Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.629
Filter
1.
BMC Genom Data ; 25(1): 41, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711007

ABSTRACT

BACKGROUND: Class III peroxidase (POD) enzymes play vital roles in plant development, hormone signaling, and stress responses. Despite extensive research on POD families in various plant species, the knowledge regarding the POD family in Chinese pear (Pyrus bretschenedri) is notably limited. RESULTS: We systematically characterized 113 POD family genes, designated as PbPOD1 to PbPOD113 based on their chromosomal locations. Phylogenetic analysis categorized these genes into seven distinct subfamilies (I to VII). The segmental duplication events were identified as a prevalent mechanism driving the expansion of the POD gene family. Microsynteny analysis, involving comparisons with Pyrus bretschenedri, Fragaria vesca, Prunus avium, Prunus mume and Prunus persica, highlighted the conservation of duplicated POD regions and their persistence through purifying selection during the evolutionary process. The expression patterns of PbPOD genes were performed across various plant organs and diverse fruit development stages using transcriptomic data. Furthermore, we identified stress-related cis-acting elements within the promoters of PbPOD genes, underscoring their involvement in hormonal and environmental stress responses. Notably, qRT-PCR analyses revealed distinctive expression patterns of PbPOD genes in response to melatonin (MEL), salicylic acid (SA), abscisic acid (ABA), and methyl jasmonate (MeJA), reflecting their responsiveness to abiotic stress and their role in fruit growth and development. CONCLUSIONS: In this study, we investigated the potential functions and evolutionary dynamics of PbPOD genes in Pyrus bretschenedri, positioning them as promising candidates for further research and valuable indicators for enhancing fruit quality through molecular breeding strategies.


Subject(s)
Gene Expression Regulation, Plant , Phylogeny , Plant Growth Regulators , Pyrus , Pyrus/genetics , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Melatonin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Peroxidase/genetics , Peroxidase/metabolism , Acetates/pharmacology , Acetates/metabolism , Fruit/genetics , Fruit/growth & development
2.
BMC Plant Biol ; 24(1): 444, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778247

ABSTRACT

BACKGROUND: The homodomain-leucine zipper (HD-Zip) is a conserved transcription factor family unique to plants that regulate multiple developmental processes including lignificaion. Stone cell content is a key determinant negatively affecting pear fruit quality, which causes a grainy texture of fruit flesh, because of the lignified cell walls. RESULTS: In this study, a comprehensive bioinformatics analysis of HD-Zip genes in Chinese white pear (Pyrus bretschneideri) (PbHBs) was performed. Genome-wide identification of the PbHB gene family revealed 67 genes encoding PbHB proteins, which could be divided into four subgroups (I, II, III, and IV). For some members, similar intron/exon structural patterns support close evolutionary relationships within the same subgroup. The functions of each subgroup of the PbHB family were predicted through comparative analysis with the HB genes in Arabidopsis and other plants. Cis-element analysis indicated that PbHB genes might be involved in plant hormone signalling and external environmental responses, such as light, stress, and temperature. Furthermore, RNA-sequencing data and quantitative real-time PCR (RT-qPCR) verification revealed the regulatory roles of PbHB genes in pear stone cell formation. Further, co-expression network analysis revealed that the eight PbHB genes could be classified into different clusters of co-expression with lignin-related genes. Besides, the biological function of PbHB24 in promoting stone cell formation has been demonstrated by overexpression in fruitlets. CONCLUSIONS: This study provided the comprehensive analysis of PbHBs and highlighted the importance of PbHB24 during stone cell development in pear fruits.


Subject(s)
Fruit , Plant Proteins , Pyrus , Transcription Factors , Pyrus/genetics , Pyrus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Plant , Genome, Plant , Phylogeny , Leucine Zippers/genetics , Genes, Plant , Multigene Family , East Asian People
3.
BMC Plant Biol ; 24(1): 470, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811892

