Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 880
Filter
1.
PLoS One ; 19(6): e0301611, 2024.
Article in English | MEDLINE | ID: mdl-38843180

ABSTRACT

Coxiella burnetii is the worldwide zoonotic infectious agent for Q fever in humans and animals. Farm animals are the main reservoirs of C. burnetii infection, which is mainly transmitted via tick bites. In humans, oral, percutaneous, and respiratory routes are the primary sources of infection transmission. The clinical signs vary from flu-like symptoms to endocarditis for humans' acute and chronic Q fever. While it is usually asymptomatic in livestock, abortion, stillbirth, infertility, mastitis, and endometritis are its clinical consequences. Infected farm animals shed C. burnetii in birth products, milk, feces, vaginal mucus, and urine. Milk is an important source of infection among foods of animal origin. This study aimed to determine the prevalence and molecular characterization of C. burnetii in milk samples of dairy animals from two districts in Punjab, Pakistan, as it has not been reported there so far. Using a convenience sampling approach, the current study included 304 individual milk samples from different herds of cattle, buffalo, goats, and sheep present on 39 farms in 11 villages in the districts of Kasur and Lahore. PCR targeting the IS1111 gene sequence was used for its detection. Coxiella burnetii DNA was present in 19 of the 304 (6.3%) samples. The distribution was 7.2% and 5.2% in districts Kasur and Lahore, respectively. The results showed the distribution in ruminants as 3.4% in buffalo, 5.6% in cattle, 6.7% in goats, and 10.6% in sheep. From the univariable analysis, the clinical signs of infection i.e. mastitis and abortion were analyzed for the prevalence of Coxiella burnetii. The obtained sequences were identical to the previously reported sequence of a local strain in district Lahore, Sahiwal and Attock. These findings demonstrated that the prevalence of C. burnetii in raw milk samples deserves more attention from the health care system and veterinary organizations in Kasur and Lahore of Punjab, Pakistan. Future studies should include different districts and human populations, especially professionals working with animals, to estimate the prevalence of C. burnetii.


Subject(s)
Buffaloes , Coxiella burnetii , Goats , Milk , Q Fever , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Animals , Pakistan/epidemiology , Milk/microbiology , Q Fever/epidemiology , Q Fever/microbiology , Q Fever/veterinary , Cattle , Buffaloes/microbiology , Goats/microbiology , Sheep/microbiology , Animals, Domestic/microbiology , Female , DNA, Bacterial/genetics , Prevalence , Farms , Humans
2.
BMC Vet Res ; 20(1): 183, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720324

ABSTRACT

BACKGROUND: Pigs are susceptible to several ruminant pathogens, including Coxiella burnetti, Schmallenberg virus (SBV) and bovine viral diarrhea virus (BVDV). These pathogens have already been described in the pig population, although the dynamics of the infection and the impact on pig farms are currently unclear. The aim of this work was to evaluate the presence of these infections in the pig population of the Campania region, southern Italy, and to evaluate the risk factors associated with a greater risk of exposure. RESULTS: A total of 414 serum samples belonging to 32 herds were tested for the presence of antibodies against SBV, Coxiella, and BVD using commercial multispecies ELISA kits. SBV (5.3%) was the most prevalent pathogen, followed by Coxiella (4.1%) and BVD (3%). The risk factors included in the study (age, sex, province, farming system, ruminant density and major ruminant species) had no influence on the probability of being exposed to BVD and Coxiella, except for the location, in fact more pigs seropositive to Coxiella were found in the province of Caserta. However, the univariate analysis highlighted the influence of age, location, and sex on exposure to SBV. The subsequent multivariate analysis statistically confirmed the importance of these factors. The presence of neutralizing antibodies for SBV and BVDV, or antibodies directed towards a specific phase of infection for Coxiella was further confirmed with virus-neutralization assays and phase-specific ELISAs in a large proportion of positive samples. The presence of high neutralizing antibody titers (especially for SBV) could indicate recent exposures. Twelve of the 17 positive samples tested positive for antibodies against Coxiella phase I or II antigens, indicating the presence of both acute and chronic infections (one animal tested positive for both phases antibodies). CONCLUSIONS: Our study indicates a non-negligible exposure of pigs from southern Italy to the above pathogens. Further studies are necessary to fully understand the dynamics of these infections in pigs, the impact on productivity, and the public health consequences in the case of Coxiella.


