Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 273
Filter
1.
Theriogenology ; 223: 70-73, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38692036

ABSTRACT

Selection to increase body weight in poultry can hamper reproduction traits and compromise production efficiency. Thus, attention to reproduction traits is essential to improving the sustainability of breeding programs. Data from a domestic quail breeding program for meat production were used to estimate genetic parameters. We analyzed five traits: 4-week body weight, age at sexual maturity for males and females, cloacal gland area, female, and male reproductive organs weights. A multi-trait mixed model analysis with fixed effects of generation/hatch was performed, assuming environmental covariance equals zero for sex-limited traits. Heritability estimates range from low to moderate for male sexual maturity and cloacal gland area, and high for other traits. Intersexual genetic correlation for age at sexual maturity is positive, which can lead to correlated responses in the other sex. Reproductive organs weights are genetically correlated with body weight, but not significantly between sexes and nor with sexual maturity. Genetic correlations for the cloacal gland area were positive with body weight and negative with age at sexual maturity of males and females, demonstrating a potential use of this trait for selection with favorable outcomes in reproduction. The use of the cloacal gland area can be used in the same way as the scrotal circumference in mammals, improving female reproduction traits by selecting a trait recorded in males.


Subject(s)
Body Weight , Quail , Sexual Maturation , Animals , Male , Female , Sexual Maturation/genetics , Body Weight/genetics , Quail/genetics , Quail/physiology , Organ Size/genetics , Cloaca
2.
Gene ; 918: 148479, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38636815

ABSTRACT

The GHRL, LEAP2, and GHSR system have recently been identified as important regulators of feed intake in mammals and chickens. However, the complete cloning of the quail GHRL (qGHRL) and quail LEAP2 (qLEAP2) genes, as well as their association with feed intake, remains unclear. This study cloned the entire qGHRL and qLEAP2 cDNA sequence in Chinese yellow quail (Coturnix japonica), including the 5' and 3' untranslated regions. Sanger sequencing analysis revealed no missense mutations in the coding region of qGHRL and qLEAP2. Subsequently, phylogenetic analysis and protein homology alignment were conducted on the qGHRL and qLEAP2 in major poultry species. The findings of this research indicated that the qGHRL and qLEAP2 sequences exhibit a high degree of similarity with those of chicken and turkey. Specifically, the N-terminal 6 amino acids of GHRL mature peptides and all the mature peptide sequence of LEAP2 exhibited consistent patterns across all species examined. The analysis of tissue gene expression profiles indicated that qGHRL was primarily expressed in the proventriculus and brain tissue, whereas qLEAP2 exhibited higher expression levels in the intestinal tissue, kidney, and liver tissue, differing slightly from previous studies conducted on chicken. It is necessary to investigate the significance of elevated expression of qGHRL in brain and qLEAP2 in kidney in the future. Further research has shown that the expression of qLEAP2 can quickly respond to changes in different energy states, whereas qGHRL does not exhibit the same capability. Overall, this study successfully cloned the complete cDNA sequences of qGHRL and qLEAP2, and conducted a comprehensive examination of their tissue expression profiles and gene expression levels in the main expressing organs across different energy states. Our current findings suggested that qLEAP2 is highly expressed in the liver, intestine, and kidney, and its expression level is regulated by feed intake.


Subject(s)
Cloning, Molecular , Phylogeny , Animals , Ghrelin/genetics , Ghrelin/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism , Eating/genetics , Amino Acid Sequence , Gene Expression Profiling/methods , Coturnix/genetics , Coturnix/metabolism , Chickens/genetics , Chickens/metabolism , Quail/genetics , Polymorphism, Genetic
3.
Poult Sci ; 103(5): 103603, 2024 May.
Article in English | MEDLINE | ID: mdl-38457990