ABSTRACT

Ring rot, caused by Botryosphaeria dothidea, is an important fungal disease of pear fruit during postharvest storage. Melatonin, as a plant growth regulator, plays an important role in enhancing the stress resistance of pear fruits. It enhances the resistance of pear fruits to ring rot by enhancing their antioxidant capacity. However, the underlying mechanism remains unclear. In this study, we examined the effect of melatonin on the growth of B. dothidea. Results showed that melatonin did not limit the growth of B. dothidea during in vitro culture. However, metabolomics and transcriptomics analyses of 'Whangkeumbae' pear (Pyrus pyrifolia) revealed that melatonin increased the activity of antioxidant enzymes, including peroxidase (POD), superoxide dismutase (SOD), and polyphenol oxidase (PPO), in the fruit and activated the phenylpropanoid metabolic pathway to improve fruit resistance. Furthermore, melatonin treatment significantly increased the contents of jasmonic acid and phlorizin in pear fruit, both of which could improve disease resistance. Jasmonic acid regulates melatonin synthesis and can also promote phlorizin synthesis, ultimately improving the resistance of pear fruit to ring rot. In summary, the interaction between melatonin and jasmonic acid and phlorizin enhances the antioxidant defense response and phenylpropanoid metabolism pathway of pear fruit, thereby enhancing the resistance of pear fruit to ring rot disease. Our results provide new insights into the application of melatonin in the resistance to pear fruit ring rot.


Subject(s)
Ascomycota , Cyclopentanes , Disease Resistance , Fruit , Melatonin , Oxylipins , Phlorhizin , Plant Diseases , Pyrus , Pyrus/microbiology , Pyrus/metabolism , Pyrus/genetics , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Oxylipins/metabolism , Ascomycota/physiology , Melatonin/pharmacology , Melatonin/metabolism , Disease Resistance/drug effects , Plant Diseases/microbiology , Fruit/microbiology , Fruit/metabolism , Phlorhizin/pharmacology , Gene Expression Regulation, Plant/drug effects , Antioxidants/metabolism , Plant Growth Regulators/metabolism
4.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731831

ABSTRACT

Small secreted peptides (SSPs) play important roles in regulating plants' growth and development in response to external stimulus, but the genes and functions of SSPs in many species are still unknown. Therefore, it is particularly significant to characterize and annotate SSP genes in plant genomes. As a widely used stock of pears, Pyrus betulifolia has strong resistance to biotic and abiotic stresses. In this study, we analyzed the SSPs genes in the genome of P. betulifolia according to their characteristics and homology. A total of 1195 SSP genes were identified, and most of them are signaling molecules. Among these, we identified a new SSP, subtilase peptide 3 (SUBPEP3), which derived from the PA region of preSUBPEP3, increasing the expression level under salt stress. Both adding synthetic peptide SUBPEP3 to the culture medium of pears and the overexpression of SUBPEP3 in tobacco can improve the salt tolerance of plants. In summary, we annotated the SSP genes in the P. betulifolia genome and identified a small secreted peptide SUBPEP3 that regulates the salt tolerance of P. betulifolia, which provides an important theoretical basis for further revealing the function of SSPs.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Pyrus , Salt Tolerance , Pyrus/genetics , Pyrus/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress/genetics , Nicotiana/genetics , Nicotiana/metabolism , Amino Acid Sequence , Peptides/metabolism , Peptides/genetics , Stress, Physiological/genetics , Plants, Genetically Modified/genetics
5.
Physiol Plant ; 176(3): e14330, 2024.
Article in English | MEDLINE | ID: mdl-38698648

ABSTRACT

Wall-associated kinases (WAKs) have been determined to recognize pathogenic signals and initiate plant immune responses. However, the roles of the family members in host resistance against Valsa canker, a serious fungal disease of apples and pears, are largely unknown. Here, we identified MbWAK1 in Malus baccata, a resistant germplasm differentially expressed during infection by Valsa mali (Vm). Over-expression of MbWAK1 enhanced the Valsa canker resistance of apple and pear fruits and 'Duli-G03' (Pyrus betulifolia) suspension cells. A large number of phloem, cell wall, and lipid metabolic process-related genes were differentially expressed in overexpressed suspension cell lines in response to Valsa pyri (Vp) signals. Among these, the expression of xyloglucan endotransglucosylase/hydrolase (XTH) gene PbeXTH1 and sieve element occlusion B-like (SEOB) gene PbeSEOB1 were significantly inhibited. Transient expression of PbeXTH1 or PbeSEOB1 compromised the expressional induction of MbWAK1 and the resistance contributed by MbWAK1. In addition, PbeXTH1 and PbeSEOB1 suppressed the immune response induced by MbWAK1. Our results enriched the molecular mechanisms for MbWAK1 against Valsa canker and resistant breeding.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , Malus , Plant Diseases , Plant Proteins , Pyrus , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Pyrus/genetics , Pyrus/microbiology , Malus/genetics , Malus/microbiology , Malus/immunology , Malus/enzymology , Cell Wall/metabolism
6.
J Agric Food Chem ; 72(20): 11804-11819, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717061