Subject(s)
Antibodies, Viral , Q Fever , Swine Diseases , Animals , Italy/epidemiology , Seroepidemiologic Studies , Swine , Risk Factors , Swine Diseases/epidemiology , Swine Diseases/microbiology , Swine Diseases/virology , Q Fever/epidemiology , Q Fever/veterinary , Female , Male , Antibodies, Viral/blood , Diarrhea Viruses, Bovine Viral/immunology , Antibodies, Bacterial/blood , Orthobunyavirus/immunology , Orthobunyavirus/isolation & purification , Coxiella burnetii/immunology , Coxiella burnetii/isolation & purification , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Pseudorabies/epidemiology , Enzyme-Linked Immunosorbent Assay/veterinary
3.
PLoS One ; 19(5): e0303877, 2024.
Article in English | MEDLINE | ID: mdl-38771828

ABSTRACT

Coxiella burnetii, the causative agent of Q fever, is a zoonotic bacteria of global public health significance. The organism has a complex, diverse, and relatively poorly understood animal reservoir but there is increasing evidence that macropods play some part in the epidemiology of Q fever in Australia. The aim of this cross-sectional survey was to estimate the animal- and tissue-level prevalence of coxiellosis amongst eastern grey (Macropus giganteus) and red (Osphranter rufus) kangaroos co-grazing with domestic cattle in a Q fever endemic area in Queensland. Serum, faeces and tissue samples from a range of organs were collected from 50 kangaroos. A total of 537 tissue samples were tested by real-time PCR, of which 99 specimens from 42 kangaroos (84% of animals, 95% confidence interval [CI], 71% to 93%) were positive for the C. burnetii IS1111 gene when tested in duplicate. Twenty of these specimens from 16 kangaroos (32%, 95% CI 20% to 47%) were also positive for the com1 or htpAB genes. Serum antibodies were present in 24 (57%, 95% CI 41% to 72%) of the PCR positive animals. There was no statistically significant difference in PCR positivity between organs and no single sample type consistently identified C. burnetii positive kangaroos. The results from this study identify a high apparent prevalence of C. burnetii amongst macropods in the study area, albeit seemingly with an inconsistent distribution within tissues and in relatively small quantities, often verging on the limits of detection. We recommend Q fever surveillance in macropods should involve a combination of serosurveys and molecular testing to increase chances of detection in a population, noting that a range of tissues would likely need to be sampled to confirm the diagnosis in a suspect positive animal.


Subject(s)
Antibodies, Bacterial , Coxiella burnetii , Macropodidae , Q Fever , Animals , Coxiella burnetii/genetics , Coxiella burnetii/immunology , Macropodidae/microbiology , Queensland/epidemiology , Q Fever/epidemiology , Q Fever/veterinary , Q Fever/microbiology , Q Fever/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Livestock/microbiology , Cattle , Cross-Sectional Studies
4.
Comp Immunol Microbiol Infect Dis ; 109: 102188, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691873

ABSTRACT

This study aimed to evaluate the bacterial burden and perform molecular characterization of Coxiella burnetii during shedding in pregnant (vaginal, mucus and feces) and postpartum (vaginal mucus, feces and milk) ewes from Saint Kitts. Positive IS1111 DNA (n=250) for C. burnetii samples from pregnant (n=87) and postpartum (n=74) Barbados Blackbelly ewes in a previous investigation were used for this study. Vaginal mucus (n=118), feces (n=100), and milk (n=32) positive IS1111 C. burnetii-DNA were analysed by real time qPCR (icd gene). For molecular characterization of C. burnetii, selected (n=10) IS1111 qPCR positive samples were sequenced for fragments of the IS1111 element and the 16 S rRNA gene. nBLAST, phylogenetic and haplotype analyses were performed. Vaginal mucus, feces and milk had estimated equal amounts of bacterial DNA (icd copies), and super spreaders were detected within the fecal samples. C. burnetii haplotypes had moderate to high diversity, were ubiquitous worldwide and similar to previously described in ruminants and ticks and humans.


Subject(s)
Coxiella burnetii , DNA, Bacterial , Feces , Milk , Phylogeny , Postpartum Period , Q Fever , Sheep Diseases , Vagina , Animals , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Female , Q Fever/veterinary , Q Fever/microbiology , Pregnancy , Feces/microbiology , Sheep/microbiology , Sheep Diseases/microbiology , Vagina/microbiology , DNA, Bacterial/genetics , Milk/microbiology , Bacterial Shedding , Bacterial Load , RNA, Ribosomal, 16S/genetics , Haplotypes
6.
Acta Trop ; 255: 107235, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38688445

