effective dose of BRV in children aged 1 month to < 4 years using the adult BRV PK/PD model modified for the basal seizure rate in children. MATERIAL AND METHODS: An existing adult population PK/PD model for BRV was scaled to children aged from 1 month to < 4 years using information from a combined adult-pediatric PK/PD model for LEV, an ASM binding to the same target protein as BRV. An existing adult-pediatric PK/PD model for LEV was extended using data from UCB study N01009 (NCT00175890) to include children as young as 1 month of age. The BRV population PK model was updated with data up to 180 days after first administration from BRV pediatric studies N01263 (NCT00422422) and N01266 (NCT01364597). PK and PD simulations for BRV were performed for a range of mg/kg doses to predict BRV effect in pediatric participants, and to provide dosing recommendations. RESULTS: The extended adult-pediatric LEV PK/PD model was able to describe the adult and pediatric data using the same PD model parameters in adults and children and supported the extension of the adult BRV PK/PD model to pediatric patients aged 1 month to < 4 years. Simulations predicted exposures similar to adults receiving BRV 100 mg twice daily (b.i.d.), when using 3 mg/kg b.i.d. for weight < 10 kg, 2.5 mg/kg b.i.d. for weight ≥ 10 kg and < 20 kg, and 2 mg/kg b.i.d. for weight ≥ 20 kg in children aged 1 month to < 4 years. PK/PD simulations show that maximum BRV response is expected to occur with 2-3 mg/kg b.i.d. dosing of BRV in children aged 1 month to < 4 years, with an effective dose of 1 mg/kg b.i.d. for some participants. CONCLUSION: Development of an adult-pediatric BRV PK/PD model allowed characterization of the exposure-response relationship of BRV in children aged 1 to < 4 years, providing a maximal dose allowance based on weight.


Subject(s)
Anticonvulsants , Levetiracetam , Pyrrolidinones , Humans , Levetiracetam/pharmacokinetics , Levetiracetam/pharmacology , Anticonvulsants/pharmacokinetics , Anticonvulsants/administration & dosage , Child, Preschool , Pyrrolidinones/pharmacokinetics , Pyrrolidinones/pharmacology , Infant , Child , Male , Female , Adolescent , Adult , Dose-Response Relationship, Drug , Epilepsy/drug therapy , Young Adult , Infant, Newborn , Age Factors , Seizures/drug therapy
5.
J Alzheimers Dis ; 98(4): 1235-1241, 2024.
Article in English | MEDLINE | ID: mdl-38552113

ABSTRACT

 Alzheimer's disease is the leading cause of dementia in the world. It affects 6 million people in the United States and 50 million people worldwide. Alzheimer's disease is characterized by the accumulation of amyloid-ß plaques (Aß), an increase in tau protein neurofibrillary tangles, and a loss of synapses. Since the 1990s, removing and reducing Aß has been the focus of Alzheimer's treatment and prevention research. The accumulation of Aß can lead to oxidative stress, inflammation, neurotoxicity, and eventually apoptosis. These insults impair signaling systems in the brain, potentially leading to memory loss and cognitive decline. Aniracetam is a safe, effective, cognitive-enhancing drug that improves memory in both human and animal studies. Aniracetam may prevent the production and accumulation of Aß by increasing α-secretase activity through two distinct pathways: 1) increasing brain derived neurotrophic factor expression and 2) positively modulating metabotropic glutamate receptors. This is the first paper to propose an evidence-based model for aniracetam reducing the accumulation and production of Aß.


Subject(s)
Alzheimer Disease , Animals , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Pyrrolidinones/pharmacology , Pyrrolidinones/therapeutic use , tau Proteins/metabolism , Neurofibrillary Tangles/metabolism , Plaque, Amyloid/drug therapy , Plaque, Amyloid/metabolism
6.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339112