ABSTRACT

Apples (Malus × domestica Borkh.) and pears (Pyrus communis L.) are valuable crops closely related within the Rosaceae family with reported nutraceutical properties derived from secondary metabolites including phloridzin and arbutin, which are distinctive phenolic metabolites characterizing apples and pears, respectively. Here, we generated a de novo transcriptome assembly of an intergeneric hybrid between apple and pear, accumulating intermediate levels of phloridzin and arbutin. Combining RNA-seq, in silico functional annotation prediction, targeted gene expression analysis, and expression-metabolite correlations, we identified candidate genes for functional characterization, resulting in the identification of active arbutin synthases in the hybrid and parental genotypes. Despite exhibiting an active arbutin synthase in vitro, the natural lack of arbutin in apples is reasoned by the absence of the substrate and broad substrate specificity. Altogether, our study serves as the basis for future assessment of potential physiological roles of identified genes by genome editing of hybrids and pears.


Subject(s)
Arbutin , Chalcones , Fruit , Malus , Plant Proteins , Pyrus , Transcriptome , Malus/genetics , Malus/metabolism , Malus/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Pyrus/genetics , Pyrus/metabolism , Pyrus/chemistry , Arbutin/metabolism , Arbutin/chemistry , Fruit/genetics , Fruit/metabolism , Fruit/chemistry , Chalcones/metabolism , Chalcones/chemistry , Gene Expression Regulation, Plant , Hybridization, Genetic
7.
Mol Plant ; 17(6): 955-971, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38745413

ABSTRACT

Circular single-stranded DNA (ssDNA) viruses have been rarely found in fungi, and the evolutionary and ecological relationships among ssDNA viruses infecting fungi and other organisms remain unclear. In this study, a novel circular ssDNA virus, tentatively named Diaporthe sojae circular DNA virus 1 (DsCDV1), was identified in the phytopathogenic fungus Diaporthe sojae isolated from pear trees. DsCDV1 has a monopartite genome (3185 nt in size) encapsidated in isometric virions (21-26 nm in diameter). The genome comprises seven putative open reading frames encoding a discrete replicase (Rep) split by an intergenic region, a putative capsid protein (CP), several proteins of unknown function (P1-P4), and a long intergenic region. Notably, the two split parts of DsCDV1 Rep share high identities with the Reps of Geminiviridae and Genomoviridae, respectively, indicating an evolutionary linkage with both families. Phylogenetic analysis based on Rep or CP sequences placed DsCDV1 in a unique cluster, supporting the establishment of a new family, tentatively named Gegemycoviridae, intermediate to both families. DsCDV1 significantly attenuates fungal growth and nearly erases fungal virulence when transfected into the host fungus. Remarkably, DsCDV1 can systematically infect tobacco and pear seedlings, providing broad-spectrum resistance to fungal diseases. Subcellular localization analysis revealed that DsCDV1 P3 is systematically localized in the plasmodesmata, while its expression in trans-complementation experiments could restore systematic infection of a movement-deficient plant virus, suggesting that P3 is a movement protein. DsCDV1 exhibits unique molecular and biological traits not observed in other ssDNA viruses, serving as a link between fungal and plant ssDNA viruses and presenting an evolutionary connection between ssDNA viruses and fungi. These findings contribute to expanding our understanding of ssDNA virus diversity and evolution, offering potential biocontrol applications for managing crucial plant diseases.


Subject(s)
DNA, Single-Stranded , Fungal Viruses , Phylogeny , Plant Diseases , Fungal Viruses/genetics , Fungal Viruses/physiology , Plant Diseases/microbiology , Plant Diseases/virology , DNA, Single-Stranded/genetics , Ascomycota/virology , Ascomycota/physiology , DNA Viruses/genetics , Disease Resistance/genetics , Genome, Viral , Pyrus/microbiology , Pyrus/virology , Nicotiana/virology , Nicotiana/microbiology
8.
Genome Biol ; 25(1): 87, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581061

