Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.554
Filter
1.
J Agric Food Chem ; 72(23): 13240-13249, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38825967

ABSTRACT

Acrolein (ACR), methylglyoxal (MGO), and glyoxal (GO) are a class of reactive carbonyl species (RCS), which play a crucial role in the pathogenesis of chronic and age-related diseases. Here, we explored a new RCS inhibitor (theanine, THE) and investigated its capture capacity on RCS in vivo by human experiments. After proving that theanine could efficiently capture ACR instead of MGO/GO by forming adducts under simulated physiological conditions, we further detected the ACR/MGO/GO adducts of theanine in the human urine samples after consumption of theanine capsules (200 and 400 mg) or green tea (4 cups, containing 200 mg of theanine) by using ultraperformance liquid chromatography-time-of-flight-high-resolution mass spectrometry. Quantitative assays revealed that THE-ACR, THE-2ACR-1, THE-MGO, and THE-GO were formed in a dose-dependent manner in the theanine capsule groups; the maximum value of the adducts of theanine was also tested. Furthermore, besides the RCS adducts of theanine, the RCS adducts of catechins could also be detected in the drinking tea group. Whereas, metabolite profile analysis showed that theanine could better capture RCS produced in the renal metabolic pathway than catechins. Our findings indicated that theanine could reduce RCS in the body in two ways: as a pure component or contained in tea leaves.


Subject(s)
Glutamates , Glyoxal , Pyruvaldehyde , Tea , Humans , Tea/chemistry , Glutamates/metabolism , Glutamates/analysis , Male , Pyruvaldehyde/metabolism , Pyruvaldehyde/chemistry , Glyoxal/metabolism , Glyoxal/chemistry , Adult , Acrolein/metabolism , Acrolein/chemistry , Capsules/chemistry , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Female , Young Adult , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/administration & dosage , Chromatography, High Pressure Liquid
2.
Food Chem ; 452: 139532, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38705120

ABSTRACT

This study aimed to better understand whether and how the reactive 1,2-dicarbonyl precursors of advanced glycation end products (AGEs), glyoxal (GO) and methylglyoxal (MGO), cross the intestinal barrier by studying their transport in the in vitro Caco-2 transwell system. The results reveal that GO, MGO and Nε-(carboxymethyl)lysine (CML), the latter studied for comparison, are transported across the intestinal cell layer via both active and passive transport and accumulate in the cells, albeit all to a limited extent. Besides, the transport of the dicarbonyl compounds was only partially affected by the presence of amino acids and protein, suggesting that scavenging by a food matrix will not fully prevent their intestinal absorption. Our study provides new insights into the absorption of the two major food-borne dicarbonyl AGE precursors and provides evidence of their potential systemic bioavailability but also of factors limiting their contribution to the overall exposome.


Subject(s)
Glycation End Products, Advanced , Glyoxal , Pyruvaldehyde , Humans , Caco-2 Cells , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/chemistry , Pyruvaldehyde/metabolism , Glyoxal/metabolism , Glyoxal/chemistry , Models, Biological , Biological Transport , Intestinal Absorption
3.
Neurochem Res ; 49(7): 1823-1837, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38727985

ABSTRACT

Methylglyoxal (MG) is considered a classical biomarker of diabetes mellitus and its comorbidities. However, a role for this compound in exacerbated immune responses, such as septicemia, is being increasingly observed and requires clarification, particularly in the context of neuroinflammatory responses. Herein, we used two different approaches (in vivo and acute hippocampal slice models) to investigate MG as a biomarker of neuroinflammation and the neuroimmunometabolic shift to glycolysis in lipopolysaccharide (LPS) inflammation models. Our data reinforce the hypothesis that LPS-induced neuroinflammation stimulates the cerebral innate immune response by increasing IL-1ß, a classical pro-inflammatory cytokine, and the astrocyte reactive response, via elevating S100B secretion and GFAP levels. Acute neuroinflammation promotes an early neuroimmunometabolic shift to glycolysis by elevating glucose uptake, lactate release, PFK1, and PK activities. We observed high serum and cerebral MG levels, in association with a reduction in glyoxalase 1 detoxification activity, and a close correlation between serum and hippocampus MG levels with the systemic and neuroinflammatory responses to LPS. Findings strongly suggest a role for MG in immune responses.