ABSTRACT

Quail, as an advantageous avian model organism due to its compact size and short reproductive cycle, holds substantial potential for enhancing our understanding of skeletal muscle development. The quantity of skeletal muscle represents a vital economic trait in poultry production. Unraveling the molecular mechanisms governing quail skeletal muscle development is of paramount importance for optimizing meat and egg yield through selective breeding programs. However, a comprehensive characterization of the regulatory dynamics and molecular control underpinning quail skeletal muscle development remains elusive. In this study, through the application of HE staining on quail leg muscle sections, coupled with preceding fluorescence quantification PCR of markers indicative of skeletal muscle differentiation, we have delineated embryonic day 9 (E9) and embryonic day 14 (E14) as the start and ending points, respectively, of quail skeletal muscle differentiation. Then, we employed whole transcriptome sequencing to investigate the temporal expression profiles of leg muscles in quail embryos at the initiation of differentiation (E9) and upon completion of differentiation (E14). Our analysis revealed the expression patterns of 12,012 genes, 625 lncRNAs, 14,457 circRNAs, and 969 miRNAs in quail skeletal muscle samples. Differential expression analysis between the E14 and E9 groups uncovered 3,479 differentially expressed mRNAs, 124 lncRNAs, 292 circRNAs, and 154 miRNAs. Furthermore, enrichment analysis highlighted the heightened activity of signaling pathways related to skeletal muscle metabolism and intermuscular fat formation, such as the ECM-receptor interaction, focal adhesion, and PPAR signaling pathway during E14 skeletal muscle development. Conversely, the E9 stage exhibited a prevalence of pathways associated with myoblast proliferation, exemplified by cell cycle processes. Additionally, we constructed regulatory networks encompassing lncRNA‒mRNA, miRNA‒mRNA, lncRNA‒miRNA-mRNA, and circRNA-miRNA‒mRNA interactions, thus shedding light on their putative roles within quail skeletal muscle. Collectively, our findings illuminate the gene and non-coding RNA expression characteristics during quail skeletal muscle development, serving as a foundation for future investigations into the regulatory mechanisms governing non-coding RNA and quail skeletal muscle development in poultry production.


Subject(s)
Coturnix , Gene Regulatory Networks , Muscle Development , Muscle, Skeletal , Signal Transduction , Transcriptome , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Coturnix/genetics , Coturnix/growth & development , Coturnix/embryology , Coturnix/metabolism , Quail/genetics , Quail/embryology , Quail/growth & development , Gene Expression Profiling/veterinary
4.
BMC Genomics ; 25(1): 197, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373887

ABSTRACT

BACKGROUND: In cold and temperate zones, seasonal reproduction plays a crucial role in the survival and reproductive success of species. The photoperiod influences reproductive processes in seasonal breeders through the hypothalamic-pituitary-gonadal (HPG) axis, in which the mediobasal hypothalamus (MBH) serves as the central region responsible for transmitting light information to the endocrine system. However, the cis-regulatory elements and the transcriptional activation mechanisms related to seasonal activation of the reproductive axis in MBH remain largely unclear. In this study, an artificial photoperiod program was used to induce the HPG axis activation in male quails, and we compared changes in chromatin accessibility changes during the seasonal activation of the HPG axis. RESULTS: Alterations in chromatin accessibility occurred in the mediobasal hypothalamus (MBH) and stabilized at LD7 during the activation of the HPG axis. Most open chromatin regions (OCRs) are enriched mainly in introns and distal intergenic regions. The differentially accessible regions (DARs) showed enrichment of binding motifs of the RFX, NKX, and MEF family of transcription factors that gained-loss accessibility under long-day conditions, while the binding motifs of the nuclear receptor (NR) superfamily and BZIP family gained-open accessibility. Retinoic acid signaling and GTPase-mediated signal transduction are involved in adaptation to long days and maintenance of the HPG axis activation. According to our footprint analysis, three clock-output genes (TEF, DBP, and HLF) and the THRA were the first responders to long days in LD3. THRB, NR3C2, AR, and NR3C1 are the key players associated with the initiation and maintenance of the activation of the HPG axis, which appeared at LD7 and tended to be stable under long-day conditions. By integrating chromatin and the transcriptome, three genes (DIO2, SLC16A2, and PDE6H) involved in thyroid hormone signaling showed differential chromatin accessibility and expression levels during the seasonal activation of the HPG axis. TRPA1, a target of THRB identified by DAP-seq, was sensitive to photoactivation and exhibited differential expression levels between short- and long-day conditions. CONCLUSION: Our data suggest that trans effects were the main factors affecting gene expression during the seasonal activation of the HPG axis. This study could lead to further research on the seasonal reproductive behavior of birds, particularly the role of MBH in controlling seasonal reproductive behavior.