ABSTRACT

A series of hydrazones, azoles, and azines bearing a 4-dimethylaminophenyl-5-oxopyrrolidine scaffold was synthesized. Their cytotoxic effect against human pancreatic carcinoma Panc-1 and triple-negative breast cancer MDA-MB-231 cell lines was established by MTT assay. Pyrrolidinone derivatives 3c and 3d, with incorporated 5-chloro and 5-methylbenzimidazole fragments; hydrazone 5k bearing a 5-nitrothien-2-yl substitution; and hydrazone 5l with a naphth-1-yl fragment in the structure significantly decreased the viability of both cancer cell lines. Compounds 3c and 5k showed the highest selectivity, especially against the MDA-MB-231 cancer cell line. The EC50 values of the most active compound 5k against the MDA-MB231 cell line was 7.3 ± 0.4 µM, which were slightly higher against the Panc-1 cell line (10.2 ± 2.6 µM). Four selected pyrrolidone derivatives showed relatively high activity in a clonogenic assay. Compound 5k was the most active in both cell cultures, and it completely disturbed MDA-MB-231 cell colony growth at 1 and 2 µM and showed a strong effect on Panc-1 cell colony formation, especially at 2 µM. The compounds did not show an inhibitory effect on cell line migration by the 'wound-healing' assay. Compound 3d most efficiently inhibited the growth of Panc-1 spheroids and reduced cell viability in MDA-MB-231 spheroids. Considering these different activities in biological assays, the selected pyrrolidinone derivatives could be further tested to better understand the structure-activity relationship and their mechanism of action.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Triple Negative Breast Neoplasms , Humans , Antineoplastic Agents/therapeutic use , Structure-Activity Relationship , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Cell Proliferation , Hydrazones/pharmacology , Pyrrolidinones/pharmacology , Cell Line, Tumor , Triple Negative Breast Neoplasms/drug therapy
7.
Pharmacol Rep ; 76(1): 86-97, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182968

ABSTRACT

BACKGROUND: Memory deficits and anxiety symptoms are undesirable effects that occur in epilepsy patients. They may be associated with the pathophysiology of the disease but also with anticonvulsant therapy. Brivaracetam (BRV) is one of the newest antiseizure drugs. It acts as a ligand for synaptic vesicle glycoprotein 2A (SV2A), which may play a significant role in cognitive processes. Although BRV has a favorable safety profile, its central side effects remain unclear. Hence, this study aimed to evaluate the effect of BRV on various types of memory and anxiety in rats. METHODS: BRV was given to adult male Wistar rats (n = 80) via gastric tube as a single dose (6 mg/kg or 20 mg/kg) or chronically (6 mg/kg). The effect of the drug on spatial memory was evaluated in the Morris water maze (MWM), fear-learning by passive avoidance (PA), and recognition memory with novel object recognition (NOR). The elevated plus maze (EPM) was used to assess anxiety-like behaviors. RESULTS: The impact of BRV on memory is dose-dependent and mainly high doses may alter retrieval memory and fear-learning. Sub-chronic administration also impaired retrieval and spatial memory in animals. Moreover, chronic BRV may increase anxiety levels in rats but did not affect recognition memory. CONCLUSIONS: BRV may cause transient memory deficits as well as anxiety disturbances. However, the results are varied and depend on the type of memory, used dose, and duration of administration.


Subject(s)
Anticonvulsants , Pyrrolidinones , Humans , Adult , Male , Rats , Animals , Anticonvulsants/therapeutic use , Rats, Wistar , Pyrrolidinones/pharmacology , Anxiety/drug therapy , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Cognition , Treatment Outcome
8.
Nucleic Acids Res ; 52(5): 2546-2564, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38214235

ABSTRACT

Thiolutin is a natural product transcription inhibitor with an unresolved mode of action. Thiolutin and the related dithiolopyrrolone holomycin chelate Zn2+ and previous studies have concluded that RNA Polymerase II (Pol II) inhibition in vivo is indirect. Here, we present chemicogenetic and biochemical approaches to investigate thiolutin's mode of action in Saccharomyces cerevisiae. We identify mutants that alter sensitivity to thiolutin. We provide genetic evidence that thiolutin causes oxidation of thioredoxins in vivo and that thiolutin both induces oxidative stress and interacts functionally with multiple metals including Mn2+ and Cu2+, and not just Zn2+. Finally, we show direct inhibition of RNA polymerase II (Pol II) transcription initiation by thiolutin in vitro in support of classical studies that thiolutin can directly inhibit transcription in vitro. Inhibition requires both Mn2+ and appropriate reduction of thiolutin as excess DTT abrogates its effects. Pause prone, defective elongation can be observed in vitro if inhibition is bypassed. Thiolutin effects on Pol II occupancy in vivo are widespread but major effects are consistent with prior observations for Tor pathway inhibition and stress induction, suggesting that thiolutin use in vivo should be restricted to studies on its modes of action and not as an experimental tool.


