Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 334
Filter
1.
BMC Plant Biol ; 24(1): 444, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778247

ABSTRACT

BACKGROUND: The homodomain-leucine zipper (HD-Zip) is a conserved transcription factor family unique to plants that regulate multiple developmental processes including lignificaion. Stone cell content is a key determinant negatively affecting pear fruit quality, which causes a grainy texture of fruit flesh, because of the lignified cell walls. RESULTS: In this study, a comprehensive bioinformatics analysis of HD-Zip genes in Chinese white pear (Pyrus bretschneideri) (PbHBs) was performed. Genome-wide identification of the PbHB gene family revealed 67 genes encoding PbHB proteins, which could be divided into four subgroups (I, II, III, and IV). For some members, similar intron/exon structural patterns support close evolutionary relationships within the same subgroup. The functions of each subgroup of the PbHB family were predicted through comparative analysis with the HB genes in Arabidopsis and other plants. Cis-element analysis indicated that PbHB genes might be involved in plant hormone signalling and external environmental responses, such as light, stress, and temperature. Furthermore, RNA-sequencing data and quantitative real-time PCR (RT-qPCR) verification revealed the regulatory roles of PbHB genes in pear stone cell formation. Further, co-expression network analysis revealed that the eight PbHB genes could be classified into different clusters of co-expression with lignin-related genes. Besides, the biological function of PbHB24 in promoting stone cell formation has been demonstrated by overexpression in fruitlets. CONCLUSIONS: This study provided the comprehensive analysis of PbHBs and highlighted the importance of PbHB24 during stone cell development in pear fruits.


Subject(s)
Fruit , Plant Proteins , Pyrus , Transcription Factors , Pyrus/genetics , Pyrus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Plant , Genome, Plant , Phylogeny , Leucine Zippers/genetics , Genes, Plant , Multigene Family , East Asian People
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731831

ABSTRACT

Small secreted peptides (SSPs) play important roles in regulating plants' growth and development in response to external stimulus, but the genes and functions of SSPs in many species are still unknown. Therefore, it is particularly significant to characterize and annotate SSP genes in plant genomes. As a widely used stock of pears, Pyrus betulifolia has strong resistance to biotic and abiotic stresses. In this study, we analyzed the SSPs genes in the genome of P. betulifolia according to their characteristics and homology. A total of 1195 SSP genes were identified, and most of them are signaling molecules. Among these, we identified a new SSP, subtilase peptide 3 (SUBPEP3), which derived from the PA region of preSUBPEP3, increasing the expression level under salt stress. Both adding synthetic peptide SUBPEP3 to the culture medium of pears and the overexpression of SUBPEP3 in tobacco can improve the salt tolerance of plants. In summary, we annotated the SSP genes in the P. betulifolia genome and identified a small secreted peptide SUBPEP3 that regulates the salt tolerance of P. betulifolia, which provides an important theoretical basis for further revealing the function of SSPs.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Pyrus , Salt Tolerance , Pyrus/genetics , Pyrus/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress/genetics , Nicotiana/genetics , Nicotiana/metabolism , Amino Acid Sequence , Peptides/metabolism , Peptides/genetics , Stress, Physiological/genetics , Plants, Genetically Modified/genetics
3.
J Agric Food Chem ; 72(20): 11804-11819, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717061

ABSTRACT

Apples (Malus × domestica Borkh.) and pears (Pyrus communis L.) are valuable crops closely related within the Rosaceae family with reported nutraceutical properties derived from secondary metabolites including phloridzin and arbutin, which are distinctive phenolic metabolites characterizing apples and pears, respectively. Here, we generated a de novo transcriptome assembly of an intergeneric hybrid between apple and pear, accumulating intermediate levels of phloridzin and arbutin. Combining RNA-seq, in silico functional annotation prediction, targeted gene expression analysis, and expression-metabolite correlations, we identified candidate genes for functional characterization, resulting in the identification of active arbutin synthases in the hybrid and parental genotypes. Despite exhibiting an active arbutin synthase in vitro, the natural lack of arbutin in apples is reasoned by the absence of the substrate and broad substrate specificity. Altogether, our study serves as the basis for future assessment of potential physiological roles of identified genes by genome editing of hybrids and pears.