Subject(s)
Biomarkers , Hippocampus , Lipopolysaccharides , Neuroinflammatory Diseases , Pyruvaldehyde , Pyruvaldehyde/metabolism , Lipopolysaccharides/pharmacology , Animals , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Biomarkers/metabolism , Male , Hippocampus/metabolism , Hippocampus/drug effects , Rats, Wistar , S100 Calcium Binding Protein beta Subunit/metabolism , Glycolysis/drug effects , Interleukin-1beta/metabolism , Inflammation/metabolism , Inflammation/chemically induced , Glial Fibrillary Acidic Protein/metabolism , Lactoylglutathione Lyase/metabolism , Rats , Astrocytes/metabolism , Astrocytes/drug effects
4.
Microb Cell Fact ; 23(1): 153, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796416

ABSTRACT

BACKGROUND: Dihydroxyacetone (DHA) stands as a crucial chemical material extensively utilized in the cosmetics industry. DHA production through the dephosphorylation of dihydroxyacetone phosphate, an intermediate product of the glycolysis pathway in Escherichia coli, presents a prospective alternative for industrial production. However, insights into the pivotal enzyme, dihydroxyacetone phosphate dephosphorylase (HdpA), remain limited for informed engineering. Consequently, the development of an efficient tool for high-throughput screening of HdpA hypermutants becomes imperative. RESULTS: This study introduces a methylglyoxal biosensor, based on the formaldehyde-responding regulator FrmR, for the selection of HdpA. Initial modifications involved the insertion of the FrmR binding site upstream of the -35 region and into the spacer region between the -10 and -35 regions of the constitutive promoter J23110. Although the hybrid promoter retained constitutive expression, expression of FrmR led to complete repression. The addition of 350 µM methylglyoxal promptly alleviated FrmR inhibition, enhancing promoter activity by more than 40-fold. The methylglyoxal biosensor system exhibited a gradual increase in fluorescence intensity with methylglyoxal concentrations ranging from 10 to 500 µM. Notably, the biosensor system responded to methylglyoxal spontaneously converted from added DHA, facilitating the separation of DHA producing and non-producing strains through flow cytometry sorting. Subsequently, the methylglyoxal biosensor was successfully applied to screen a library of HdpA mutants, identifying two strains harboring specific mutants 267G > T and D110G/G151C that showed improved DHA production by 68% and 114%, respectively. Expressing of these two HdpA mutants directly in a DHA-producing strain also increased DHA production from 1.45 to 1.92 and 2.29 g/L, respectively, demonstrating the enhanced enzyme properties of the HdpA mutants. CONCLUSIONS: The methylglyoxal biosensor offers a novel strategy for constructing genetically encoded biosensors and serves as a robust platform for indirectly determining DHA levels by responding to methylglyoxal. This property enables efficiently screening of HdpA hypermutants to enhance DHA production.


Subject(s)
Biosensing Techniques , Dihydroxyacetone , Escherichia coli , Pyruvaldehyde , Pyruvaldehyde/metabolism , Biosensing Techniques/methods , Dihydroxyacetone/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Promoter Regions, Genetic , Metabolic Engineering/methods , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics
5.
Carbohydr Res ; 540: 109125, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703663

ABSTRACT

Di-d-psicose anhydride (DPA), derived from functional rare saccharide as d-psicose, is investigated for its strong chelating ability. Methylglyoxal (MGO), an important precursor of advanced glycation end-products (AGEs), promotes obesity, and causes complications such as diabetic nephropathy. On mesangial cells, DPA can substantially reduce the negative effects of MGO. DPA effectively trapping MGO in mesangial cells. The bonding properties of the DPA-MGO adduct were discussed by mass spectrometry and nuclear magnetic resonance (NMR). The NMR spectra of the DPA-MGO adduct provide evidence for chelation bonding. The inhibition of AGE formation and the mass spectrometry results of the DPA-MGO adduct indicate that DPA can scavenge MGO at a molar ratio of 1:1. DPA suppressed 330 % of the up-regulated receptor for an AGEs protein expression to a normal level and restored the suppressed glyoxalase 1 level to 86 % of the normal group. This research provides important evidence and theoretical basis for the development of AGE inhibitors derived from rare saccharide.