Subject(s)
Chromatin , Quail , Animals , Male , Seasons , Quail/genetics , Chromatin/genetics , Chromatin/metabolism , Hypothalamus/metabolism , Reproduction/genetics , Photoperiod
5.
Genesis ; 62(1): e23530, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37353984

ABSTRACT

Sex is a biological variable important to consider in all biomedical experiments. However, doing so in avian embryos can be challenging as sex can be morphologically indistinguishable. Unlike humans, female birds are the heterogametic sex with Z and W sex chromosomes. The female-specific W chromosome has previously been identified in chick using a species-specific polymerase chain reaction (PCR) technique. We developed a novel reverse transcription quantitative PCR (RT-qPCR) technique that amplifies the W chromosome gene histidine triad nucleotide-binding protein W (HINTW) in chick, quail, and duck. Accuracy of the HINTW RT-qPCR primer set was confirmed in all three species using species-specific PCR, including a novel quail-specific HINTW PCR primer set. Bone development-related gene expression was then analyzed by sex in embryonic lower jaws of duck and quail, as adult duck beak size is known to be sexually dimorphic while quail beak size is not. Trends toward sex differences were found in duck gene expression but not in quail, as expected. With these novel RT-qPCR and PCR embryo sexing methods, sex of chick, quail, and duck embryos can now be assessed by either/both RNA and DNA, which facilitates analysis of sex as a biological variable in studies using these model organisms.


Subject(s)
Chickens , Quail , Animals , Humans , Female , Male , Quail/genetics , Ducks/genetics , Jaw
6.
Ecotoxicol Environ Saf ; 269: 115780, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38056123

ABSTRACT

The granulosa cells (GCs) of birds are essential for the reproduction and maintenance of populations in nature. Atrazine (ATR) is a potent endocrine disruptor that can interfere with reproductive function in females and Diaminochlorotriazine (DACT) is the primary metabolite of ATR in the organism. Melatonin (MT) is an endogenous hormone with antioxidant properties that plays a crucial role in development of animal germ cells. However, how ATR causes mitochondrial dysfunction, abnormal secretion of steroid hormones, and whether MT prevents ATR-induced female reproductive toxicity remains unclear. Thus, the purpose of this study is to investigate the protective effect of MT against ATR-induced female reproduction. In the present study, the GCs of quail were divided into 6 groups, as follows: C (Serum-free medium), MT (10 µM MT), A250 (250 µM ATR), MA250 (10 µM MT+250 µM ATR), D200 (200 µM DACT) and MD200 (10 µM MT+200 µM DACT), and were cultured for 24 h. The results revealed that ATR prevented GCs proliferation and decreased cell differentiation. ATR caused oxidative damage and mitochondrial dysfunction, leading to disruption of steroid synthesis, which posed a severe risk to GC's function. However, MT supplements reversed these changes. Mechanistically, our study exhibited that the ROS/SIRT1/STAR axis as a target for MT to ameliorate ATR-induced mitochondrial dysfunction and steroid disorders in GCs, which provides new insights into the role of MT in ATR-induced reproductive capacity and species conservation in birds.


Subject(s)
Atrazine , Herbicides , Melatonin , Mitochondrial Diseases , Animals , Female , Atrazine/toxicity , Atrazine/metabolism , Granulosa Cells/metabolism , Herbicides/toxicity , Herbicides/metabolism , Melatonin/pharmacology , Mitochondrial Diseases/chemically induced , Reactive Oxygen Species/metabolism , Sirtuin 1/drug effects , Sirtuin 1/metabolism , Steroids/metabolism , Quail/genetics , Quail/metabolism
7.
Sci Rep ; 13(1): 21307, 2023 12 02.
Article in English | MEDLINE | ID: mdl-38042890

ABSTRACT

This study was designed to perform an association analysis and identify SNP markers associated with production traits of Japanese quail using restriction-site-associated DNA sequencing. Weekly body weight data from 805 quail were collected from hatching to 16 weeks of age. A total number of 3990 eggs obtained from 399 female quail were used to assess egg quality traits. Egg-related traits were measured at the beginning of egg production (first stage) and at 12 weeks of age (second stage). Five eggs were analyzed at each stage. Traits, such as egg weight, egg length and short axes, eggshell strength and weight, egg equator thickness, yolk weight, diameter, and colour, albumen weight, age of first egg, total number of laid eggs, and egg production rate, were assessed. A total of 383 SNPs and 1151 associations as well as 734 SNPs and 1442 associations were identified in relation to quail production traits using general linear model (GLM) and mixed linear model (MLM) approaches, respectively. The GLM-identified SNPs were located on chromosomes 1-13, 15, 17-20, 24, 26-28, and Z, underlying phenotypic traits, except for egg and albumen weight at the first stage and yolk yellowness at the second stage. The MLM-identified SNPs were positioned on defined chromosomes associated with phenotypic traits except for the egg long axis at the second stage of egg production. Finally, 35 speculated genes were identified as candidate genes for the targeted traits based on their nearest positions. Our findings provide a deeper understanding and allow a more precise genetic improvement of production traits of Galliformes, particularly in Japanese quail.