ABSTRACT

Coxiellosis in animals is caused by the zoonotic pathogen, Coxiella burnetii. Although the disease is of public health importance it remains underdiagnosed and underreported. The cross- sectional study was aimed to estimate the occurrence of the disease in livestock of study area and also to identify the risk factors associated with the disease in animals. Blood, serum, and vaginal swabs samples were collected from 200 ruminants (cattle, sheep, and goats), across various farms in Karnataka, India. These samples were then screened using ELISA and PCR (com1 and IS1111). A questionnaire was administered to the farm owners to collect the risk factor-related information. About 5.26 % cattle, 12.3 % sheep, and 12.5 % goats were positive by ELISA. By PCR, 9.47 % cattle, 9.3 % sheep, and 10 % goats were positive. Overall, the occurrence of 14.73 %, 18.46 % and 17.5 % was estimated in cattle, sheep and goat, respectively. PCR targeting the IS1111 gene detected higher number of samples as positive as compared to the com1 gene PCR. Higher number of vaginal swab samples were detected as positive as compared to blood. History of reproductive disorders (OR: 4.30; 95 %CI:1.95- 9.46), abortion (OR: 30.94; 95 %CI:6.30- 151.84) and repeat breeding (OR:11.36; 95 %CI:4.16- 30.99) were significantly associated with coxiellosis (p < 0.005). Multivariable analysis by logistic regression model analysis suggested retained abortion, repeat breeding and rearing of animal in semi-intensive system as factors significantly associated with the infection. Cultural identification of the PCR positive samples were cultured using embryonated egg propagation and cell culture techniques and positivity was confirmed in six samples. Phylogenetic analysis of the com1 and IS1111 gene revealed clustering based on similar geographic locations. The study estimated the occurrence of the disease in the study area and identified the potential risk factors.


Subject(s)
Cattle Diseases , Coxiella burnetii , Goat Diseases , Goats , Polymerase Chain Reaction , Q Fever , Sheep Diseases , Animals , Q Fever/epidemiology , Q Fever/veterinary , Q Fever/microbiology , Risk Factors , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Goats/microbiology , Sheep/microbiology , Cattle , Female , India/epidemiology , Cross-Sectional Studies , Goat Diseases/microbiology , Goat Diseases/epidemiology , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Enzyme-Linked Immunosorbent Assay , Ruminants/microbiology , Surveys and Questionnaires , Vagina/microbiology
7.
Braz J Microbiol ; 55(2): 1931-1939, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573541

ABSTRACT

Q fever is a zoonotic disease caused by the obligate intracellular pathogen Coxiella burnetii, for which domestic ruminants are the primary source of infection in humans. Herein, we investigated the presence of C. burnetii in humans, sheep, and goats in the semi-arid region of northeastern Brazil. The presence of anti-C. burnetii antibodies was surveyed using indirect immunofluorescence assay, and detection of C. burnetii DNA was performed by polymerase chain reaction (PCR). Anti-C. burnetii antibodies were detected in 60% of farms, 4.8% of goats, 1.5% of sheep, and 4.5% of human samples. PCR was positive in 18.9% of blood samples, 7.7% of milk samples, and 7.7% of vaginal mucus samples. A DNA sequence of a C. burnetii DNA sample extracted from the goat vaginal mucus showed 99.2-99.4% nucleotide identity with other strains previously reported in Brazil. These results indicate that C. burnetii is present in the surveyed area, where it poses a risk to both public and animal health. These findings indicate an urgent need for educative actions to protect population, as well as better training of veterinarians to detect and report Q fever.


Subject(s)
Antibodies, Bacterial , Coxiella burnetii , Goat Diseases , Goats , Q Fever , Sheep Diseases , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Coxiella burnetii/immunology , Brazil/epidemiology , Animals , Q Fever/veterinary , Q Fever/microbiology , Q Fever/epidemiology , Goats/microbiology , Humans , Sheep , Goat Diseases/microbiology , Goat Diseases/epidemiology , Sheep Diseases/microbiology , Sheep Diseases/epidemiology , Antibodies, Bacterial/blood , Female , Zoonoses/microbiology , DNA, Bacterial/genetics
8.
Acta Trop ; 254: 107163, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38428630

ABSTRACT

Coxiella burnetii is the causative agent of zoonotic Q fever. Animals are the natural reservoirs of C. burnetii, and domestic livestock represent the major sources of human infection. C. burnetii infection in pregnant females may causes abortion during late pregnancy, whereby massive shedding of C. burnetii with abortion products becomes aerosolized and persists in the environment. Therefore, monitoring and surveillance of this infection in livestock is important for the prevention of the C. burnetii transmission. Previous serological surveys have shown that C. burnetii infection is endemic in livestock in China. However, few data are available on the diagnosis of C. burnetii as a cause of abortion by molecular methods in livestock. To get a better understanding of the impact of C. burnetii infection on domestic livestock in China, a real-time PCR investigation was carried out on collected samples from different domestic livestock suffering abortion during 2021-2023. A total of 338 samples collected from eight herds of five livestock species were elected. The results showed that 223 (66 %) of the collected samples were positive for C. burnetii DNA using real-time PCR. For the aborted samples, 82 % (128/15) of sheep, 81 % (34/42) of goats, 44 % (15/34) of cattle, 69 % (18/26) of camels, and 50 % (17/34) of donkeys were positive for C. burnetii. Besides, 44 % (8/18) and 4 % (1/25) of asymptomatic individuals of sheep and donkey were also positive for C. burnetii. In addition, the positive samples were further confirmed by amplification and sequencing of the C. burnetii-specific isocitrate dehydrogenase (icd) gene. Phylogenetic analysis based on specific gene fragments of icd genes revealed that the obtained sequences in this study were clustered into two different groups associated with different origin of hosts and geographic regions. This is the first report confirming that C. burnetii exists in aborted samples of sheep, goats, cattle, donkeys and camels in China. Further studies are needed to fully elucidate the epidemiology of this pathogen in livestock as well as the potential risks to public health.