Subject(s)
Diabetic Nephropathies , Glycation End Products, Advanced , Pyruvaldehyde , Pyruvaldehyde/chemistry , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/antagonists & inhibitors , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Lactoylglutathione Lyase/antagonists & inhibitors , Lactoylglutathione Lyase/metabolism , Humans , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/antagonists & inhibitors , Anhydrides/chemistry , Chelating Agents/chemistry , Chelating Agents/pharmacology
6.
Molecules ; 29(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38792167

ABSTRACT

Methylglyoxal-induced ROS elevation is the primary cause of neuronal damage. Metformin is a traditional hypoglycemic drug that has been reported to be beneficial to the nervous system. In this study, flavonoids were found to enhance the protective effect of metformin when added at a molar concentration of 0.5%. The structure-activity relationship (SAR) analysis indicated that ortho- substitution in the B ring, and the absence of double bonds between the 2 and 3 position combined with the gallate substitution with R configuration at the 3 position in the C ring played crucial roles in the synergistic effects, which could be beneficial for designing a combination of the compounds. Additionally, the mechanism study revealed that a typical flavonoid, EGCG, enhanced ROS scavenging and anti-apoptotic ability via the BCL2/Bax/Cyto C/Caspase-3 pathway, and synergistically inhibited the expression of GSK-3ß, BACE-1, and APP in PC-12 cells when used in combination with metformin. The dose of metformin used in the combination was only 1/4 of the conventional dose when used alone. These results suggested that ROS-mediated apoptosis and the pathways related to amyloid plaques (Aß) formation can be the targets for the synergistic neuroprotective effects of flavonoids and metformin.


Subject(s)
Apoptosis , Drug Synergism , Flavonoids , Metformin , Pyruvaldehyde , Reactive Oxygen Species , Metformin/pharmacology , Metformin/chemistry , Rats , Flavonoids/pharmacology , Flavonoids/chemistry , PC12 Cells , Animals , Structure-Activity Relationship , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neuroblastoma/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Signal Transduction/drug effects
7.
Pflugers Arch ; 476(7): 1077-1086, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38769127

ABSTRACT

Diabetes is commonly associated with an elevated level of reactive carbonyl species due to alteration of glucose and fatty acid metabolism. These metabolic changes cause an abnormality in cardiac Ca2+ regulation that can lead to cardiomyopathies. In this study, we explored how the reactive α-dicarbonyl methylglyoxal (MGO) affects Ca2+ regulation in mouse ventricular myocytes. Analysis of intracellular Ca2+ dynamics revealed that MGO (200 µM) increases action potential (AP)-induced Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ load, with a limited effect on L-type Ca2+ channel-mediated Ca2+ transients and SERCA-mediated Ca2+ uptake. At the same time, MGO significantly slowed down cytosolic Ca2+ extrusion by Na+/Ca2+ exchanger (NCX). MGO also increased the frequency of Ca2+ waves during rest and these Ca2+ release events were abolished by an external solution with zero [Na+] and [Ca2+]. Adrenergic receptor activation with isoproterenol (10 nM) increased Ca2+ transients and SR Ca2+ load, but it also triggered spontaneous Ca2+ waves in 27% of studied cells. Pretreatment of myocytes with MGO increased the fraction of cells with Ca2+ waves during adrenergic receptor stimulation by 163%. Measurements of intracellular [Na+] revealed that MGO increases cytosolic [Na+] by 57% from the maximal effect produced by the Na+-K+ ATPase inhibitor ouabain (20 µM). This increase in cytosolic [Na+] was a result of activation of a tetrodotoxin-sensitive Na+ influx, but not an inhibition of Na+-K+ ATPase. An increase in cytosolic [Na+] after treating cells with ouabain produced similar effects on Ca2+ regulation as MGO. These results suggest that protein carbonylation can affect cardiac Ca2+ regulation by increasing cytosolic [Na+] via a tetrodotoxin-sensitive pathway. This, in turn, reduces Ca2+ extrusion by NCX, causing SR Ca2+ overload and spontaneous Ca2+ waves.