Subject(s)
Pyrrolidinones , RNA Polymerase II , Saccharomyces cerevisiae Proteins , Pyrrolidinones/pharmacology , RNA Polymerase II/antagonists & inhibitors , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic , Zinc
9.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38069128

ABSTRACT

The title compounds were synthesized by the reaction of 5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazide with various aldehydes bearing aromatic and heterocyclic moieties and acetophenones, and their cytotoxicity was tested via MTT assay against human triple-negative breast cancer MDA-MB-231, human melanoma IGR39, human pancreatic carcinoma Panc-1, and prostate cancer cell line PPC-1. Furthermore, the selectivity of compounds towards cancer cells compared to fibroblasts was also investigated. Four compounds were identified as the most promising anticancer agents out of a series of pyrrolidinone-hydrazone derivatives bearing a diphenylamine moiety. These compounds were most selective against the prostate cancer cell line PPC-1 and the melanoma cell lines IGR39, with EC50 values in the range of 2.5-20.2 µM against these cell lines. In general, the compounds were less active against triple-negative breast cancer MDA-MB-231 cell line, and none of them showed an inhibitory effect on the migration of these cells. In the 'wound healing' assay, N'-((5-nitrothiophen-2-yl)methylene)-5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazide was identified as the most promising derivative that could be further developed as an antimetastatic agent. N'-(5-chloro- and N'-(3,4-dichlorobenzylidene)-5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazides most efficiently reduced the cell viability in IGR39 cell spheroids, while there was no effect of the investigated pyrrolidinone-hydrazone derivatives on PPC-1 3D cell cultures. Antioxidant activity determined via FRAP assay of N'-(1-(4-aminophenyl)ethylidene)-5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazide was 1.2 times higher than that of protocatechuic acid.


Subject(s)
Antineoplastic Agents , Melanoma , Prostatic Neoplasms , Triple Negative Breast Neoplasms , Male , Humans , Antioxidants/pharmacology , Hydrazones/pharmacology , Diphenylamine/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Cell Proliferation , Antineoplastic Agents/pharmacology , Pyrrolidinones/pharmacology , Pyrrolidines/pharmacology , Structure-Activity Relationship , Cell Line, Tumor
10.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068887

ABSTRACT

This study investigates the therapeutic potential of a new compound, potassium 2-[2-(2-oxo-4-phenylpyrrolidin-1-yl) acetamido]ethanesulfonate (Compound I), in depression. Willner's chronic unpredictable mild stress model of male Wistar rats was used as a depression model. The rats were randomized into four groups, including an intact group, a Compound I group, a Fluoxetine group, and a control group with saline. Behavioral tests, such as the Porsolt forced swim test, hole-board test, elevated plus maze test, and light-dark box, were used to assess the animals' conditions. Our results demonstrated that Compound I effectively reduced the immobilization time of rats in the forced swim test, increased orientation and exploratory behavior, and decreased the latency period of going into the dark compartment compared to the control group. Hippocampal and striatal serotonin concentrations were increased in the Compound I group, and the compound also reduced the level of corticosterone in the blood plasma of rats compared to the intact animals. These results suggest that Compound I has reliable antidepressant activity, comparable to that of the reference antidepressant Fluoxetine.


Subject(s)
Antidepressive Agents , Fluoxetine , Rats , Male , Animals , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Rats, Wistar , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Pyrrolidinones/pharmacology , Depression/drug therapy , Depression/etiology , Stress, Psychological/drug therapy , Corticosterone , Disease Models, Animal , Behavior, Animal
11.
Biomolecules ; 13(11)2023 11 08.
Article in English | MEDLINE | ID: mdl-38002314