Subject(s)
Coxiella burnetii , Goats , Livestock , Q Fever , Real-Time Polymerase Chain Reaction , Animals , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Coxiella burnetii/classification , China/epidemiology , Q Fever/veterinary , Q Fever/microbiology , Q Fever/epidemiology , Livestock/microbiology , Sheep , Female , Goats/microbiology , Abortion, Veterinary/microbiology , Cattle , Pregnancy , DNA, Bacterial/genetics , Sheep Diseases/microbiology , Sheep Diseases/epidemiology
9.
Trop Anim Health Prod ; 56(3): 106, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507146

ABSTRACT

Coxiella burnetii, or Q fever agent, has notable implications for human and livestock health. Infections in cattle primarily manifest through reproductive issues where infected animals shed the bacterium in birth fluids, placental tissues, and milk, serving as potential sources of transmission. Bovine herds become reservoirs, contributing to the environmental contamination of farming areas. Comprehensive studies on the prevalence, transmission routes, and associated risk factors among cattle contribute to the development of effective control strategies, ultimately safeguarding both livestock and public health.Here we determine the prevalence of Coxiella burnetii antibodies against in dairy cattle farms from Kabylia (northern Algeria) and identify the associated risk factors. Bulk tank milk samples from 184 farms were analyzed by indirect ELISA technique, 49 of them were tested positive which corresponds to a prevalence rate of 26.63% (95% CI 20.25-33.01%). Multivariate analysis by logistic regression showed that the risk factors associated with detection of anti-Coxiella burnetii antibodies are: cohabitation of cattle with small ruminants(OR = 3.74 95% CI [1.41-8.92]), exposure to prevailing winds (OR = 5.12 95% CI [2.11-13.45]), and the veterinarian visits frequency(OR = 5.67 95% CI [2.55-13.60]). These findings underscore the susceptibility of dairy cattle to Q fever in the Kabylia region, highlighting practices that pose risks. We recommend the implementation of hygienic measures and adherence to proper farming conditions to mitigate the transmission of Q fever and reduce the associated zoonotic risk.


Subject(s)
Cattle Diseases , Coxiella burnetii , Q Fever , Humans , Cattle , Animals , Female , Pregnancy , Q Fever/epidemiology , Q Fever/veterinary , Q Fever/microbiology , Milk/microbiology , Prevalence , Algeria/epidemiology , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Placenta , Antibodies, Bacterial , Risk Factors , Antibodies, Protozoan
10.
Prev Vet Med ; 225: 106157, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452603

ABSTRACT

Coxiella burnetii is a Gram-negative bacterium that causes the zoonotic disease Q fever. Wild boars serve as reservoirs for C. burnetii. This study aimed to identify the risk factors associated with C. burnetii infection in wild boars. We analyzed the data from 975 wild boar samples collected from June to November 2021 in South Korea. We utilized the indirect ELISA to detect antibodies against C. burnetii. A sample optical density to positive-control optical density value exceeding 50% was classified as positive. We gathered data on the forestation, terrain, weather, agriculture, and animal density of the region where the samples were collected. Continuous variables were categorized into tertiles. We performed a univariate logistic regression analysis and included variables with a p-value < 0.2 in the final multivariable logistic regression model. In our multivariable logistic regression analysis to identify risk factors for C. burnetii infection in wild boars, we used a forward selection method to enter variables based on the order of their significance. We performed the final multivariable logistic regression analyses using either continuous variables or variables categorized into tertiles. The prevalence of C. burnetii was 14.6% (n=142). Locations with the highest maximum wind speeds (3.92-8.24 m/s) showed a 59% increase in infection odds compared to locations with the lowest speeds (1.45-3.25 m/s)(p=0.044). For each 1 m/s increase in maximum wind speed, infection odds increased by 24.1% (p=0.037). Regions with the highest percentage of paddy fields per area (8.3-45%) showed a 76% increase in infection odds compared to regions with the lowest percentage (0-1.5%)(p=0.011). For each 1% increase in the proportion of paddy fields per area, infection odds increased by 3.3% (p=0.003). High maximum wind speed and a high percentage of paddy field were identified as significant risk factors for C. burnetii infection in wild boars.