Subject(s)
Arbutin , Chalcones , Fruit , Malus , Plant Proteins , Pyrus , Transcriptome , Malus/genetics , Malus/metabolism , Malus/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Pyrus/genetics , Pyrus/metabolism , Pyrus/chemistry , Arbutin/metabolism , Arbutin/chemistry , Fruit/genetics , Fruit/metabolism , Fruit/chemistry , Chalcones/metabolism , Chalcones/chemistry , Gene Expression Regulation, Plant , Hybridization, Genetic
4.
Plant Physiol Biochem ; 210: 108663, 2024 May.
Article in English | MEDLINE | ID: mdl-38678947

ABSTRACT

The vacuolar H+-ATPase (V-ATPase) is a multi-subunit membrane protein complex, which plays pivotal roles in building up an electrochemical H+-gradient across tonoplast, energizing Na+ sequestration into the central vacuole, and enhancing salt stress tolerance in plants. In this study, a B subunit of V-ATPase gene, PbVHA-B1 was discovered and isolated from stress-induced P. betulaefolia combining with RT-PCR method. The RT-qPCR analysis revealed that the expression level of PbVHA-B1 was upregulated by salt, drought, cold, and exogenous ABA treatment. Subcellular localization analyses showed that PbVHA-B1 was located in the cytoplasm and nucleus. Moreover, overexpression of PbVHA-B1 gene noticeably increased the ATPase activity and the tolerance to salt in transgenic Arabidopsis plants. In contrast, knockdown of PbVHA-B1 gene in P.betulaefolia by virus-induced gene silencing had reduced resistance to salt stress. In addition, using yeast one-hybride (Y1H) and yeast two-hybride (Y2H) screens, PbbHLH62, a bHLH transcription factor, was identified as a partner of the PbVHA-B1 promoter and protein. Then, we also found that PbbHLH62 positively regulate the expression of PbVHA-B1 and the ATPase activity after salt stress treatment. These findings provide evidence that PbbHLH62 played a critical role in the salt response. Collectively, our results demonstrate that a PbbHLH62/PbVHA-B1 module plays a positive role in salt tolerance by maintain intracellular ion and ROS homeostasis in pear.


Subject(s)
Homeostasis , Plant Proteins , Pyrus , Reactive Oxygen Species , Salt Tolerance , Sodium , Salt Tolerance/genetics , Pyrus/metabolism , Pyrus/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Sodium/metabolism , Plants, Genetically Modified , Potassium/metabolism , Gene Expression Regulation, Plant/drug effects , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Arabidopsis/genetics , Arabidopsis/metabolism
5.
Food Chem ; 449: 139213, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38631134

ABSTRACT

This study took a novel approach to address the dual challenges of enhancing the ethanol content and aroma complexity in Laiyang pear wine. It focused on sorbitol as a pivotal element in the strategic selection of yeasts with specific sorbitol-utilization capabilities and their application in co-fermentation strategies. We selected two Saccharomyces cerevisiae strains (coded as Sc1, Sc2), two Metschnikowia pulcherrima (coded as Mp1, Mp2), and one Pichia terricola (coded as Tp) due to their efficacy as starter cultures. Notably, the Sc2 strain, alone or with Mp2, significantly increased the ethanol content (30% and 16%). Mixed Saccharomyces cerevisiae and Pichia terricola fermentation improved the ester profiles and beta-damascenone levels (maximum of 150%), while Metschnikowia pulcherrima addition enriched the phenethyl alcohol content (maximum of 330%), diversifying the aroma. This study investigated the efficacy of strategic yeast selection based on sorbitol utilization and co-fermentation methods in enhancing Laiyang pear wine quality and aroma.