Subject(s)
Calcium , Myocytes, Cardiac , Protein Carbonylation , Sarcoplasmic Reticulum , Sodium , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/drug effects , Mice , Calcium/metabolism , Sodium/metabolism , Protein Carbonylation/drug effects , Sodium-Calcium Exchanger/metabolism , Heart Ventricles/metabolism , Heart Ventricles/cytology , Pyruvaldehyde/pharmacology , Pyruvaldehyde/metabolism , Calcium Signaling/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Action Potentials/drug effects , Mice, Inbred C57BL , Cells, Cultured , Male
8.
Cell ; 187(9): 2124-2126, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670069

ABSTRACT

Many types of tumor cells alter metabolic pathways to meet their energy and biosynthetic demands for proliferation or stress adaptation. In this issue of Cell, Kong et al. find that the glycolytic metabolite methylglyoxal causes cancer-associated mutant single-base substitution features by inducing BRCA2 proteolysis, leading to functional haploinsufficiency of BRCA2.


Subject(s)
BRCA2 Protein , Glycolysis , Haploinsufficiency , Humans , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , Pyruvaldehyde/metabolism , Mutation
9.
J Agric Food Chem ; 72(19): 11174-11184, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38687489

ABSTRACT

Polyphenols with a typical meta-phenol structure have been intensively investigated for scavenging of methylglyoxal (MGO) to reduce harmful substances in food. However, less attention has been paid to the formation level of polyphenol-MGO adducts in foods and in vivo and their absorption, metabolism, and health impacts. In this study, hesperitin (HPT) was found to scavenge MGO by forming two adducts, namely, 8-(1-hydroxyacetone)-hesperetin (HPT-mono-MGO) and 6-(1-hydroxyacetone)-8-(1-hydroxyacetone)-hesperetin (HPT-di-MGO). These two adducts were detected (1.6-15.9 mg/kg in total) in cookies incorporated with 0.01%-0.5% HPT. HPT-di-MGO was the main adduct detected in rat plasma after HPT consumption. The adducts were absorbed 8-30 times faster than HPT, and they underwent glucuronidation and sulfation in vivo. HPT-mono-MGO would continue to react with endogenous MGO in vivo to produce HPT-di-MGO, which effectively reduced the cytotoxicity of HPT and HPT-mono-MGO. This study provided data on the safety of employing HPT as a dietary supplement to scavenge MGO in foods.


Subject(s)
Hesperidin , Pyruvaldehyde , Animals , Pyruvaldehyde/metabolism , Pyruvaldehyde/chemistry , Hesperidin/metabolism , Hesperidin/chemistry , Hesperidin/analogs & derivatives , Rats , Male , Rats, Sprague-Dawley , Humans
10.
J Hazard Mater ; 470: 134212, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583205

ABSTRACT

Elevated levels of cadmium (Cd) have the ability to impede plant development. Aldo-keto reductases (AKRs) have been demonstrated in a number of plant species to improve tolerance to a variety of abiotic stresses by scavenging cytotoxic aldehydes; however, only a few AKRs have been identified to improve Cd tolerance. The OsAKR1 gene was extracted and identified from rice here. After being exposed to Cd, the expression of OsAKR1 dramatically rose in both roots and shoots, although more pronounced in roots. According to a subcellular localization experiment, the nucleus and cytoplasm are where OsAKR1 is primarily found. Mutants lacking OsAKR1 exhibited Cd sensitive phenotype than that of the wild-type (WT) Nipponbare (Nip), and osakr1 mutants exhibited reduced capacity to scavenge methylglyoxal (MG). Furthermore, osakr1 mutants exhibited considerably greater hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels, and increased catalase (CAT) activity in comparison to Nip. The expression of three isomeric forms of CAT was found to be considerably elevated in osakr1 mutants during Cd stress, as demonstrated by quantitative real-time PCR analysis, when compared to Nip. These results imply that OsAKR1 controlled rice's ability to withstand Cd by scavenging harmful aldehydes and turning on the reactive oxygen species (ROS) scavenging mechanism.