Subject(s)
Coxiella burnetii , Q Fever , Animals , Seroepidemiologic Studies , Q Fever/epidemiology , Q Fever/veterinary , Q Fever/microbiology , Risk Factors , Republic of Korea/epidemiology , Prevalence
11.
Exp Appl Acarol ; 92(3): 529-546, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38407754

ABSTRACT

This survey sought to molecularly detect Coxiella burnetii in Argasidae and Ixodidae ticks attached to small ruminants in the region of West Azerbaijan (Northwest of Iran) and blood samples collected from the same animals. 451 tick samples and 927 blood samples were obtained from sheep (n = 536) and goats (n = 391) and tested by nested PCR for detection of C. burnetii insertion sequence IS1111 or icd gene sequence. The collected ticks were morphologically classified as Rhipicephalus sanguineus, Rhipicephalus turanicus, Hyalomma asiaticum, Hyalomma anatolicum, or Argas reflexus. 14% of ticks (65 in total 43 for IS1111 and 22 for icd gene) tested positive for C. burnetii, none of which were from the Argas genus. Among the 927 blood samples, 218 (23.5%) tested positive for C. burnetii. The positive result from analysis targeting the genes IS1111 and icd were 131 and 87 respectively. As Q fever is a tickborne zoonosis and endemic to Iran, such information is critical for creating effective, coordinated, and strategic tick and pathogen control programs to prevent disease outbreak in domestic animals and humans.


Subject(s)
Coxiella burnetii , Goat Diseases , Goats , Ixodidae , Q Fever , Sheep Diseases , Animals , Iran/epidemiology , Coxiella burnetii/isolation & purification , Coxiella burnetii/genetics , Sheep , Goat Diseases/epidemiology , Goat Diseases/microbiology , Goat Diseases/parasitology , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Sheep Diseases/parasitology , Ixodidae/microbiology , Q Fever/veterinary , Q Fever/epidemiology , Tick Infestations/veterinary , Tick Infestations/epidemiology , Argasidae/microbiology , Female , Polymerase Chain Reaction/veterinary , Male
12.
Vaccine ; 42(8): 1993-2003, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38388237

ABSTRACT

Q fever in humans is caused by Coxiella (C.) burnetii. In 2008 and 2012, cases of Q fever in humans were linked to an infected flock of approximately 650 ewes. Since 2013 gimmers (G'13, G'14, G'15 etc.) were primary vaccinated (two doses) with an inactivated C.burnetii vaccine without any revaccination. In 2013, 30 ewes were primary vaccinated (A'13). Shedding was annually monitored by qPCR-testing of vaginal and nasal swabs collected at lambing. Animals were tested for Phase I- (PhI) and PhII-antibodies (Ab) and for PhII-specific-interferon-γ (IFN-γ) before and after vaccination. The effect of a revaccination was determined in 2018 and 2023. Groups of randomly selected gimmers primary vaccinated in 2015, 2016 and 2017 and a mixed group of older animals (A'13, G'13 and G'14) were revaccinated once in 2018. The trial was repeated in 2023 on groups primary vaccinated in 2019-2023. Major shedding after the outbreak in 2012 ceased in 2014. Thereafter C.burnetii was only sporadically detected at low-level in 2018, 2021 and 2023. Sheep naturally exposed to C.burnetii during the outbreak in 2012 (A'13, G'13) mounted a strong and complete (PhI, PhII, IFN-γ) recall immune response after vaccination. A serological PhI+/PhII+ pattern dominated after vaccination. In contrast, since 2014 a weaker immune response (PhII-titre, IFN-γ) and a dominance of the PhI-/PhII+ pattern was observed in vaccinated gimmers. The number of serologically non-responding gimmers to vaccination increased to 25.0 % in G'16/G'17 and 40.4 % in G'19/G'20. But revaccination even three (G'15 in 2018) and four (G'19 in 2023) years after primary vaccination resulted in a strong and complete immune response. No difference of the immune response nor to more recently primary vaccinated animals (G'23 in 2023) nor to those animals that were present during the outbreak (A'13/G'13/G'14 in 2018) was observed.