Subject(s)
Coturnix , Eggs , Animals , Female , Coturnix/genetics , Quail/genetics , Phenotype , Chromosomes , Albumins/genetics , Ovum
8.
Poult Sci ; 102(12): 103047, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37812872

ABSTRACT

The leptin receptor (LEPR) gene is a member of the class I cytokine receptor family, which plays an important role in weight regulation, fat accumulation and neuroendocrine function in animals. This study aimed to explore the association of single nucleotide polymorphisms (SNPs) of the LEPR gene with growth and carcass traits in meat-type quail by PCR amplification and DNA direct sequencing. In this study, genomic DNA was extracted from blood samples of 36 female Savimalt (SV) quails and 49 female French Giant (FG) quails. Growth traits (measured at 3 or 5 wk) and carcass traits (measured at 5 wk) were used for LEPR gene association analysis. The results showed the existence of 9 SNPs (T81C, G90T, C187A, A191G, A219G, G258A, C286T, G346A, and G373A) of the LEPR gene in the 2 quail strains. The statistical analyses indicated that these SNPs of LEPR gene was significantly associated with shank circumference (SC), shank length (SL), breastbone length (BBL), heart rate (HR), and whole net carcass rate (WNCR) of FG (P < 0.05); chest width (CW), body length (BL), leg muscle rate (LMR), whole net carcass rate (WNCR), and heart rate (HR) of SV (P < 0.05). While haplotypes showed significant effect on SL, BBL, heart weight (HW), WNCR, and HR of FG (P < 0.05). Therefore, the LEPR gene may serve as a molecular genetic marker for improving growth and carcass traits in quails.


Subject(s)
Chickens , Quail , Female , Animals , Quail/genetics , Meat/analysis , Polymorphism, Single Nucleotide , DNA
9.
Poult Sci ; 102(12): 103074, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37856909

ABSTRACT

This study aimed to investigate the association of insulin-like growth factor 1 receptor (IGF-1R) gene single nucleotide polymorphisms (SNPs) with growth traits and carcass traits of quail by PCR amplification and direct sequencing technology. Genomic DNA was extracted from blood samples collected from 49 female French Giant (FG) quails and 36 female Savimalt (SV) quails as part of this study. Growth traits and carcass traits were measured and assessed for IGF-1R gene analysis in the 2 meat-type quail strains. The results showed that 2 SNPs (A57G and A72T) of the IGF-1R gene were detected in the 2 quail strains. The A57G (P = 0.002) and A72T (P = 0.026) were significantly associated with breastbone length (BBL) in FG. Whereas A57G was significantly associated with chest weight (CW, P = 0.004), BBL (P = 0.009), and body length (BL, P = 0.009) in SV, while A72T was significantly associated with BBL (P = 0.014) and BL (P = 0.028) in SV. Haplotypes based on these 2 SNPs showed significant effects on BBL in FG strain (P = 0.000), and they also had significant effects on CW (P = 0.007), BBL (P = 0.004), and BL (P = 0.001) in SV strain. Additionally, A57G was significantly associated with liver rate (LR) in FG strain (P = 0.017). A72T showed significant associations with dressed carcass weight (DCW, P = 0.048) and breast muscle weight (BMW, P = 0.018) in FG strain. A57G was significantly associated with DCW (P = 0.048), whole net carcass weight (WNCW, P = 0.048), BMW (P = 0.036), and liver muscle rate (LMR, P = 0.003) in SV strain. Haplotypes also displayed significant effects on BMW (P = 0.029) and LMR (P = 0.010) in FG strain. These findings indicated that the IGF-1R gene could serve as a valuable molecular genetic marker for enhancing growth traits and carcass traits in meat-type quails.