ABSTRACT

A fungal endophyte originating from the Canary Islands was identified as a potent antagonist against the fungal phytopathogen Hymenoscyphus fraxineus, which causes the devastating ash dieback disease. This endophyte was tentatively identified as Pezicula cf. ericae, using molecular barcoding. Isolation of secondary metabolites by preparative high-performance liquid chromatography (HPLC) yielded the known compounds CJ-17,572 (1), mycorrhizin A (3) and cryptosporioptides A-C (4-6), besides a new N-acetylated dihydroxyphenylalanin derivative 2, named peziculastatin. Planar structures were elucidated by NMR and HRMS data, while the relative stereochemistry of 2 was assigned by H,H and C,H coupling constants. The assignment of the unknown stereochemistry of CJ-17,572 (1) was hampered by the broadening of NMR signals. Nevertheless, after semisynthetic conversion of 1 into its methyl derivatives 7 and 8, presumably preventing tautomeric effects, the relative configuration could be assigned, whereas comparison of ECD data to those of related compounds determined the absolute configuration. Metabolites 1 and 3 showed significant antifungal effects in vitro against H. fraxineus. Furthermore, 4-6 exhibited significant dispersive effects on preformed biofilms of S. aureus at concentrations up to 2 µg/mL, while the biofilm formation of C. albicans was also inhibited. Thus, cryptosporioptides might constitute a potential source for the development of novel antibiofilm agents.


Subject(s)
Antifungal Agents , Staphylococcus aureus , Pyrrolidinones/pharmacology
12.
Antiviral Res ; 219: 105735, 2023 11.
Article in English | MEDLINE | ID: mdl-37858764

ABSTRACT

A class of 1-(4-(arylethylenylcarbonyl)phenyl)-4-carboxy-2-pyrrolidinones were designed and synthesized via Michael addition, cyclization, aldol condensation, and deprotonation to inhibit the human transmembrane protease serine 2 (TMPRSS2) and Furin, which are involved in priming the SARS-CoV-2 Spike for virus entry. The most potent inhibitor 2f (81) was found to efficiently inhibit the replication of various SARS-CoV-2 delta and omicron variants in VeroE6 and Calu-3 cells, with EC50 range of 0.001-0.026 µM by pre-incubation with the virus to avoid the virus entry. The more potent antiviral activities than the proteases inhibitory activities led to discovery that the synthesized compounds also inhibited Spike's receptor binding domain (RBD):angiotensin converting enzyme 2 (ACE2) interaction as a main target, and their antiviral activities were enhanced by inhibiting TMPRSS2 and/or Furin. To further confirm the blocking effect of 2f (81) on virus entry, SARS-CoV-2 Spike pseudovirus was used in the entry assay and the results showed that the compound inhibited the pseudovirus entry in a ACE2-dependent pathway, via mainly inhibiting RBD:ACE2 interaction and TMPRSS2 activity in Calu-3 cells. Finally, in the in vivo animal model of SARS-CoV-2 infection, the oral administration of 25 mg/kg 2f (81) in hamsters resulted in reduced bodyweight loss and 5-fold lower viral RNA levels in nasal turbinate three days post-infection. Our findings demonstrated the potential of the lead compound for further preclinical investigation as a potential treatment for SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Furin/pharmacology , Angiotensin-Converting Enzyme 2/chemistry , Pyrrolidinones/pharmacology , Antiviral Agents/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
13.
Epilepsy Res ; 196: 107217, 2023 10.
Article in English | MEDLINE | ID: mdl-37619297

ABSTRACT

PURPOSE: There are currently no clinical treatments to prevent posttraumatic epilepsy (PTE). Recently, our group has shown that administration of levetiracetam (LEV) or brivaracetam (BRV) shortly after cortical neurotrauma prevents the development of epileptiform activity in rats, as measured ex vivo in neocortical slices. Due to the low incidence of spontaneous seizures in rodent-based models of traumatic brain injury (TBI), chemoconvulsants have been used to test injured animals for seizure susceptibility. We used a low dose of the voltage-gated potassium channel blocker 4-aminopyridine (4-AP) to evaluate posttraumatic epileptogenesis after controlled cortical impact (CCI) injury. We then used this assessment to further investigate the efficacy of BRV as an antiepileptogenic treatment. METHODS: Sprague-Dawley rats aged P24-35 were subjected to severe CCI injury. Following trauma, one group received BRV-21 mg/kg (IP) at 0-2 min after injury and the other BRV-100 mg/kg (IP) at 30 min after injury. Four to eight weeks after injury, animals were given a single, low dose of 4-AP (3.0-3.5 mg/kg, IP) and then monitored up to 90 min for stage 4/5 seizures. RESULTS: The chemoconvulsant challenge revealed that within four to eight weeks, CCI injury led to a two-fold increase in percentage of rats with 4-AP induced stage 4-5 seizures relative to sham-injured controls. Administration of a single dose of BRV within 30 min after trauma significantly reduced injury-induced seizure susceptibility, bringing the proportion of CCI-rats that exhibited evoked seizures down to control levels. CONCLUSIONS: This study is the first to use a low dose of 4-AP as a chemoconvulsant challenge to test epileptogenicity within the first two months after CCI injury in rats. Our findings show that a single dose of BRV administered within 30 min after TBI prevents injury-induced increases in seizure susceptibility. This supports our hypothesis that early intervention with BRV may prevent PTE.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Rats , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Rats, Sprague-Dawley , Pyrrolidinones/pharmacology , Pyrrolidinones/therapeutic use , Seizures/drug therapy , Seizures/etiology , Seizures/prevention & control , Epilepsy, Post-Traumatic/drug therapy , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/prevention & control , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy
14.
Eur J Med Chem ; 245(Pt 1): 114895, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36370553