Subject(s)
Coxiella burnetii , Q Fever , Humans , Sheep , Animals , Female , Q Fever/prevention & control , Q Fever/veterinary , Q Fever/epidemiology , Antibodies , Bacterial Vaccines , Immunity
13.
Appl Environ Microbiol ; 90(3): e0220123, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38412030

ABSTRACT

Coxiella burnetii infection was monitored during seven kidding seasons (2017-2023) in a dairy goat herd that after an outbreak of Q fever abortions was vaccinated with an inactivated phase I vaccine. Due to the high infection rate just after the outbreak, only the replacement stock was vaccinated during the first three kidding seasons, and when the average herd immunity had decreased (fourth kidding season onwards), the whole herd was vaccinated. Vaginal swabs, feces, and milk were analyzed by PCR to monitor infection, and dust and aerosols were analyzed to measure C. burnetii environmental contamination. One year after the onset of the outbreak, a significant reduction in C. burnetii shedding loads was observed, but the percentage of shedding animals remained high until the third kidding season. By the seventh kidding season, no shedders were detected. The bacterial load excreted was significantly lower in vaccinated compared with unvaccinated animals, and in yearlings compared with multiparous. C. burnetii was detected by PCR in aerosols collected inside the animal premises throughout the study period except in the last season; whereas, aerosols collected outdoors tested negative in the last three kidding seasons. Viable C. burnetii was detectable in environmental dust collected inside the barn until the third kidding season following the outbreak. These results indicate that after an outbreak of Q fever, the risk of infection for humans and susceptible animals can remain high for at least three kidding seasons when the number of C. burnetii animal shedders is still high, even when bacterial excretion is low. IMPORTANCE: Q fever is a zoonosis distributed worldwide. Ruminants are the main reservoir, and infection can cause high rates of abortion. After entering a farm, Coxiella burnetii infection can persist in the animal population over several lambing/kidding periods. Once infection is established in a herd, vaccination with the inactivated Phase I vaccine significantly reduces bacterial shedding, but although at low levels, excretion may continue to occur for several lambing/kidding seasons. The time that C. burnetii remains viable in the farm environment after an outbreak of Q fever determines the period when risk of infection is high for the people in close contact. This work showed that this period extends at least three kidding seasons after the outbreak. These results provided valuable information on the epidemiology of C. burnetii infection in goat herds and may help to develop guidelines for controlling the disease and reducing infection risk for susceptible people and animals.


Subject(s)
Coxiella burnetii , Goat Diseases , Q Fever , Vaccines , Pregnancy , Female , Humans , Animals , Sheep , Q Fever/epidemiology , Q Fever/prevention & control , Q Fever/veterinary , Seasons , Goats , Disease Outbreaks/veterinary , Vaccination/veterinary , Aerosols , Dust , Goat Diseases/epidemiology , Goat Diseases/prevention & control , Goat Diseases/microbiology
14.
Comp Immunol Microbiol Infect Dis ; 106: 102126, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325127

ABSTRACT

Aiming at identifying the reservoir and contamination sources of Coxiella burnetii in Northern Algeria, we investigated the molecular presence of the bacterium in 599 samples (blood, placenta, liver, spleen, and uterus) collected from cattle, sheep, dogs and cats. Our qPCR results showed that 15/344 (4.36%) blood samples and six/255 (2.35%) organ specimens were positive for C. burnetii. In cattle, three (4%) blood and liver samples were positive. In sheep, one blood (1.19%) and 3 (8.57%) placenta samples were positive. At the Algiers dog pound, 8 (10%) and 3 (5%) blood samples were qPCR positivein dogs and cats, respectively. In addition, MST genotyping showed that MST 33 was present in cattle and sheep, MST 20 in cattle,andMST 21 in dogs and cats.


Subject(s)
Cat Diseases , Cattle Diseases , Coxiella burnetii , Dog Diseases , Goat Diseases , Q Fever , Sheep Diseases , Pregnancy , Female , Animals , Dogs , Cats , Cattle , Sheep , Coxiella burnetii/genetics , Q Fever/epidemiology , Q Fever/veterinary , Q Fever/microbiology , Genotype , Algeria/epidemiology , Cat Diseases/microbiology , Dog Diseases/epidemiology , Dog Diseases/microbiology , Cattle Diseases/microbiology , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Ruminants , Goats , Goat Diseases/microbiology
15.
Prev Vet Med ; 223: 106114, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38198901