Subject(s)
Quail , Female , Animals , Quail/genetics , Chickens , Polymorphism, Single Nucleotide , Meat/analysis
10.
Poult Sci ; 102(10): 102713, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37540950

ABSTRACT

The purpose of this study was to investigate the effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota of heat-stressed quails. A total of 120 (30-day-old) male quails were randomly divided into 3 groups. Each group consisted of 4 replicates with 10 birds per replicate. The ambient temperature of the control group (group W) was 24°C ± 2°C. The heat stress group (group WH) and the heat stress + melittin group (group WHA2) were subjected to heat stress for 4 h from 12:00 to 16:00 every day, and the temperature was 36°C ± 2°C for 10 d. The results showed that compared with the group W, heat stress significantly decreased growth performance, serum and liver antioxidative function, immune function, intestinal villus height (VH) and villus height-to-crypt depth ratio (VH/CD), and cecal microbiota Chao and ACE index (P < 0.05). The crypt depth (CD) in the small intestine, and HSP70 and HSP90 mRNA levels in the heart, liver, spleen, and kidney were significantly increased (P < 0.05). Dietary melittin significantly increased growth performance, serum and liver antioxidative function, immune function, intestinal VH and VH/CD, and cecal microbiota Shannon index in heat-stressed quails (P < 0.05). Melittin significantly decreased small intestinal CD, and HSP70 and HSP90 mRNA levels in the viscera (P < 0.05). Furthermore, dietary melittin could have balanced the disorder of cecal microbiota caused by heat stress and increased the abundance and diversity of beneficial microbiota (e.g., Firmicutes were significantly increased). PICRUSt2 functional prediction revealed that most of the KEGG pathways with differential abundance caused by high temperature were related to metabolism, and melittin could have restored them close to normal levels. Spearman correlation analysis showed that the beneficial intestinal bacteria Anaerotruncus, Bacteroidales_S24-7_group_norank, Lachnospiraceae_unclassified, Shuttleworthia, and Ruminococcaceae_UCG-014 increased by melittin were positively correlated with average daily feed intake, the average daily gain, serum and liver superoxide dismutase, IgG, IgA, bursa of Fabricius index, and ileum VH and VH/CD. In sum, our results demonstrate for the first time that dietary melittin could improve the adverse effects of heat stress on antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in quails, consequently improving their production performance under heat stress.


Subject(s)
Antioxidants , Microbiota , Male , Animals , Antioxidants/metabolism , Heat-Shock Proteins/metabolism , Melitten/metabolism , Quail/genetics , Chickens/genetics , Diet/veterinary , HSP70 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Response , RNA, Messenger/genetics , Immunity , Dietary Supplements/analysis , Animal Feed/analysis
11.
Poult Sci ; 102(10): 102931, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37499616

ABSTRACT

The gut microbiome plays an important role in quail feed efficiency, immunity, production, and even behavior. Gut microbial gene catalogs and reference genomes are important for understanding the quail gut microbiome. However, quail gut microbes are lacked sequenced genomes and functional information to date. In this study, we report the first catalog of the microbial genes and metagenome-assembled genomes (MAGs) in fecal and cecum luminal content samples from 3 quail breeds using deep metagenomic sequencing. We identified a total of 2,419,425 nonredundant genes in the quail genome catalog, and a total of 473 MAGs were reconstructed through binning analysis. At 95% average nucleotide identity, the 473 MAGs were clustered into 283 species-level genome bins (SGBs), of which 225 SGBs belonged to species without any available genomes in the current database. Based on the quail gene catalog and MAGs, we identified 142 discriminative bacterial species and 244 discriminative MAGs between Chinese yellow quails and Japanese quails. The discriminative MAGs suggested a strain-level difference in the gut microbial composition. Additionally, a total of 25 Kyoto Encyclopedia of Genes and Genomes functional terms and 88 carbohydrate-active enzymes were distinctly enriched between Chinese yellow quails and Japanese quails. Most of the different species and MAGs were significantly interrelated with the shifts in the functional capacities of the quail gut microbiome. Taken together, we constructed a quail gut microbial gene catalog and enlarged the reference of quail gut microbial genomes. The results of this study provide a powerful and invaluable resource for quail gut microbiome-related research.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Animals , Quail/genetics , Chickens/genetics , Genes, Microbial
12.
Anim Biotechnol ; 34(9): 5001-5010, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37300547