ABSTRACT

Despite novel biological targets emerging at an impressive rate for anticancer therapy, antitubulin drugs remain the backbone of numerous oncological protocols and their efficacy has been demonstrated in a wide variety of adult and pediatric cancers. In the present contribution, we set to develop analogs of a potent but neglected antitubulin agent, TN-16, originally discovered via modification of tenuazonic acid (3-acetyl-5-sec-butyltetramic acid). To this extent, we developed a novel multicomponent reaction to prepare TN-16, and then we applied the same reaction for the synthesis of aza-analogs. In brief, we prepared a library of 62 novel compounds, and three of these retained nanomolar potencies. TN-16 and the active analogs are cytotoxic on cancer cell lines and, as expected from antitubulin agents, induce G2/M cell cycle arrest. These agents lead to a disruption of the microtubules and an increase in α-tubulin acetylation and affect in vitro polymerization, although they have a lesser effect in cellular tubulin polymerization assays.


Subject(s)
Antineoplastic Agents , Pyrrolidinones , Tubulin Modulators , Child , Humans , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Microtubules/drug effects , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology , Pyrrolidinones/chemical synthesis , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology
15.
Sci Rep ; 12(1): 19495, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376455

ABSTRACT

Overcoming the skin barrier properties efficiently, temporarily, and safely for successful transdermal drug delivery remains a challenge. We synthesized three series of potential skin permeation enhancers derived from natural amino acid derivatives proline, 4-hydroxyproline, and pyrrolidone carboxylic acid, which is a component of natural moisturizing factor. Permeation studies using in vitro human skin identified dodecyl prolinates with N-acetyl, propionyl, and butyryl chains (Pro2, Pro3, and Pro4, respectively) as potent enhancers for model drugs theophylline and diclofenac. The proline derivatives were generally more active than 4-hydroxyprolines and pyrrolidone carboxylic acid derivatives. Pro2-4 had acceptable in vitro toxicities on 3T3 fibroblast and HaCaT cell lines with IC50 values in tens of µM. Infrared spectroscopy using the human stratum corneum revealed that these enhancers preferentially interacted with the skin barrier lipids and decreased the overall chain order without causing lipid extraction, while their effects on the stratum corneum protein structures were negligible. The impacts of Pro3 and Pro4 on an in vitro transepidermal water loss and skin electrical impedance were fully reversible. Thus, proline derivatives Pro3 and Pro4 have an advantageous combination of high enhancing potency, low cellular toxicity, and reversible action, which is important for their potential in vivo use as the skin barrier would quickly recover after the drug/enhancer administration is terminated.


Subject(s)
Proline , Skin Absorption , Humans , Hydroxyproline/metabolism , Proline/metabolism , Permeability , Administration, Cutaneous , Skin/metabolism , Pharmaceutical Preparations/metabolism , Organic Chemicals/metabolism , Pyrrolidinones/pharmacology , Carboxylic Acids/metabolism
16.
Eur J Med Chem ; 244: 114823, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36274278