ABSTRACT

Infection with the bacterium Coxiella burnetii can cause coxiellosis in animals and Q fever in humans. Coxiellosis a consistently underreported infectious disease. The infection can result in reproductive consequences for humans and animals. Ruminants are a reservoir for infection and humans are generally infected via aerosolized secretions, making it a public health concern. Studies of ruminant seroprevalence are generally limited in size and scope. This study determined seroprevalence in a large-scale U.S. population of female goats using serum samples from 7736 does from 24 states. This study identified C. burnetii seroprevalence in the United States domestic goat population. Overall, 14.5 % (SE = 2.3) of does were seropositive and 21.0 % (SE = 2.4) of operations had at least 1 seropositive doe. Further, operation demographics and herd management practices associated with seropositivity were as follows: the suspected or confirmed presence of caprine arthritis encephalitis (CAE), caseous lymphadenitis (CL), Johne's disease, or sore mouth in the herd in the previous 3 years, not cleaning or disinfecting the kidding areas or removing aborting does from other does, allowing visitors to access the kidding areas, and a lower percentage of adult goat inventory that were adult bucks or wethers. Furthermore, goat breed was associated with seropositivity. These data show C. burnetii seroprevalence in the United States and identify operation and animal characteristics and management practices associated with C. burnetii seropositivity. Together, this information can be used to help limit animal transmission, inform public health measures, and help educate and protect individuals working with goats.


Subject(s)
Coxiella burnetii , Goat Diseases , Q Fever , Sheep Diseases , Humans , Animals , Male , Female , United States/epidemiology , Sheep , Goats , Seroepidemiologic Studies , Prevalence , Goat Diseases/epidemiology , Goat Diseases/microbiology , Q Fever/epidemiology , Q Fever/veterinary , Q Fever/microbiology , Ruminants , Risk Factors , Sheep Diseases/epidemiology
16.
Vet Res Commun ; 48(3): 1341-1352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38236458

ABSTRACT

The zoonotic bacterium Coxiella (C.) burnetii can be excreted by infected goats through birth products and milk. The detection of C. burnetii DNA in the mammary gland tissue of infected dairy goats and intermittent milk shedders has been reported, but confirmation of C. burnetii bacteria in the udder remained pending. The pathogen caused abortions in a 152-head dairy goat herd, resulting in the vaccination against C. burnetii of the entire herd with annual boosters. To monitor the C. burnetii shedding at herd level, monthly bulk tank milk (BTM) samples were analyzed using PCR (IS1111). Despite vaccination, C. burnetii DNA was detected in BTM samples within the first 16 months of the study. Therefore, individual milk samples were tested on four different occasions several months apart to identify potential intermittent milk shedders. Only one goat (#67455) tested positive three times. This goat was necropsied to investigate the presence of C. burnetii in the udder and other organs. PCR detected C. burnetii DNA solely in both mammary glands and the left teat cistern. Immunohistological examination identified C. burnetii antigen in mammary gland tissue, confirmed by the detection of C. burnetii bacteria in the mammary epithelial cells using fluorescence in situ hybridization. The removal of goat #67455 led to negative BTM samples until the end of the study. The findings demonstrate the occurrence of C. burnetii in the mammary gland of a naturally infected and vaccinated goat. The presence possibly contributed to intermittent milk shedding of goat #67455, and the mammary gland tissue may serve as a replicative niche for C. burnetii.


Subject(s)
Coxiella burnetii , Goat Diseases , Goats , Mammary Glands, Animal , Milk , Q Fever , Animals , Coxiella burnetii/isolation & purification , Coxiella burnetii/genetics , Goat Diseases/microbiology , Goat Diseases/diagnosis , Mammary Glands, Animal/microbiology , Female , Q Fever/veterinary , Q Fever/microbiology , Milk/microbiology , Polymerase Chain Reaction/veterinary , Dairying
17.
Vet Res Commun ; 48(1): 19-28, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37642820

ABSTRACT

Coxiella burnetii is a zoonotic intracellular bacterium that is widely distributed and affects domestic animals, wildlife, humans and non-mammalian species. This systematic review was aimed at synthesizing research findings on C. burnetii in both domestic and wild animals of South Africa. The systematic review protocol was registered with Open Society Foundations of systematic reviews ( https://doi.org/10.17605/OSF.IO/8WS ). PRISMA guidelines were followed to collect and evaluate relevant scientific articles published on C. burnetii infecting domestic and wild animals in South Africa. Published articles were sourced from five electronic databases, namely, Google Scholar, PubMed and ScienceDirect, EBSCO and Scopus. Results showed 11 eligible studies involving four domestic animals, three wild animals and one ectoparasite species from seven provinces across South Africa. The occurrence of C. burnetii infection was high in Ceratotherium simum (white rhinoceros) (53.9%), medium in sheep (29.0%) and low in pigs (0.9%). Limpopo province (26%) had the most recorded infections followed by KwaZulu-Natal (19%) and Free State (3%) had the least reported occurrence of C. burnetii. The current study discovered that there is scarcity of published research on prevalence and distribution of C. burnetii infecting domestic and wild animals in South Africa, and this is of concern as this bacterium is an important zoonotic pathogen of "One Health" importance.