Subject(s)
Aldo-Keto Reductases , Cadmium , Oryza , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Oryza/growth & development , Cadmium/toxicity , Cadmium/metabolism , Aldo-Keto Reductases/genetics , Aldo-Keto Reductases/metabolism , Aldehydes/metabolism , Catalase/metabolism , Catalase/genetics , Aldehyde Reductase/genetics , Aldehyde Reductase/metabolism , Malondialdehyde/metabolism , Stress, Physiological , Pyruvaldehyde/metabolism , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Mutation , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Inactivation, Metabolic
11.
Cell ; 187(9): 2269-2287.e16, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38608703

ABSTRACT

Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.


Subject(s)
BRCA2 Protein , Breast Neoplasms , Glycolysis , Pyruvaldehyde , Animals , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , Mice , Humans , Female , Pyruvaldehyde/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Haploinsufficiency , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Mutation , DNA Damage , DNA Repair , Cell Line, Tumor
12.
Int J Biol Macromol ; 269(Pt 2): 131927, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685538

ABSTRACT

The accumulation of methylglyoxal (MGO) produced in high-temperature processed foods and excessive production in the body contributes to intestinal barrier dysfunction. In this study, we investigated the effects of chitooligosaccharides (COSs) of different molecular weights (<1 kDa, 1-3 kDa, 3-5 kDa, 5-10 kDa, and >10 kDa) on MGO-induced intestinal barrier dysfunction. We investigated the effect of COSs on inhibiting intracellular MGO accumulation/MGO-derived AGEs production and regulating the receptor for AGE (RAGE)-mediated downstream protein expression, including proteins related to apoptosis and inflammation, intestinal barrier integrity, and paracellular permeability. Pretreatment with COSs ameliorated MGO-induced increased RAGE protein expression, activation of apoptotic cascade/inflammatory response, loss of intestinal epithelial barrier integrity, and increased paracellular permeability, ameliorating intestinal dysfunction through MGO scavenging. 1-3 kDa COSs most effectively ameliorated MGO-induced intestinal dysfunction. Our results suggest the potential of COSs in improving intestinal health by ameliorating intestinal barrier dysfunction by acting as an MGO scavenger and highlighting the need for the optimization of the molecular weight of COSs to optimize its protective effects.


Subject(s)
Chitosan , Glycation End Products, Advanced , Intestinal Mucosa , Molecular Weight , Oligosaccharides , Pyruvaldehyde , Receptor for Advanced Glycation End Products , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Glycation End Products, Advanced/metabolism , Receptor for Advanced Glycation End Products/metabolism , Animals , Chitosan/pharmacology , Chitosan/chemistry , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Humans , Intestines/drug effects , Intestines/pathology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Apoptosis/drug effects , Chitin/pharmacology , Chitin/analogs & derivatives , Chitin/chemistry , Permeability/drug effects
13.
Molecules ; 29(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38611866

ABSTRACT

α-Dicarbonyls are significant degradation products resulting from the Maillard reaction during food processing. Their presence in foods can indicate the extent of heat exposure, processing treatments, and storage conditions. Moreover, they may be useful in providing insights into the potential antibacterial and antioxidant activity of U.S. honey. Despite their importance, the occurrence of α-dicarbonyls in honey produced in the United States has not been extensively studied. This study aims to assess the concentrations of α-dicarbonyls in honey samples from different regions across the United States. The identification and quantification of α-dicarbonyls were conducted using reverse-phase liquid chromatography after derivatization with o-phenylenediamine (OPD) and detected using ultraviolet (UV) and mass spectrometry methods. This study investigated the effects of pH, color, and derivatization reagent on the presence of α-dicarbonyls in honey. The quantification method was validated by estimating the linearity, precision, recovery, method limit of detection, and quantification using known standards for GO, MGO, and 3-DG, respectively. Three major OPD-derivatized α-dicarbonyls including methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), were quantified in all the honey samples. 3-Deoxyglucosone (3-DG) was identified as the predominant α-dicarbonyl in all the U.S. honey samples, with concentrations ranging from 10.80 to 50.24 mg/kg. The total α-dicarbonyl content ranged from 16.81 to 55.74 mg/kg, with the highest concentration measured for Southern California honey. Our results showed no significant correlation between the total α-dicarbonyl content and the measured pH solutions. Similarly, we found that lower amounts of the OPD reagent are optimal for efficient derivatization of MGO, GO, and 3-DG in honey. Our results also indicated that darker types of honey may contain higher α-dicarbonyl content compared with lighter ones. The method validation results yielded excellent recovery rates for 3-DG (82.5%), MGO (75.8%), and GO (67.0%). The method demonstrated high linearity with a limit of detection (LOD) and limit of quantitation (LOQ) ranging from 0.0015 to 0.002 mg/kg and 0.005 to 0.008 mg/kg, respectively. Our results provide insights into the occurrence and concentrations of α-dicarbonyl compounds in U.S. honey varieties, offering valuable information on their quality and susceptibility to thermal processing effects.