ABSTRACT

In order to search for innovative nootropic agents, new 1-benzyl-4- (4- (R)-5-sulfonylidene-4,5-dihydro-1H-1,2,4-triazol-3-yl) pyrrolidine-2-ones was synthesized by reacting benzylamine with itaconic acid to 1-benzyl-5-oxopyrrolidine-3-carboxylic acid, which was then subjected to hydrazinolysis followed by the addition of substituted isothiacyanate followed by cyclization of intermediate thiosemicarbazides. The structure and purity of the obtained substances were confirmed by elemental analysis, 1H NMR spectroscopy, 13C NMR spectroscopy and LC/MS. Docking studies were performed for the substances synthesized using Autodock 4.2 software. Approximate values of LD50 (in silico determination) are around 870-1000 mg/kg. All synthesized substances were tested for nootropic activity by the passive avoidance test on the scopolamine amnesia model in doses that are about 1/10 of the estimated LD50. Based on the results of docking and pharmacological experiment, the most promising substances 7a, as well as 7e, 7f were identified. The results of molecular docking (hit compound 7a) indicate a positive correlation between the obtained values of docking studies and experimental data.


Subject(s)
Nootropic Agents , Pyrrolidinones , Chromatography, Liquid , Magnetic Resonance Spectroscopy , Mass Spectrometry/methods , Molecular Docking Simulation , Nootropic Agents/chemical synthesis , Nootropic Agents/chemistry , Nootropic Agents/pharmacology , Structure-Activity Relationship , Pyrrolidinones/chemical synthesis , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology
17.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36142287

ABSTRACT

Heart rhythm abnormalities are a cause of many deaths worldwide. Unfortunately, the available antiarrhythmic drugs show limited efficacy and proarrhythmic potential. Thus, efforts should be made to search for new, more effective, and safer pharmacotherapies. Several studies suggested that blocking the α1-adrenoceptors could restore normal heart rhythm in arrhythmia. In this study, we aimed to assess the antiarrhythmic potential of S-61 and S-73, two novel pyrrolidin-2-one derivatives with high affinity for α1-adrenergic receptors. First, using radioligand binding studies, we demonstrated that S-61 and S-73 did not bind with ß1-adrenoceptors. Next, we assessed whether S-61 and S-73 could protect rats against arrhythmia in adrenaline-, calcium chloride- and aconitine-induced arrhythmia models. Both compounds showed potent prophylactic antiarrhythmic properties in the adrenaline-induced arrhythmia model, but the effect of S-61 was more pronounced. None of the compounds displayed antiarrhythmic effects in calcium chloride- or aconitine-induced arrhythmia models. Interestingly, both derivatives revealed therapeutic antiarrhythmic activity in the adrenaline-induced arrhythmia, diminishing heart rhythm irregularities. Neither S-61 nor S-73 showed proarrhythmic potential in rats. Finally, the compounds decreased blood pressure in rodents. The hypotensive effects were not observed after coadministration with methoxamine, which suggests the α1-adrenolytic properties of both compounds. Our results confirm that pyrrolidin-2-one derivatives possess potent antiarrhythmic properties. Given the promising results of our experiments, further studies on pyrrolidin-2-one derivatives might result in the development of a new class of antiarrhythmic drugs.


Subject(s)
Anti-Arrhythmia Agents , Antihypertensive Agents , Aconitine/adverse effects , Adrenergic Antagonists , Animals , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Antihypertensive Agents/pharmacology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/prevention & control , Calcium Chloride , Epinephrine/pharmacology , Epinephrine/therapeutic use , Methoxamine , Pyrrolidinones/pharmacology , Rats , Rats, Wistar , Receptors, Adrenergic, alpha-1 , Receptors, Adrenergic, beta-1
18.
Bioorg Chem ; 129: 106115, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36113264

ABSTRACT

A new series of syn-functionalised chiral hydroxy pyrrolidines and pyrrolidones containing α,ß-contiguous stereocenters were synthesized via a diphenylprolinol-catalysed asymmetric cross aldol reaction. The synthesized compounds were characterised and evaluated for their α-glucosidase inhibitory potential. The hydroxy pyrrolidine series (9a-9i) was found to be selectively more potent against the α-glucosidase enzyme as compared to the pyrrolidone series (10a-10i). Pyrrolidine 9b was the most efficacious analogue with an IC50 of 48.31 µM. Compounds 9c, 9d, & 9f were also found to be more potent than the standard drugs acarbose, miglitol and deoxynojirimycin. Furthermore, these compounds were investigated by computational studies using the GLIDE docking module of the Schrödinger suite 2021-4 in which 9b and 9c showed more promising results than the standard drugs acarbose, miglitol, and deoxynojirimycin.