ABSTRACT

BACKGROUND: DNA methylation is an essential epigenetic modification. However, its contribution to trait changes and diversity in the domestication of perennial fruit trees remains unknown. RESULTS: Here, we investigate the variation in DNA methylation during pear domestication and improvement using whole-genome bisulfite sequencing in 41 pear accessions. Contrary to the significant decrease during rice domestication, we detect a global increase in DNA methylation during pear domestication and improvement. We find this specific increase in pear is significantly correlated with the downregulation of Demeter-like1 (DML1, encoding DNA demethylase) due to human selection. We identify a total of 5591 differentially methylated regions (DMRs). Methylation in the CG and CHG contexts undergoes co-evolution during pear domestication and improvement. DMRs have higher genetic diversity than selection sweep regions, especially in the introns. Approximately 97% of DMRs are not associated with any SNPs, and these DMRs are associated with starch and sucrose metabolism and phenylpropanoid biosynthesis. We also perform correlation analysis between DNA methylation and gene expression. We find genes close to the hypermethylated DMRs that are significantly associated with fruit ripening. We further verify the function of a hyper-DMR-associated gene, CAMTA2, and demonstrate that overexpression of CAMTA2 in tomato and pear callus inhibits fruit ripening. CONCLUSIONS: Our study describes a specific pattern of DNA methylation in the domestication and improvement of a perennial pear tree and suggests that increased DNA methylation plays an essential role in the early ripening of pear fruits.


Subject(s)
DNA Methylation , Pyrus , Humans , Fruit/genetics , Fruit/metabolism , Pyrus/genetics , Domestication , Epigenesis, Genetic , Calcium-Binding Proteins/genetics , Trans-Activators/genetics
9.
J Agric Food Chem ; 72(15): 8415-8422, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38573226

ABSTRACT

Aspergillus westerdijkiae can infect many agricultural products including cereals, grapes, and pear. Pathogenic fungi secrete diverse effectors as invasive weapons for successful invasion the host plant. During the pathogen-host interaction, 4486 differentially expressed genes were observed in A. westerdijkiae with 2773 up-regulated and 1713 down-regulated, whereas 8456 differentially expressed genes were detected in pear fruits with 4777 up-regulated and 3679 down-regulated. A total of 309 effector candidate genes were identified from the up-regulated genes in A. westerdijkiae. Endoglucanase H (AwEGH) was significantly induced during the pathogen-host interaction. Deletion of AwEGH resulted in altered fungal growth and morphology and reduced conidia production and germination compared to the wild-type. Further experiments demonstrated that AwEGH plays a role in cell wall integrity. Importantly, disruption of AwEGH significantly reduced the fungal virulence on pear fruits, and this defect can be partly explained by the impaired ability of A. westerdijkiae to penetrate host plants.


Subject(s)
Aspergillus , Cellulase , Pyrus , Pyrus/genetics , Cellulase/genetics , Virulence , Fruit/genetics , Fungal Proteins/genetics
10.
Physiol Plant ; 176(2): e14271, 2024.
Article in English | MEDLINE | ID: mdl-38566130

ABSTRACT

Seed dormancy is an important life history state in which intact viable seeds delay or prevent germination under suitable conditions. Ascorbic acid (AsA) acts as a small molecule antioxidant, and breaking seed dormancy and promoting subsequent growth are among its numerous functions. In this study, a germination test using Pyrus betulifolia seeds treated with exogenous AsA or AsA synthesis inhibitor lycorine (Lyc) and water absorption was conducted. The results indicated that AsA released dormancy and increased germination and 20 mmol L-1 AsA promoted cell division, whereas Lyc reduced germination. Seed germination showed typical three phases of water absorption; and seeds at five key time points were sampled for transcriptome analysis. It revealed that multiple pathways were involved in breaking dormancy and promoting germination through transcriptome data, and 12 differentially expressed genes (DEGs) related to the metabolism and signal transduction of abscisic acid (ABA) and gibberellins (GA) were verified by subsequent RT-qPCR. For metabolites, exogenous AsA increased endogenous AsA and GA3 but reduced ABA and the ABA/GA3 ratio. In addition, three genes regulating ABA synthesis were downregulated by AsA, while five genes mediating ABA degradation were upregulated. Taken together, AsA regulates the pathways associated with ABA and GA synthesis, catalysis, and signal transduction, with subsequent reduction in ABA and increase in GA and further the balance of ABA/GA, ultimately releasing dormancy and promoting germination.