ABSTRACT

To explore the relationship between PMEL gene and quail plumage color, to provide a reference for subsequent quail plumage color breeding. In this experiment, RT-qPCR technology was used to analyze the relative mRNA expression levels of Korean quail (maroon) and Beijing white quail embryos at different developmental stages. Two SNPs in PMEL gene were screened based on the RNA-Seq data of skin tissues of Korean quail and Beijing white quail during embryonic stage. The KASP technology was used for genotyping in the resource population and correlation analysis was carried out with the plumage color traits of quail. Finally, the bioinformatics technology was used to predict the effects of these two SNPs on the structure and function of the encoded protein. The results showed that the expression levels of PMEL gene during the embryonic development of Beijing white quail were extremely significantly higher than that of Korean quail (p < 0.01). The frequency distribution of the three genotypes (AA, AB, and BB) of the Beijing white quail at the c. 1030C > T and c. 1374A > G mutation sites were extremely significantly different from that of the Korean quail (p < 0.01). And there was a significant correlation between the c. 1374A > G mutation site with white plumage phenotype. Bioinformatics analysis showed that SNP1 (c. c1030t) located in exon 6 was a harmful mutation site, and SNP2 (c. a1374g) located in exon 7 was a neutral mutation site. Protein conservation prediction showed that the coding protein P344S site caused by SNP1 (c. c1030t) site and the coding protein I458M site caused by SNP2 (c. g2129a) site were non-conservative sites. The results of this experiment showed that the PMEL gene was associated with the plumage color traits of quail and could be used as a candidate gene for studying the plumage color of quail.


Subject(s)
Polymorphism, Single Nucleotide , Quail , Animals , Polymorphism, Single Nucleotide/genetics , Quail/genetics , Feathers/metabolism , Coturnix/genetics , Pigmentation/genetics , Gene Expression
13.
Sci Rep ; 13(1): 7380, 2023 05 06.
Article in English | MEDLINE | ID: mdl-37149699

ABSTRACT

Endogenous retroviruses (ERVs) are genetic elements present in the genome that retain traces of past viral infections. Characterization of ERVs can provide crucial insights into avian evolution. This study aimed to identify novel long terminal repeat (LTR) loci derived from ERVs (ERV-LTRs) absent in the reference genome using whole-genome sequencing data of red junglefowl, gray junglefowl, Ceylon junglefowl, and green junglefowl. In total, 835 ERV-LTR loci were identified across the four Gallus species. The numbers of ERV-LTRs loci detected in red junglefowl and its subspecies gray junglefowl, Ceylon junglefowl, and green junglefowl were 362, 216, 193, and 128, respectively. The phylogenetic tree was congruent with previously reported trees, suggesting the potential for inferring relationships among past junglefowl populations from the identified ERV-LTR loci. Of the detected loci, 306 ERV-LTRs were identified near or within the genes, and some were associated with cell adhesion. The detected ERV-LTR sequences were classified as endogenous avian retrovirus family, avian leukosis virus subgroup E, Ovex-1, and murine leukemia virus-related ERVs. In addition, the sequence of the EAV family was divided into four patterns by combining the U3, R, and U5 regions. These findings contribute to a more comprehensive understanding of the characteristics of junglefowl ERVs.


Subject(s)
Endogenous Retroviruses , Gammaretrovirus , Animals , Mice , Endogenous Retroviruses/genetics , Phylogeny , Chickens/genetics , Quail/genetics , Gammaretrovirus/genetics , Terminal Repeat Sequences/genetics
14.
Poult Sci ; 102(6): 102617, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37094469

ABSTRACT

Insulin-like growth factor 1 receptor (IGF-1R) gene is the main effector of insulin-like growth factor (IGF), which plays an important role in growth, development and reproduction of the animal organism. This study aimed to investigate the association of IGF-1R gene single nucleotide polymorphisms (SNPs) with egg quality and carcass traits of quail by direct sequencing. In this study, genomic DNA was extracted from quail blood samples of 46 Chinese yellow (CY) quail, 49 Beijing white (BW) quail and 48 Korean (KO) quail strains. Egg quality and carcass traits were measured and used for IGF-1R gene analysis in 3 quail strains. The results showed that 2 SNPs (A57G and A72T) of the IGF-1R gene were detected in 3 quail strains. The A57G was significantly associated with yolk width (YWI) in BW strain (P < 0.05). Whereas A72T was significantly associated with egg shell thickness (EST) in BW strain (P < 0.05), and significantly associated with egg weight (EW), egg long (EL), and egg short (ES) in KO strain (P < 0.05). Haplotypes based on 2 SNPs showed significant effect on EST in 3 quail strains (P < 0.05), it also has a significant effect on EW in KO strain (P < 0.05). Meanwhile, A72T was significantly associated with liver weight (LW) and dressing percentage (DP) in 3 strains (P < 0.05). Haplotypes showed significant effect on LW (P < 0.05). Therefore, the IGF-1R gene may be a molecular genetic marker to improve egg quality and carcass traits in quails.