Subject(s)
Glycoside Hydrolase Inhibitors , alpha-Glucosidases , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Acarbose , Molecular Docking Simulation , Structure-Activity Relationship , Pyrrolidines/pharmacology , Pyrrolidinones/pharmacology , Molecular Structure
19.
J Antimicrob Chemother ; 77(10): 2793-2802, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35897124

ABSTRACT

BACKGROUND: In prior studies, HIV-1 BF recombinants with subtype F integrases failed to develop resistance to raltegravir through the Q148H mutational pathway. We aimed to determine the role of subtype-specific polymorphisms in integrase on drug susceptibility, viral replication and integration. METHODS: Integrase sequences were retrieved from the Los Alamos Database or obtained from the Garrahan HIV cohort. HIV-1 infectious molecular clones with or without Q148H (+ G140S) resistance mutations were constructed using integrases of subtype B (NL4-3) or F1(BF) ARMA159 and URTR23. Integrase chimeras were generated by reciprocal exchanges of a 200 bp fragment spanning amino acids 85-150 of the catalytic core domain (CCD) of NL4-3-Q148H and either ARMA159-Q148H or URTR23-Q148H. Viral infections were quantified by p24 ELISA and Alu-gag integration PCR assay. RESULTS: At least 18 different polymorphisms distinguish subtype B from F1(BF) recombinant integrases. In phenotypic experiments, p24 at Day 15 post-infection was high (105-106 pg/mL) for WT and NL4-3-Q148H; by contrast, it was low (102-104 pg/mL) for both F1(BF)-Q148H + G140S viruses, and undetectable for the Q148H mutants. Compared with WT viruses, integrated DNA was reduced by 5-fold for NL4-3-Q148H (P = 0.05), 9-fold for URTR23-Q148H (P = 0.01) and 16000-fold for ARMA159-Q148H (P = 0.01). Reciprocal exchange between B and F1(BF) of an integrase CCD region failed to rescue the replicative defect of F1(BF) integrase mutants. CONCLUSIONS: The functional impairment of Q148H in the context of subtype F integrases from BF recombinants explains the lack of selection of this pathway in vivo. Non-B polymorphisms external to the integrase CCD may influence the pathway to integrase strand transfer inhibitor resistance.


Subject(s)
HIV Infections , HIV Integrase Inhibitors , HIV Integrase , HIV-1 , Amino Acids/therapeutic use , Catalytic Domain , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Integrase/metabolism , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/therapeutic use , HIV-1/genetics , Humans , Mutation , Pyrrolidinones/pharmacology , Raltegravir Potassium/pharmacology , Raltegravir Potassium/therapeutic use
20.
J Mol Biol ; 434(16): 167706, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35809383

ABSTRACT

New variants of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) emerged and spread rapidly all over the world, which strongly supports the need for pharmacological options to complement vaccine strategies. Main protease (Mpro or 3CLpro) is a critical enzyme in the life cycle of SARS-CoV-2 and appears to be highly conserved among different genera of coronaviruses, making it an ideal target for the development of drugs with broad-spectrum property. PF-07304814 developed by Pfizer is an intravenously administered inhibitor targeting SARS-CoV-2 Mpro. Here we showed that PF-07304814 displays broad-spectrum inhibitory activity against Mpros from multiple coronaviruses. Crystal structures of Mpros of SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-NL63 bound to the inhibitor PF-07304814 revealed a conserved ligand-binding site, providing new insights into the mechanism of inhibition of viral replication. A detailed analysis of these crystal structures complemented by comprehensive comparison defined the key structural determinants essential for inhibition and illustrated the binding mode of action of Mpros from different coronaviruses. In view of the importance of Mpro for the medications of SARS-CoV-2 infection, insights derived from the present study should accelerate the design of pan-coronaviral main protease inhibitors that are safer and more effective.


Subject(s)
Coronavirus 3C Proteases , Coronavirus Protease Inhibitors , Indoles , Leucine , Pyrrolidinones , SARS-CoV-2 , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/pharmacology , Drug Design , Humans , Indoles/chemistry , Indoles/pharmacology , Leucine/chemistry , Leucine/pharmacology , Ligands , Protein Binding , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...