Subject(s)
Gibberellins , Pyrus , Gibberellins/pharmacology , Gibberellins/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Germination , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Pyrus/metabolism , Ascorbic Acid/metabolism , Plant Dormancy/genetics , Seeds , Water/metabolism , Gene Expression Regulation, Plant
11.
Plant Physiol Biochem ; 210: 108627, 2024 May.
Article in English | MEDLINE | ID: mdl-38663265

ABSTRACT

Sporidiobolus pararoseus Y16, a species of significant ecological importance, has distinctive physiological and biological regulatory systems that aid in its survival and environmental adaptation. The goal of this investigation was to understand the complex interactions between physiological and molecular mechanisms in pear fruits as induced by S. pararoseus Y16. The study investigated the use of S. pararoseus Y16 and ascorbic acid (VC) in combination in controlling blue mold decay in pears via physiological and transcriptomic approach. The study results showed that treatment of S. pararoseus Y16 with 150 µg/mL VC reduced pears blue mold disease incidence from 43% to 11%. Furthermore, the combination of S. pararoseus Y16 and VC significantly inhibited mycelia growth and spore germination of Penicillium expansum in the pear's wounds. The pre-treatment did not impair post-harvest qualities of pear fruit but increased antioxidant enzyme activity specifically polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT) activities as well as phenylalanine ammonia-lyase (PAL) enzyme activity. The transcriptome analysis further uncovered 395 differentially expressed genes (DEGs) and pathways involved in defense mechanisms and disease resistance. Notable pathways of the DEGs include plant-pathogen interaction, tyrosine metabolism, and hormone signal transduction pathways. The integrative approach with both physiological and transcriptomic tools to investigate postharvest pathology in pear fruits with clarification on how S. pararoseus Y16 enhanced with VC, improved gene expression for disease defense, and create alternative controls strategies for managing postharvest diseases.


Subject(s)
Ascorbic Acid , Oxidative Stress , Penicillium , Plant Diseases , Pyrus , Pyrus/microbiology , Penicillium/physiology , Penicillium/drug effects , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Plant Diseases/microbiology , Oxidative Stress/drug effects , Gene Expression Profiling , Basidiomycota/physiology , Transcriptome
12.
Plant Physiol Biochem ; 210: 108663, 2024 May.
Article in English | MEDLINE | ID: mdl-38678947

ABSTRACT

The vacuolar H+-ATPase (V-ATPase) is a multi-subunit membrane protein complex, which plays pivotal roles in building up an electrochemical H+-gradient across tonoplast, energizing Na+ sequestration into the central vacuole, and enhancing salt stress tolerance in plants. In this study, a B subunit of V-ATPase gene, PbVHA-B1 was discovered and isolated from stress-induced P. betulaefolia combining with RT-PCR method. The RT-qPCR analysis revealed that the expression level of PbVHA-B1 was upregulated by salt, drought, cold, and exogenous ABA treatment. Subcellular localization analyses showed that PbVHA-B1 was located in the cytoplasm and nucleus. Moreover, overexpression of PbVHA-B1 gene noticeably increased the ATPase activity and the tolerance to salt in transgenic Arabidopsis plants. In contrast, knockdown of PbVHA-B1 gene in P.betulaefolia by virus-induced gene silencing had reduced resistance to salt stress. In addition, using yeast one-hybride (Y1H) and yeast two-hybride (Y2H) screens, PbbHLH62, a bHLH transcription factor, was identified as a partner of the PbVHA-B1 promoter and protein. Then, we also found that PbbHLH62 positively regulate the expression of PbVHA-B1 and the ATPase activity after salt stress treatment. These findings provide evidence that PbbHLH62 played a critical role in the salt response. Collectively, our results demonstrate that a PbbHLH62/PbVHA-B1 module plays a positive role in salt tolerance by maintain intracellular ion and ROS homeostasis in pear.


Subject(s)
Homeostasis , Plant Proteins , Pyrus , Reactive Oxygen Species , Salt Tolerance , Sodium , Salt Tolerance/genetics , Pyrus/metabolism , Pyrus/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Sodium/metabolism , Plants, Genetically Modified , Potassium/metabolism , Gene Expression Regulation, Plant/drug effects , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Arabidopsis/genetics , Arabidopsis/metabolism
13.
Int J Biol Macromol ; 267(Pt 1): 131482, 2024 May.
Article in English | MEDLINE | ID: mdl-38599423