Subject(s)
Fermentation , Flavoring Agents , Odorants , Pyrus , Saccharomyces cerevisiae , Sorbitol , Taste , Wine , Wine/analysis , Wine/microbiology , Pyrus/chemistry , Pyrus/microbiology , Pyrus/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Sorbitol/metabolism , Sorbitol/analysis , Odorants/analysis , Ethanol/metabolism , Ethanol/analysis , Pichia/metabolism , Metschnikowia/metabolism , Fruit/chemistry , Fruit/microbiology , Fruit/metabolism
6.
Plant Sci ; 344: 112103, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657909

ABSTRACT

The stone cells in pear fruits cause rough flesh and low juice, seriously affecting the taste. Lignin has been demonstrated as the main component of stone cells. Auxin, one of the most important plant hormone, regulates most physiological processes in plants including lignification. However, the concentration effect and regulators of auxin on pear fruits stone cell formation remains unclear. Here, endogenous indole-3-acetic acid (IAA) and stone cells were found to be co-localized in lignified cells by immunofluorescence localization analysis. The exogenous treatment of different concentrations of IAA demonstrated that the application of 200 µM IAA significantly reduced stone cell content, while concentrations greater than 500 µM significantly increased stone cell content. Besides, 31 auxin response factors (ARFs) were identified in pear genome. Putative ARFs were predicted as critical regulators involved in the lignification of pear flesh cells by phylogenetic relationship and expression analysis. Furthermore, the negative regulation of PbARF19 on stone cell formation in pear fruit was demonstrated by overexpression in pear fruitlets and Arabidopsis. These results illustrated that the PbARF19-mediated auxin signal plays a critical role in the lignification of pear stone cell by regulating lignin biosynthetic genes. This study provides theoretical and practical guidance for improving fruit quality in pear production.


Subject(s)
Fruit , Indoleacetic Acids , Lignin , Plant Proteins , Pyrus , Indoleacetic Acids/metabolism , Pyrus/metabolism , Pyrus/genetics , Lignin/metabolism , Fruit/metabolism , Fruit/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Signal Transduction , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Phylogeny , Transcription Factors/metabolism , Transcription Factors/genetics
7.
Physiol Plant ; 176(2): e14271, 2024.
Article in English | MEDLINE | ID: mdl-38566130

ABSTRACT

Seed dormancy is an important life history state in which intact viable seeds delay or prevent germination under suitable conditions. Ascorbic acid (AsA) acts as a small molecule antioxidant, and breaking seed dormancy and promoting subsequent growth are among its numerous functions. In this study, a germination test using Pyrus betulifolia seeds treated with exogenous AsA or AsA synthesis inhibitor lycorine (Lyc) and water absorption was conducted. The results indicated that AsA released dormancy and increased germination and 20 mmol L-1 AsA promoted cell division, whereas Lyc reduced germination. Seed germination showed typical three phases of water absorption; and seeds at five key time points were sampled for transcriptome analysis. It revealed that multiple pathways were involved in breaking dormancy and promoting germination through transcriptome data, and 12 differentially expressed genes (DEGs) related to the metabolism and signal transduction of abscisic acid (ABA) and gibberellins (GA) were verified by subsequent RT-qPCR. For metabolites, exogenous AsA increased endogenous AsA and GA3 but reduced ABA and the ABA/GA3 ratio. In addition, three genes regulating ABA synthesis were downregulated by AsA, while five genes mediating ABA degradation were upregulated. Taken together, AsA regulates the pathways associated with ABA and GA synthesis, catalysis, and signal transduction, with subsequent reduction in ABA and increase in GA and further the balance of ABA/GA, ultimately releasing dormancy and promoting germination.