Subject(s)
Honey , Phenylenediamines , Magnesium Oxide , Glyoxal , Pyruvaldehyde
14.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675531

ABSTRACT

Glycolytic overload promotes accumulation of the highly reactive dicarbonyl compounds, resulting in harmful conditions called dicarbonyl stress. Methylglyoxal (MG) is a highly reactive dicarbonyl species and its accumulation plays a crucial pathophysiological role in diabetes and its vascular complications. MG cytotoxicity is mediated by reactive oxygen species (ROS) generation, a key event underlying the intracellular signaling pathways leading to inflammation and apoptosis. The identification of compounds able to inhibit ROS signaling pathways and counteract the MG-induced toxicity is a crucial step for developing new therapeutic strategies in the treatment of diabetic vascular complications. In this study, the effect of genistein, a natural soybean isoflavone, has been evaluated on MG-induced cytotoxicity in human endothelial cells. Our results show that genistein is able to counteract the MG-induced apoptosis by restraining ROS production, thus inhibiting the MAPK signaling pathways and caspase-3 activation. These findings identify a beneficial role for genistein, providing new insights for its potential clinical applications in preserving endothelial function in diabetic vascular complications.


Subject(s)
Apoptosis , Endothelial Cells , Genistein , Oxidative Stress , Pyruvaldehyde , Reactive Oxygen Species , Genistein/pharmacology , Pyruvaldehyde/metabolism , Humans , Apoptosis/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Caspase 3/metabolism , Signal Transduction/drug effects , MAP Kinase Signaling System/drug effects
15.
Oncol Rep ; 51(5)2024 May.
Article in English | MEDLINE | ID: mdl-38577936

ABSTRACT

Cancer cells are characterized by increased glycolysis, known as the Warburg effect, which leads to increased production of cytotoxic methylglyoxal (MGO) and apoptotic cell death. Cancer cells often activate the protective nuclear factor erythroid 2­related factor2 (Nrf2)/glyoxalase1 (Glo1) system to detoxify MGO. The effects of sodium butyrate (NaB), a product of gut microbiota, on Nrf2/Glos/MGO pathway and the underlying mechanisms in prostate cancer (PCa) cells were investigated in the present study. Treatment with NaB induced the cell death and reduced the proliferation of PCa cells (DU145 and LNCap). Moreover, the protein kinase RNA-like endoplasmic reticulum kinase/Nrf2/Glo1 pathway was greatly inhibited by NaB, thereby accumulating MGO-derived adduct hydroimidazolone (MG-H1). In response to a high amount of MGO, the expression of Nrf2 and Glo1 was attenuated, coinciding with an increased cellular death. NaB also markedly inhibited the Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (Stat3) pathway. Conversely, co­treatment with Colivelin, a Stat3 activator, significantly reversed the effects of NaB on Glo1 expression, MG-H1 production, and the cell migration and viability. As expected, overexpression of Stat3 or Glo1 reduced NaB­induced cell death. The activation of calcium/calmodulin dependent protein kinase II gamma and reactive oxygen species production also contributed to the anticancer effect of NaB. The present study, for the first time, demonstrated that NaB greatly increases MGO production through suppression of the JAK2/Stat3/Nrf2/Glo1 pathway in DU145 cells, a cell line mimicking castration­resistant PCa (CRPC), suggesting that NaB may be a potential agent for PCa therapy.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Humans , Male , Butyric Acid/pharmacology , Janus Kinase 2/metabolism , Magnesium Oxide/metabolism , NF-E2-Related Factor 2/metabolism , Pyruvaldehyde/metabolism , STAT3 Transcription Factor/metabolism
16.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R427-R437, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38497128