Subject(s)
Coturnix , Quail , Animals , Quail/genetics , Chickens , Ovum , Polymorphism, Single Nucleotide
15.
J Hered ; 114(4): 418-427, 2023 06 22.
Article in English | MEDLINE | ID: mdl-36763048

ABSTRACT

The California quail (Callipepla californica) is an iconic native bird of scrub and oak woodlands in California and the Baja Peninsula of Mexico. Here, we report a draft reference assembly for the species generated from PacBio HiFi long read and Omni-C chromatin-proximity sequencing data as part of the California Conservation Genomics Project (CCGP). Sequenced reads were assembled into 321 scaffolds totaling 1.08 Gb in length. Assembly metrics indicate a highly contiguous and complete assembly with a contig N50 of 5.5 Mb, scaffold N50 of 19.4 Mb, and BUSCO completeness score of 96.5%. Transposable elements (TEs) occupy 16.5% of the genome, more than previous Odontophoridae quail assemblies but in line with estimates of TE content for recent long-read assemblies of chicken and Peking duck. Together these metrics indicate that the present assembly is more complete than prior reference assemblies generated for Odontophoridae quail. This reference will serve as an essential resource for studies on local adaptation, phylogeography, and conservation genetics in this species of significant biological and recreational interest.


Subject(s)
Genomics , Quail , Animals , Quail/genetics , Chromosomes , DNA Transposable Elements , California
16.
Poult Sci ; 102(1): 102311, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36495620

ABSTRACT

The domestic turkey is a native breed in danger of extinction due to the introduction of new breeds specializing in meat production and yield. Turkeys have lost some prominence in urban areas, and only certain breeds of turkeys are preserved in rural areas. Wild and domestic turkeys are different; rural or indigenous turkeys, with black plumage, were domesticated from Mexican turkeys and have been reproduced throughout Latin America. Some of them were taken to Europe in the 16th century and later arrived in North America, where they crossed with another wild species, from which the bronze turkey emerged: the ancestor of all commercial turkeys. The objective of the present work was to evaluate the genetic diversity in 10 populations of domestic turkeys worldwide by using breeds from Europe: Spain and Italy; America: Mexico, United States and Brazil; and the Near East: Iran and Egypt. A total of 522 blood samples of both sexes were collected from domestic turkey populations. Thirty-four microsatellites were used to obtain genetic parameters, and genetic diversity was evaluated. All microsatellites used were polymorphic, and a total of 427 alleles were detected across the 34 markers investigated. In this study, a mean number of 13.44 alleles was found. The four most diverse breeds were from the Andalusia, Mexico, United States, and wild populations, which had the highest mean heterozygosity expected (0.619, 0.612, 0.650, and 0.773) and heterozygosity observed (0.422, 0.521, 0.429, and 0.627), respectively. The MNT348 marker deviated from the HWE in all populations. Our study has shown that the populations close to the species origin are more diverse than those resulting from posterior expansions. Mexican birds were the most diverse, followed by the Spanish populations because Spain imported a large number of turkeys coming from America. Such information can be complementary to other genotypic data required to validate the evolutionary relationships among turkey populations.