Subject(s)
Gibberellins , Pyrus , Gibberellins/pharmacology , Gibberellins/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Germination , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Pyrus/metabolism , Ascorbic Acid/metabolism , Plant Dormancy/genetics , Seeds , Water/metabolism , Gene Expression Regulation, Plant
8.
Mol Genet Genomics ; 299(1): 21, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38429502

ABSTRACT

Wide hybridizations across species and genera have been employed to enhance agriculturally important traits in crops. Within the tribe Maleae of the Rosaceae family, different genera and species exhibit several traits useful for increasing diversity and gene pool through hybridization. This study aimed to develop and characterize intergeneric hybrid individuals between Malus and Pyrus. Through seed germination, shoot multiplication, and rooting in vitro, acclimatized seedlings showing vegetative growth on their own roots were obtained from crosses of Malus × domestica pollinated by Pyrus communis, P. bretschneideri, and the Pyrus interspecific hybrid (P. communis × P. pyrifolia). Comparative analysis of leaf morphology, flow cytometry, and molecular genotyping confirmed the hybrid status of the individuals. Genome-wide genotyping revealed that all the hybrid individuals inherited genomic fragments symmetrically from the Malus and Pyrus parents. To the best of our knowledge, this is the first report on the development of intergeneric hybrid seedlings between Malus × domestica and P. bretschneideri. Furthermore, the Pyrus interspecific hybrid individual served as a bridge plant for introducing the genetic background of P. pyrifolia into Malus × domestica. The results of this study provided a crucial foundation for breeding through intergeneric hybridization between Malus and Pyrus, facilitating the incorporation of valuable traits from diverse gene pools.


Subject(s)
Malus , Pyrus , Rosaceae , Humans , Malus/genetics , Pyrus/genetics , Pyrus/metabolism , Plant Breeding , Rosaceae/genetics , Hybridization, Genetic
9.
Anal Methods ; 16(15): 2322-2329, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38533729

ABSTRACT

Cysteine is an important amino acid that is related to human health and food safety. How to effectively detect Cys in food has received widespread attention. Compared with other methods, fluorescent probes have the advantages of simple operation, high sensitivity, and good selectivity. Therefore, a selective fluorescence probe 2 for Cys in food was designed and synthesized. Probe 2 employed the acrylate group as a thiol-recognition site for Cys, which endowed probe 2 with better selectivity for Cys over Hcy and GSH. The recognition pathway underwent Michael addition, intramolecular cyclization, and concomitant release of the piperideine-based fluorophore, along with a chromogenic change from yellow to orange. This pathway was supported by 1H NMR analysis and DFT calculations. In addition, probe 2 displays a linear response to Cys concentrations (0-30 µM), low detection limit (0.89 µM), and large Stokes shift (125 nm). Overall, probe 2 showed great application potential for the quantitative determination of Cys in water, milk, cucumber, pear and tomato.


Subject(s)
Cucumis sativus , Pyrus , Solanum lycopersicum , Humans , Animals , Cysteine/analysis , Cysteine/chemistry , Cysteine/metabolism , Cucumis sativus/metabolism , Fluorescent Dyes/chemistry , Pyrus/metabolism , Colorimetry/methods , Water , Milk/chemistry , Milk/metabolism , HeLa Cells
10.
Plant Physiol Biochem ; 208: 108455, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38428157