ABSTRACT

Methylglyoxal (MG), a reactive metabolic byproduct of glycolysis, is a causative of painful diabetic neuropathy. Patients with diabetes are associated with more frequent severe asthma exacerbation. Stimulation of capsaicin-sensitive lung vagal (CSLV) afferents may contribute to the pathogenesis of hyperreactive airway diseases such as asthma. However, the possibility of the stimulatory effect of MG on CSLV afferents and the underlying mechanisms remain unknown. Our results showed that intravenous injection of MG (25 mg/kg, MG25) in anesthetized, spontaneously breathing rats elicited pulmonary chemoreflexes characterized by apnea, bradycardia, and hypotension. The MG-induced apneic response was reproducible and dose dependent. MG25 no longer evoked these reflex responses after perineural capsaicin treatment of both cervical vagi to block C-fibers' conduction, suggesting that the reflexes were mediated through the stimulation of CSLV afferents. Pretreatment with HC030031 [an antagonist of transient receptor potential ankyrin subtype 1 protein (TRPA1)] or AP18 (another TRPA1 antagonist), but not their vehicle, markedly attenuated the apneic response induced by MG25. Consistently, electrophysiological results showed that pretreatment with HC030031 largely attenuated the intense discharge in CSLV afferents induced by injection of MG25 in open-chest and artificially ventilated rats. In isolated CSLV neurons, the perfusion of MG evoked an abrupt and pronounced increase in calcium transients in a concentration-dependent manner. This stimulatory effect on CSLV neurons was also abolished by HC030031 treatment but not by its vehicle. In conclusion, these results suggest that MG exerts a stimulatory effect on CSLV afferents, inducing pulmonary chemoreflexes, and such stimulation is mediated through the TRPA1 activation.NEW & NOTEWORTHY Methylglyoxal (MG) is implicated in the development of painful diabetic neuropathy. A retrospective cohort study revealed an increased incidence of asthma exacerbations in patients with diabetes. This study demonstrated that elevated circulating MG levels stimulate capsaicin-sensitive lung vagal afferents via activation of TRPA1, which in turn triggers respiratory reflexes. These findings provide new information for understanding the pathogenic mechanism of diabetes-associated hyperreactive airway diseases and potential therapy.


Subject(s)
Acetanilides , Asthma , Diabetic Neuropathies , Purines , Humans , Rats , Animals , Capsaicin/pharmacology , Rats, Sprague-Dawley , Pyruvaldehyde/adverse effects , Pyruvaldehyde/metabolism , Diabetic Neuropathies/metabolism , Retrospective Studies , Lung , Vagus Nerve/physiology , Apnea , Asthma/metabolism , TRPA1 Cation Channel/metabolism
17.
Chem Biol Interact ; 394: 110949, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38555048

ABSTRACT

Methylglyoxal (MGO) is an endogenous, highly reactive dicarbonyl metabolite generated under hyperglycaemic conditions. MGO plays a role in developing pathophysiological conditions, including diabetic cardiomyopathy. However, the mechanisms involved and the molecular targets of MGO in the heart have not been elucidated. In this work, we studied the exposure-related effects of MGO on cardiac function in an isolated perfused rat heart ex vivo model. The effect of MGO on calcium homeostasis in cardiomyocytes was studied in vitro by the fluorescence indicator of intracellular calcium Fluo-4. We demonstrated that MGO induced cardiac dysfunction, both in contractility and diastolic function. In rat heart, the effects of MGO treatment were significantly limited by aminoguanidine, a scavenger of MGO, ruthenium red, a general cation channel blocker, and verapamil, an L-type voltage-dependent calcium channel blocker, demonstrating that this dysfunction involved alteration of calcium regulation. MGO induced a significant concentration-dependent increase of intracellular calcium in neonatal rat cardiomyocytes, which was limited by aminoguanidine and verapamil. These results suggest that the functionality of various calcium channels is altered by MGO, particularly the L-type calcium channel, thus explaining its cardiac toxicity. Therefore, MGO could participate in the development of diabetic cardiomyopathy through its impact on calcium homeostasis in cardiac cells.