Subject(s)
Coxiella burnetii , Q Fever , Sheep Diseases , Swine Diseases , Ticks , Animals , Humans , Animals, Domestic , Animals, Wild , Bacteria , Q Fever/epidemiology , Q Fever/veterinary , Q Fever/microbiology , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , South Africa/epidemiology , Swine , Systematic Reviews as Topic , Ticks/microbiology
18.
Braz J Microbiol ; 55(1): 919-924, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38057691

ABSTRACT

The domestic animal, known as a main reservoir of Coxiella burnetii, is susceptible to the occurrence of coxiellosis, which can lead to abortions in domestic animals, causing significant economic damage and posing risks to human health. Therefore, the purpose of this study is to investigate C. burnetii as the causative agent of Q fever in abortion samples of small ruminants in southeastern Iran. This study was conducted between 2020 and 2021 in Zarand city, located in Kerman province (southeast Iran). In this study, 50 abomasum swab samples of aborted sheep and goat fetuses were collected and analyzed using molecular methods to identify C. burnetii. The results revealed that 26% (n: 13) of the collected abortion samples were infected with C. burnetii. Among the positive samples, two (50%) belonged to goat abortion samples while 11 (23.9%) belonged to sheep abortion samples. This study demonstrates that C. burnetii is one of the causes of abortion in small ruminants in southeastern Iran. It is recommended to pay more attention to C. burnetii in domestic animals due to its significant economic impact on livestock and its potential implication for human health in Iran.


Subject(s)
Coxiella burnetii , Goat Diseases , Q Fever , Sheep Diseases , Pregnancy , Humans , Female , Animals , Sheep , Coxiella burnetii/genetics , Aborted Fetus , Iran/epidemiology , Abortion, Veterinary/microbiology , Goat Diseases/microbiology , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Ruminants , Q Fever/epidemiology , Q Fever/veterinary , Animals, Domestic , Goats
19.
Vet Med Sci ; 10(1): e1335, 2024 01.
Article in English | MEDLINE | ID: mdl-38100127

ABSTRACT

BACKGROUND: Cheese is a popular dairy product consumed worldwide, and it has been implicated as a source of Coxiella burnetii infections. OBJECTIVES: The present study aimed to describe the molecular prevalence and source analysis of C. burnetii in cheese samples. METHODS: A systematic literature search was conducted using the Medline/PubMed, Science Direct, Web of Science, Scopus, and Google Scholar databases to identify studies reporting the molecular prevalence of C. burnetii in cheese samples. The pooled prevalence of C. burnetii in cheese samples was estimated using a random-effects model. RESULTS: A meta-analysis was conducted using the mean and standard deviation values obtained from 13 original studies. The overall molecular prevalence of C. burnetii in cheese was estimated to be 25.2% (95% confidence interval [CI]: 13.1%-39.7%). The I2 value of 96.3% (CI95% 94.9-97.3) suggested high heterogeneity, with a τ2 of 0.642 (CI95% -0.141 to 0.881), and an χ2 statistic of 323.77 (p < 0.0001). CONCLUSIONS: In conclusion, our meta-analysis provides a thorough assessment of the molecular prevalence and source analysis of C. burnetii in cheese samples.


Subject(s)
Cheese , Coxiella burnetii , Q Fever , Animals , Prevalence , Q Fever/epidemiology , Q Fever/veterinary
20.
Acta Trop ; 250: 107109, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151070

ABSTRACT

Q fever is a significant zoonotic disease caused by Coxiella burnetii, an obligate intracellular gram-negative bacterium. Although C. burnetii infection has been identified in various animal species, domestic ruminants serve as the primary reservoirs and main sources of human infection. Understanding of the epidemiology of C. burnetii in domestic ruminants is crucial for preventing and controlling of C. burnetii infection in humans. In this study, spleen tissues from sheep and goats were collected in Hennan province, China. Through PCR screening, C. burnetii was detected in sheep and goats in Henan province with an overall infection rate of 6.8 %. Sequence comparison and phylogenetic analysis revealed that all newly identified C. burnetii strains shared a close genetic relationship with those found in humans worldwide. These findings highlight the high risk of C. burnetii infection among slaughterhouse workers and emphasize the importance of epidemiological studies that investigate samples from both humans and animals within the "One Health" framework. Such surveillance will contribute to a better understanding of the epidemic situation and aid in the development of effective prevention and control strategies for C. burnetii infections in humans.


Subject(s)
Coxiella burnetii , Goat Diseases , Q Fever , Sheep Diseases , Animals , Sheep , Humans , Q Fever/epidemiology , Q Fever/veterinary , Goats , Molecular Epidemiology , Phylogeny , Seroepidemiologic Studies , Goat Diseases/epidemiology , Goat Diseases/microbiology , Sheep Diseases/microbiology , Coxiella burnetii/genetics , Ruminants/microbiology , China/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...