ABSTRACT

'Zaosu' pear fruit is prone to yellowing of the surface and softening of the flesh after harvest. This work was performed to assess the influences of L-glutamate treatment on the quality of 'Zaosu' pears and elucidate the underlying mechanisms involved. Results demonstrated that L-glutamate immersion reduced ethylene release, respiratory intensity, weight loss, brightness (L*), redness (a*), yellowness (b*), and total coloration difference (ΔE); enhanced ascorbic acid, soluble solids, and soluble sugar contents; maintained chlorophyll content and flesh firmness of pears. L-glutamate also restrained the activities of neutral invertase and acid invertase, while enhancing sucrose phosphate synthetase and sucrose synthase activities to facilitate sucrose accumulation. The transcriptions of PbSGR1, PbSGR2, PbCHL, PbPPH, PbRCCR, and PbNYC were suppressed by L-glutamate, resulting in a deceleration of chlorophyll degradation. L-glutamate concurrently suppressed the transcription levels and enzymatic activities of polygalacturonases, pectin methylesterases, cellulase, and ß-glucosidase. It restrained polygalacturonic acid trans-eliminase and pectin methyl-trans-eliminase activities as well as inhibited the transcription levels of PbPL and Pbß-gal. Moreover, the gene transcriptions and enzymatic activities of arginine decarboxylase, ornithine decarboxylase, S-adenosine methionine decarboxylase, glutamate decarboxylase, γ-aminobutyric acid transaminase, glutamine synthetase along with the PbSPDS transcription was promoted by L-glutamate. L-glutamate also resulted in the down-regulation of PbPAO, PbDAO, PbSSADH, PbGDH, and PbGOGAT transcription levels, while enhancing γ-aminobutyric acid, glutamate, and pyruvate acid contents in pears. These findings suggest that L-glutamate immersion can effectively maintain the storage quality of 'Zaosu' pears via modulating key enzyme activities and gene transcriptions involved in sucrose, chlorophyll, cell wall, and polyamine metabolism.


Subject(s)
Carboxy-Lyases , Pyrus , Pyrus/genetics , Pyrus/metabolism , Sucrose/metabolism , Glutamic Acid/metabolism , Fruit/metabolism , Chlorophyll/metabolism , Cell Wall , Pectins/metabolism , Carboxy-Lyases/metabolism , gamma-Aminobutyric Acid/pharmacology , Polyamines/metabolism
11.
BMC Plant Biol ; 24(1): 50, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38221634

ABSTRACT

BACKGROUND: This study aimed to investigate the impact of protocatechuic acid (PRC) treatments on the productivity and fruit quality of 'Le-Conte' pears, with a specific focus on productivity, stone cells content, and antioxidant activity. The research spanned over three consecutive cultivating seasons, with the first season serving as a preliminary study to determine the optimal PRC concentrations and the most effective number of spray applications. During the initial season, response surface methodology (RSM) was employed to optimize PRC concentration and application frequency. PRC was evaluated at concentrations ranging from 50 to 400 ppm, with treatment frequencies of either once or twice. Considering the optimal conditions obtained from RSM results, PRC treatments at 200 ppm and 300 ppm were applied twice, and their respective effects were studied in comparison to the control in the following seasons. RESULTS: RSM results indicated that PRC at 200 and 300 ppm, applied twice, once during full bloom and again three weeks later, yielded the most significant effects. Subsequent studies revealed that PRC treatments had a substantial impact on various aspects of fruit production and quality. Applying 300 ppm PRC once during full bloom and again three weeks later resulted in higher fruit set percentages, lower fruit abscission, and enhanced fruit yield compared to untreated trees. Additionally, the 200 ppm PRC treatment maintained physicochemical characteristics such as fruit color, increased total soluble solids (TSS), and total sugar, and maintained higher ascorbic acid content and antioxidant capacity in the fruits while reducing stone cells content and lignin. Notably, enzyme activities related to phenylpropanoid metabolism and stone cells, including phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-Coumarate-CoA Ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and cinnamoyl-CoA reductase (CCR), as well as peroxidase, polyphenol oxidase, and laccase, were significantly regulated by PRC treatments. CONCLUSION: Overall, this study suggests that PRC treatments are suitable for enhancing pear yield and quality, with PRC at 200 ppm being the more recommended option over 300 ppm. This approach serves as an effective strategy for achieving a balance between enhancing the productivity and fruit quality of 'Le-Conte' pears.