ABSTRACT

The aim of this study was to explore the dynamic changes in the physicochemical properties of Laiyang pear residue polysaccharide (LPP) during in vitro digestion, as well as its protective effect on the intestines. Monosaccharide composition and molecular weight analysis showed that there was no significant change in LPP during the oral digestion stage. However, during the gastric and intestinal digestion stages, the glycosidic bonds of LPP were broken, leading to the dissociation of large molecular aggregates and a significant increase in reducing sugar content (CR) accompanied by a decrease in molecular weight. In addition, LPP exerted the intestinal protective ability via inhibiting gut inflammation, improving intestinal barrier, and regulating intestinal flora in DSS-induced mice. Specifically, LPP mitigated DSS-induced intestinal pathological damage of mice via enhancing intestinal barrier integrity and upregulating expressions of TJ proteins, and suppressed inflammation by inhibiting NF-κB signaling axis. Furthermore, LPP decreased the ratio of Firmicutes/Bacteroidetes, increased the relative abundance of Lactobacillus, and altered the diversity and the composition of gut microbiota in DSS-induced mice. Therefore, LPP had the potential to be a functional food that improved gut microbiota environment to enhance health and prevent diseases, such as a prebiotic.


Subject(s)
Dextran Sulfate , Gastrointestinal Microbiome , Polysaccharides , Animals , Gastrointestinal Microbiome/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Dextran Sulfate/adverse effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Pyrus/chemistry , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Digestion/drug effects , Male , NF-kappa B/metabolism
14.
Food Chem ; 450: 139283, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38615528

ABSTRACT

Vis-NIR spectroscopy coupled with chemometric models is frequently used for pear soluble solid content (SSC) prediction. However, the model robustness is challenged by the variations in pear cultivars. This study explored the feasibility of developing universal models for predicting SSC of multiple pear varieties to improve the model's generalizability. The mature fruits of 6 pear cultivars with green skin (Pyrus pyrifolia Nakai cv. 'Cuiyu', 'Sucui No.1' and 'Cuiguan') and brown skin (Pyrus pyrifolia Nakai cv. 'Hosui','Syusui' and 'Wakahikari') were used to establish single-cultivar models and multi-cultivar universal models using convolutional neural network (CNN), partial least square (PLS), and support vector regression (SVR) approaches. Multi-cultivar universal models were built using full spectra and important variables extracted by gradient-weighted class activation mapping (Grad-CAM), respectively. The universal models based on important variables obtained satisfactory performances with RMSEPs of 0.76, 0.59, 0.80, 1.64, 0.98, and 1.03°Brix on 6 cultivars, respectively.


Subject(s)
Fruit , Pyrus , Spectroscopy, Near-Infrared , Pyrus/chemistry , Spectroscopy, Near-Infrared/methods , Fruit/chemistry , Least-Squares Analysis , Neural Networks, Computer , Support Vector Machine
15.
Viruses ; 16(4)2024 03 26.
Article in English | MEDLINE | ID: mdl-38675852

ABSTRACT

Fire blight, caused by the bacterium Erwinia amylovora, is a major threat to pear production worldwide. Bacteriophages, viruses that infect bacteria, are a promising alternative to antibiotics for controlling fire blight. In this study, we isolated a novel bacteriophage, RH-42-1, from Xinjiang, China. We characterized its biological properties, including host range, plaque morphology, infection dynamics, stability, and sensitivity to various chemicals. RH-42-1 infected several E. amylovora strains but not all. It produced clear, uniform plaques and exhibited optimal infectivity at a multiplicity of infection (MOI) of 1, reaching a high titer of 9.6 × 109 plaque-forming units (PFU)/mL. The bacteriophage had a short latent period (10 min), a burst size of 207 PFU/cell, and followed a sigmoidal one-step growth curve. It was stable at temperatures up to 60 °C but declined rapidly at higher temperatures. RH-42-1 remained viable within a pH range of 5 to 9 and was sensitive to extreme pH values. The bacteriophage demonstrates sustained activity upon exposure to ultraviolet radiation for 60 min, albeit with a marginal reduction. In our assays, it exhibited a certain level of resistance to 5% chloroform (CHCl3), 5% isopropanol (C3H8O), and 3% hydrogen peroxide (H2O2), which had little effect on its activity, whereas it showed sensitivity to 75% ethanol (C2H5OH). Electron microscopy revealed that RH-42-1 has a tadpole-shaped morphology. Its genome size is 14,942 bp with a GC content of 48.19%. Based on these characteristics, RH-42-1 was identified as a member of the Tectiviridae family, Alphatectivirus genus. This is the first report of a bacteriophage in this genus with activity against E. amylovora.