Subject(s)
Calcium , Myocytes, Cardiac , Pyruvaldehyde , Rats, Wistar , Animals , Pyruvaldehyde/toxicity , Rats , Calcium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Male , Guanidines/pharmacology , Calcium Channels, L-Type/metabolism , Heart/drug effects , Myocardium/metabolism , Verapamil/pharmacology , Myocardial Contraction/drug effects
18.
Nutrients ; 16(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474882

ABSTRACT

Previous studies have shown that advanced glycation end products (AGEs) are implicated in the occurrence and progression of numerous diseases, with dietary AGEs being particularly associated with intestinal disorders. In this study, methylglyoxal-beta-lactoglobulin AGEs (MGO-ß-LG AGEs) were utilized as the exclusive nitrogen source to investigate the interaction between protein-bound AGEs and human gut microbiota. The high-resolution mass spectrometry analysis of alterations in peptides containing AGEs within metabolites before and after fermentation elucidated the capacity of intestinal microorganisms to enzymatically hydrolyze long-chain AGEs into short-chain counterparts. The 16S rRNA sequencing revealed Klebsiella, Lactobacillus, Escherichia-Shigella, and other genera as dominant microbiota at different fermentation times. A total of 187 potential strains of AGE-metabolizing bacteria were isolated from the fermentation broth at various time points. Notably, one strain of Klebsiella exhibited the most robust growth capacity when AGEs served as the sole nitrogen source. Subsequently, proteomics was employed to compare the changes in protein levels of Klebsiella X15 following cultivation in unmodified proteins and proteins modified with AGEs. This analysis unveiled a remodeled amino acid and energy metabolism pathway in Klebsiella in response to AGEs, indicating that Klebsiella may possess a metabolic pathway specifically tailored to AGEs. This study found that fermenting AGEs in healthy human intestinal microbiota altered the bacterial microbiota structure, especially by increasing Klebsiella proliferation, which could be a key factor in AGEs' role in causing diseases, particularly intestinal inflammation.


Subject(s)
Glycation End Products, Advanced , Pyruvaldehyde , Humans , Glycation End Products, Advanced/metabolism , RNA, Ribosomal, 16S , Pyruvaldehyde/chemistry , Bacteria/metabolism , Nitrogen
19.
Fitoterapia ; 175: 105928, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548027

ABSTRACT

α-DCs (α-dicarbonyls) have been proven to be closely related to aging and the onset and development of many chronic diseases. The wide presence of this kind of components in various foods and beverages has been unambiguously determined, but their occurrence in various phytomedicines remains in obscurity. In this study, we established and evaluated an HPLC-UV method and used it to measure the contents of four α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) in 35 Chinese herbs after they have been derivatized with 4-nitro-1,2-phenylenediamine. The results uncover that 3-DG is the major component among the α-DCs, being detectable in all the selected herbs in concentrations ranging from 22.80 µg/g in the seeds of Alpinia katsumadai to 7032.75 µg/g in the fruit of Siraitia grosuenorii. The contents of the other three compounds are much lower than those of 3-DG, with GO being up to 22.65 µg/g, MGO being up to 55.50 µg/g, and DA to 18.75 µg/g, respectively. The data show as well the contents of the total four α-DCs in the herbs are generally in a comparable level to those in various foods, implying that herb medicines may have potential risks on human heath in view of the α-DCs.


Subject(s)
Deoxyglucose , Drugs, Chinese Herbal , Glyoxal , Pyruvaldehyde , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Pyruvaldehyde/analysis , Chromatography, High Pressure Liquid , Deoxyglucose/analogs & derivatives , Deoxyglucose/analysis , Glyoxal/analysis , Diacetyl/analysis , Molecular Structure , Fruit/chemistry , Plants, Medicinal/chemistry , Seeds/chemistry
20.
Plant Cell Rep ; 43(4): 103, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502356

ABSTRACT

KEY MESSAGE: Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.


Subject(s)
Lactoylglutathione Lyase , Metals, Heavy , Pyruvaldehyde/metabolism , Plants/metabolism , Lactoylglutathione Lyase/metabolism , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Plant Development , Stress, Physiological/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...