Subject(s)
Pyrus , Pyrus/metabolism , Hydroxybenzoates/metabolism , Antioxidants/metabolism , Ascorbic Acid/metabolism , Fruit/metabolism
12.
Plant Physiol Biochem ; 207: 108342, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219427

ABSTRACT

Respiratory burst oxidase homolog (Rboh) family genes play crucial functions in development and growth. However, comprehensive and systematic investigation of Rboh family members in Rosaceae and their specific functions during pear pollen development are still limited. In the study, 63 Rboh genes were identified from eight Rosaceae genomes (Malus domestica, Pyrus bretschneideri, Pyrus communis, Prunus persica, Rubus occidentalis, Fragaria vesca, Prunus mume and Prunus avium) and divided into seven main subfamilies (I-VII) according to phylogenetic and structural features. Different modes of gene duplication led to the expansion of Rboh family, with purifying selection playing a vital role in the evolution of Rboh genes. In addition, RNA sequencing and qRT-PCR results indicated that PbRbohH and PbRbohJ were specifically high-expressed in pear pollen. Subsequently, subcellular localization revealed that PbRbohH/J distributed at the plasma membrane. Furthermore, by pharmacological analysis and antisense oligodeoxynucleotide assay, PbRbohH/J were demonstrated to mediate the formation of reactive oxygen species (ROS) to manage pollen tube growth. In conclusion, our results provide useful insights into the functions, expression patterns, evolutionary history of the Rboh genes in pear and other Rosaceae species.


Subject(s)
Pyrus , Rosaceae , Pyrus/genetics , Pyrus/metabolism , Reactive Oxygen Species/metabolism , Pollen Tube/genetics , Phylogeny , Genome, Plant , Rosaceae/genetics
13.
Plant Physiol ; 195(1): 395-409, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38198215

ABSTRACT

Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, "Yunnan" quince (Cydonia oblonga Mill.) had a dwarfing effect on "Zaosu" pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising "Zaosu" (scion) grafted onto "Yunnan" quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 downregulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Pyrus , Transcription Factors , Xylem , Xylem/metabolism , Xylem/genetics , Pyrus/genetics , Pyrus/metabolism , Pyrus/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Promoter Regions, Genetic/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics
15.
Plant Biotechnol J ; 22(6): 1468-1490, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38169146

ABSTRACT

Variation in anthocyanin biosynthesis in pear fruit provides genetic germplasm resources for breeding, while dwarfing is an important agronomic trait, which is beneficial to reduce the management costs and allow for the implementation of high-density cultivation. Here, we combined bulked segregant analysis (BSA), quantitative trait loci (QTL), and structural variation (SV) analysis to identify a 14-bp deletion which caused a frame shift mutation and resulted in the premature translation termination of a B-box (BBX) family of zinc transcription factor, PyBBX24, and its allelic variation termed PyBBX24ΔN14. PyBBX24ΔN14 overexpression promotes anthocyanin biosynthesis in pear, strawberry, Arabidopsis, tobacco, and tomato, while that of PyBBX24 did not. PyBBX24ΔN14 directly activates the transcription of PyUFGT and PyMYB10 through interaction with PyHY5. Moreover, stable overexpression of PyBBX24ΔN14 exhibits a dwarfing phenotype in Arabidopsis, tobacco, and tomato plants. PyBBX24ΔN14 can activate the expression of PyGA2ox8 via directly binding to its promoter, thereby deactivating bioactive GAs and reducing the plant height. However, the nuclear localization signal (NLS) and Valine-Proline (VP) motifs in the C-terminus of PyBBX24 reverse these effects. Interestingly, mutations leading to premature termination of PyBBX24 were also identified in red sports of un-related European pear varieties. We conclude that mutations in PyBBX24 gene link both an increase in pigmentation and a decrease in plant height.