Subject(s)
Bacteriophages , Erwinia amylovora , Soil Microbiology , Bacteriophages/isolation & purification , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , China , Erwinia amylovora/virology , Erwinia amylovora/drug effects , Genome, Viral , Host Specificity , Hydrogen-Ion Concentration , Phylogeny , Plant Diseases/microbiology , Pyrus/microbiology , Pyrus/virology
16.
Talanta ; 275: 126128, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657361

ABSTRACT

Imidacloprid (IMI), the most commonly used neonicotinoid, is widely present in both the environment and agro-products due to extensive and prolonged application, posing potential risks to ecological security and human health. This study introduced a sensitive and rapid fluorescence-linked immunosorbent assay, employing Quantum Dot-Streptavidin conjugate (QDs-SA-FLISA), for efficient monitoring of IMI residues in agro-products. Under optimized conditions, the QDs-SA-FLISA exhibited a half-maximal inhibition concentration (IC50) of 1.70 ng/mL and a limit of detection (LOD, IC20) of 0.5 ng/mL. Investigation into the sensitivity enhancement effect of the QDs-SA revealed that the sensitivity (IC50) of the QDs-SA-FLISA was 7.3 times higher than that of ELISA. The recoveries and relative standard deviation (RSD) ranged from 81.7 to 118.1 % and 0.5-9.4 %, respectively, for IMI in brown rice, tomato and pear. There was no significant difference in IMI residues obtained between QDs-SA-FLISA and UHPLC-MS/MS. Thus, the QDs-SA-FLISA represents a reliable approach for the quantitative determination of IMI in agro-products.


Subject(s)
Fluoroimmunoassay , Neonicotinoids , Nitro Compounds , Quantum Dots , Streptavidin , Quantum Dots/chemistry , Neonicotinoids/analysis , Neonicotinoids/chemistry , Streptavidin/chemistry , Nitro Compounds/analysis , Nitro Compounds/chemistry , Fluoroimmunoassay/methods , Limit of Detection , Oryza/chemistry , Solanum lycopersicum/chemistry , Pyrus/chemistry , Food Contamination/analysis , Insecticides/analysis , Pesticide Residues/analysis
17.
Plant Sci ; 344: 112103, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657909

ABSTRACT

The stone cells in pear fruits cause rough flesh and low juice, seriously affecting the taste. Lignin has been demonstrated as the main component of stone cells. Auxin, one of the most important plant hormone, regulates most physiological processes in plants including lignification. However, the concentration effect and regulators of auxin on pear fruits stone cell formation remains unclear. Here, endogenous indole-3-acetic acid (IAA) and stone cells were found to be co-localized in lignified cells by immunofluorescence localization analysis. The exogenous treatment of different concentrations of IAA demonstrated that the application of 200 µM IAA significantly reduced stone cell content, while concentrations greater than 500 µM significantly increased stone cell content. Besides, 31 auxin response factors (ARFs) were identified in pear genome. Putative ARFs were predicted as critical regulators involved in the lignification of pear flesh cells by phylogenetic relationship and expression analysis. Furthermore, the negative regulation of PbARF19 on stone cell formation in pear fruit was demonstrated by overexpression in pear fruitlets and Arabidopsis. These results illustrated that the PbARF19-mediated auxin signal plays a critical role in the lignification of pear stone cell by regulating lignin biosynthetic genes. This study provides theoretical and practical guidance for improving fruit quality in pear production.


Subject(s)
Fruit , Indoleacetic Acids , Lignin , Plant Proteins , Pyrus , Indoleacetic Acids/metabolism , Pyrus/metabolism , Pyrus/genetics , Lignin/metabolism , Fruit/metabolism , Fruit/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Signal Transduction , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Phylogeny , Transcription Factors/metabolism , Transcription Factors/genetics
18.
J Food Sci ; 89(5): 2597-2610, 2024 May.
Article in English | MEDLINE | ID: mdl-38558325