Subject(s)
Plant Proteins , Pyrus , Pyrus/genetics , Pyrus/metabolism , Pyrus/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Alleles , Anthocyanins/metabolism , Pigmentation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Quantitative Trait Loci/genetics , Plants, Genetically Modified/genetics , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Nicotiana/genetics , Nicotiana/metabolism , Phenotype
16.
Int J Biol Macromol ; 257(Pt 2): 128611, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070811

ABSTRACT

The R2R3-MYB gene family play an important role in plant growth, development and stress responses. In this study, a total of 122 PcoR2R3-MYB genes were identified and grouped into 26 clades in pear. And these PcoMYBs were unevenly distributed among 17 chromosomes. The sequence characteristics, conversed motifs, exon/intron structures, classification, duplication events and cis-acting elements were also investigated. The gene duplication events showed that segmental duplication may play key roles in expansion of the PcoMYB gene family. Pyrus hopeiensis, which is a valuable wild resource, has strong cold resistance. An integrative analyses of miRNA and mRNA showed that PhMYB62 was involved in regulating low-temperature stress in P. hopeiensis flower organs. Subcellular localization analysis showed that PhMYB62 protein was specifically localized to the nucleus. The result of DAP-seq showed that PhMYB62 responded to low-temperature stress in P. hopeiensis by regulating TFs, which were associated with plant stress resistance, and POD, GAUT12, AUX28 and CHS genes. Subsequently, yeast one-hybrid verified that PhMYB62 could bind and activate the promoter of POD gene. The current study would provide a comprehensive information for further functional research on the stress-responsive R2R3-MYB gene candidates in pear, and may help to identify the genes associated with cold resistance for the cultivation of cold-resistant pear varieties.


Subject(s)
Pyrus , Pyrus/genetics , Pyrus/metabolism , Genome, Plant , Genes, myb , Transcription Factors/metabolism , Temperature , Multigene Family , Flowers/genetics , Phylogeny , Gene Expression Regulation, Plant , Plant Proteins/chemistry
17.
J Exp Bot ; 75(3): 883-900, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-37944017

ABSTRACT

The Chinese white pear (Pyrus bretschneideri) fruit carries a high proportion of stone cells, adversely affecting fruit quality. Lignin is a main component of stone cells in pear fruit. In this study, we discovered that a pear MYB transcription factor, PbMYB80, binds to the promoters of key lignin biosynthesis genes and inhibits their expression. Stable overexpression of PbMYB80 in Arabidopsis showed that lignin deposition and secondary wall thickening were inhibited, and the expression of the lignin biosynthesis genes in transgenic Arabidopsis was decreased. Transient overexpression of PbMYB80 in pear fruit inhibited lignin metabolism and stone cell development, and the expression of some genes in the lignin metabolism pathway was reduced. In contrast, silencing PbMYB80 with VIGS increased the lignin and stone cell content in pear fruit, and increased expression of genes in the lignin metabolism pathway. By screening a pear fruit cDNA library in yeast, we found that PbMYB80 binds to a RING finger (PbRHY1) protein. We also showed that PbRHY1 exhibits E3 ubiquitin ligase activity and degrades ubiquitinated PbMYB80 in vivo and in vitro. This investigation contributes to a better understanding of the regulation of lignin biosynthesis in pear fruit, and provides a theoretical foundation for increasing pear fruit quality at the molecular level.


Subject(s)
Arabidopsis , Pyrus , Fruit/metabolism , Pyrus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Lignin/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant
18.
Plant J ; 117(5): 1392-1412, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38044792

ABSTRACT

The composition and abundance of soluble sugars in mature pear (Pyrus) fruit are important for its acceptance by consumers. However, our understanding of the genes responsible for soluble sugar accumulation remains limited. In this study, a S1-group member of bZIP gene family, PbrbZIP15, was characterized from pear genome through the combined analyses of metabolite and transcriptome data followed by experimental validation. PbrbZIP15, located in nucleus, was found to function in fructose, sucrose, and total soluble sugar accumulation in pear fruit and calli. After analyzing the expression profiles of sugar-metabolism-related genes and the distribution of cis-acting elements in their promoters, the glucose isomerase 1 gene (PbrXylA1), whose corresponding protein catalyzed the isomerization of glucose and fructose in vitro, was identified as a downstream target gene of PbrbZIP15. PbrbZIP15 could directly bind to the G-box element in PbrXylA1 promoter and activate its transcription, as evidenced by chromatin immunoprecipitation-quantitative PCR, yeast one-hybrid, electrophoretic mobility shift assay, and dual-luciferase assay. PbrXylA1, featuring a leucine-rich signal peptide in its N-terminal, was localized to the endoplasmic reticulum. It was validated to play a significant role in fructose, sucrose, and total soluble sugar accumulation in pear fruit and calli, which was associated with the upregulated fructose/glucose ratio. Further studies revealed a positive correlation between the sucrose content and the expression levels of several sucrose-biosynthesis-related genes (PbrFRK3/8, PbrSPS1/3/4/8, and PbrSPP1) in PbrbZIP15-/PbrXylA1-transgenic fruit/calli. In conclusion, our results suggest that PbrbZIP15-induced soluble sugar accumulation during pear development is at least partly attributed to the activation of PbrXylA1 transcription.


Subject(s)
Aldose-Ketose Isomerases , Pyrus , Sugars , Sugars/metabolism , Glucose/metabolism , Pyrus/metabolism , Sucrose/metabolism , Fructose/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant/genetics
19.
Int J Biol Macromol ; 256(Pt 2): 128498, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042315

ABSTRACT

Rab GTPase-activating proteins (RabGAPs), serving as crucial signaling switches, play essential roles in several physiological processes related to plant growth and development. However, despite their importance, information regarding the RabGAP gene family and their biological functions remains unknown in the Rosaceae. In this study, we identified a total of 127 RabGAP genes in seven Rosaceae species, which were divided into five subfamilies. Our findings indicate that whole genome duplication (WGD) events or dispersed duplication events largely contributed to the expansion of RabGAP family members within Rosaceae species. Through tissue-specific expression analyses, we revealed that the PbrRabGAP genes exhibited distinct expression patterns in different pear tissues. Furthermore, by examining the expression pattern during pollen development and employing an antisense oligonucleotide approach, we demonstrated that PbrRabGAP10, located in the cytoplasm, mediates the imbalance of cellulose distribution, thus regulating pollen tube elongation. In conclusion, the present study offers an overview of the RabGAP family in Rosaceae genomes and serves as the basis for further functional studies.


Subject(s)
Pyrus , Rosaceae , Cellulose , Evolution, Molecular , Genome, Plant/genetics , Genomics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen Tube/genetics , Pollen Tube/metabolism , Pyrus/genetics , Pyrus/metabolism , Rosaceae/genetics
20.
J Agric Food Chem ; 72(1): 116-127, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109355

ABSTRACT

Since eggs are laid directly on fruit skin, it is typically believed that food odor has little impact on the foraging of Grapholita molesta larvae. It is crucial to note that larvae that hatch on twigs and leaves could need some sort of identification system when foraging. Here, 22 GmolOBP genes were identified from the G. molesta larval transcriptome via the comparison of conserved domain and homology in the protein level. GmolOBP1 had strong affinities for important pear-fruit volatiles, which caused larvae strong behavioral responses. However, after GmolOBP1 silencing, the larvae lost their attraction to methyl salicylate, α-farnesene, butyl acetate, ethyl butanoate, and ethyl hexanoate, and the effects of larvae seeking various pears were significantly reduced. Consequently, GmolOBP1 was required for the reception of pear volatiles and was involved in mediating how G. molesta larvae foraged. Our research revealed the GmolOBP1 foraging signal recognition mechanism as well as potential molecular targets for field pest management.


Subject(s)
Moths , Pyrus , Receptors, Odorant , Animals , Larva/genetics , Larva/metabolism , Receptors, Odorant/metabolism , Fruit/genetics , Fruit/metabolism , Pyrus/genetics , Pyrus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...