ABSTRACT

Mechanical bruise is one of the most crucial factors affecting the quality of pears, which has a huge influence on postharvest transportation, storage, and sale of pears. To rapidly detect early bruises of pears across different bruise types, hyperspectral imaging technology coupled with transfer learning methods was performed in this study. Two transfer learning methods, that is, transfer component analysis (TCA) and manifold embedded distribution alignment (MEDA), were applied for two tasks (impact bruise â†’ crush bruise, crush bruise â†’ impact bruise). Supporting vector machine (SVM) was set as a baseline to conduct analysis and comparison of the transferability of the models. The result showed that, for task 1 (impact bruise â†’ crush bruise), MEDA and TCA-SVM model achieved a classification accuracy of 93.33% and 91.11% in target domain, individually. For task 2 (crush bruise â†’impact bruise), MEDA and TCA-SVM model achieved an accuracy of 88.89% and 85.19% in target domain, respectively. Both the two models improved the accuracy compared with SVM models (84.44% for task 1; 77.04% for task 2). Overall, the results indicated that transfer learning approaches could perform pear bruise detection across different bruise types. Hyperspectral imaging in combination with transfer learning methods is a promising possibility for the efficient and cost-saving field detection of fruit bruises among different bruise types. PRACTICAL APPLICATION: The production and export of pears are faced with problems of mechanical damage due to vibration, collision, impact, and other factors, which cause chemical changes in color, odor, and taste. Sometimes the bruise was too slight to be ignored which would infect with other fruits in the future. In this study, we used hyperspectral imaging combined with transfer learning method could detect these slight bruises caused by different factors. Distinguishing different types of damage can provide a reference for quick judgment of the process causing damage and take prompt measures to reduce economic losses.


Subject(s)
Fruit , Hyperspectral Imaging , Pyrus , Support Vector Machine , Pyrus/chemistry , Hyperspectral Imaging/methods , Contusions
19.
Food Chem ; 449: 139213, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38631134

ABSTRACT

This study took a novel approach to address the dual challenges of enhancing the ethanol content and aroma complexity in Laiyang pear wine. It focused on sorbitol as a pivotal element in the strategic selection of yeasts with specific sorbitol-utilization capabilities and their application in co-fermentation strategies. We selected two Saccharomyces cerevisiae strains (coded as Sc1, Sc2), two Metschnikowia pulcherrima (coded as Mp1, Mp2), and one Pichia terricola (coded as Tp) due to their efficacy as starter cultures. Notably, the Sc2 strain, alone or with Mp2, significantly increased the ethanol content (30% and 16%). Mixed Saccharomyces cerevisiae and Pichia terricola fermentation improved the ester profiles and beta-damascenone levels (maximum of 150%), while Metschnikowia pulcherrima addition enriched the phenethyl alcohol content (maximum of 330%), diversifying the aroma. This study investigated the efficacy of strategic yeast selection based on sorbitol utilization and co-fermentation methods in enhancing Laiyang pear wine quality and aroma.


Subject(s)
Fermentation , Flavoring Agents , Odorants , Pyrus , Saccharomyces cerevisiae , Sorbitol , Taste , Wine , Wine/analysis , Wine/microbiology , Pyrus/chemistry , Pyrus/microbiology , Pyrus/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Sorbitol/metabolism , Sorbitol/analysis , Odorants/analysis , Ethanol/metabolism , Ethanol/analysis , Pichia/metabolism , Metschnikowia/metabolism , Fruit/chemistry , Fruit/microbiology , Fruit/metabolism
20.
Sci Rep ; 14(1): 6680, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509169

ABSTRACT

A large number of countries worldwide depend on the agriculture, as agriculture can assist in reducing poverty, raising the country's income, and improving the food security. However, the plan diseases usually affect food crops and hence play a significant role in the annual yield and economic losses in the agricultural sector. In general, plant diseases have historically been identified by humans using their eyes, where this approach is often inexact, time-consuming, and exhausting. Recently, the employment of machine learning and deep learning approaches have significantly improved the classification and recognition accuracy for several applications. Despite the CNN models offer high accuracy for plant disease detection and classification, however, the limited available data for training the CNN model affects seriously the classification accuracy. Therefore, in this paper, we designed a Cycle Generative Adversarial Network (CycleGAN) to overcome the limitations of over-fitting and the limited size of the available datasets. In addition, we developed an efficient plant disease classification approach, where we adopt the CycleGAN architecture in order to enhance the classification accuracy. The obtained results showed an average enhancement of 7% in the classification accuracy.


Subject(s)
Pyrus , Humans , Agriculture , Crops, Agricultural , Employment , Eye
SELECTION OF CITATIONS
SEARCH DETAIL
...