Subject(s)
Genetic Variation , Turkeys , Female , Male , Animals , Turkeys/genetics , Chickens/genetics , Genotype , Microsatellite Repeats , Quail/genetics
17.
Poult Sci ; 102(1): 102260, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36370661

ABSTRACT

In avian species, positive relationships between egg weight (EW) and body weight (BW) have been reported. However, the correlation between the body growth rate and different weights of eggs from genetically mutated avian species was not studied yet. Myostatin (Mstn), an anti-myogenic factor, mutant quail were recently developed, and it was reported that EW produced from Mstn homozygous mutant quail (HO) was heavier compared to those from wild-type quail (WT). In the current study, distributions of pre-incubated EW and associations between EW and BW were compared between the Mstn mutant and WT quail lines. Average egg weight for the HO group was significantly heavier than the WT (P < 0.001) and the number of eggs having heavier EW (over 11 g) was higher in the HO compared to the WT (P < 0.01). BWs at wk (W) 0, 4, and 6 after hatch were also significantly greater in the HO (P < 0.001 in all groups). In addition, linear regression analyses revealed positive relationships between EW and BW from W0 to W6, regardless of sexes and genotypes. Furthermore, Mstn mutant quail were a heavier BW compared to the WT quail originated from eggs with similar weights. These data indicate that increased BW by Mstn mutation is contributed by increased EW and/or growth promoting activity of Mstn mutation independent of increasing egg sizes. These findings provide Mstn as a desirable genetic factor for selection of poultry breeds with superior growth. In addition, the knowledge gained from this study could inspire similar proof-of-concept studies involving standard and commercial lines of poultry.


Subject(s)
Myostatin , Quail , Animals , Quail/genetics , Myostatin/genetics , Chickens/genetics , Ovum , Mutation
18.
Trop Anim Health Prod ; 55(1): 5, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36509919

ABSTRACT

Minimizing bird mortality in the commercial quail breeding industry is important from an economic and welfare perspective. Genetic and non-genetic factors can influence on the cumulative survival of the birds (CS). Accordingly, this study aimed to investigate non-genetic factors on CSs (cumulative survival of the birds from hatch to 5 (CS1), 10 (CS2), 15 (CS3), 20 (CS4), 25 (CS5), 30 (CS6), 35 (CS7), 40 (CS8), and 45 (CS9) days of age), and estimation of the genetic parameters for CSs in crossbred population of quail. Data set included 1794 records from crossbred chicks hatched from 70 sires and 72 dams. The fixed effects were analyzed using an animal model by ASReml software, and all traits were analyzed using Bayesian method via Gibbs sampling by fitting of 6 threshold animal models including the direct genetic effect, the maternal permanent environmental effect, and the maternal genetic effect. The best fitted model for each trait was selected based on the deviance information criteria. Hatch number, the month of hatch, and combination of chickens showed a significant effect on CSs, but the sex of chickens does not have a significant effect on CSs. However, females have higher survival than males (except for CS1). With the best model, the highest and lowest direct heritability was estimated for CS5 (0.386) and CS3 (0.250), respectively. The maternal genetic effect was significant for CS1, CS2, CS3, and CS4 traits, but the maternal permanent environmental effect was significant only for CS1. The range of maternal heritability for CS1 to CS4 traits was estimated from 0.064 to 0.111, and ratio of the permanent environmental variance to phenotypic variance for CS1 was 0.021. The result showed that increasing of the birds' survival could be performed by correcting non-genetic factors and genetic selection for CSs considering the maternal genetic effects in younger ages. HIGHLIGHTS: • In the commercial quail breeding industry, the bird mortality is important from an economic and welfare perspective. • Improving quail survival can be achieved by controlling the genetic and non-genetic factors affecting on survival, so knowledge of these factors is necessary. • The combination of crossbred chickens had a significant effect on cumulative survival traits. • The Cumulative survival traits in the crossbred population had relatively high genetic diversity, so genetic selection for these traits could be effective.


Subject(s)
Chickens , Quail , Male , Female , Animals , Bayes Theorem , Quail/genetics , Chickens/genetics , Phenotype , Maternal Inheritance , Body Weight/genetics , Models, Genetic
19.
PeerJ ; 10: e14202, 2022.
Article in English | MEDLINE | ID: mdl-36389428

ABSTRACT

Recent studies have revealed the dynamic and complex evolution of CLCA1 gene homologues in and between mammals and birds with a particularly high diversity in mammals. In contrast, CLCA2 has only been found as a single copy gene in mammals, to date. Furthermore, CLCA2 has only been investigated in few mammalian species but not in birds. Here, we established core genomic, protein biochemical and expressional properties of CLCA2 in several bird species and compared them with mammalian CLCA2. Chicken, turkey, quail and ostrich CLCA2 were compared to their mammalian orthologues using in silico, biochemical and expressional analyses. CLCA2 was found highly conserved not only at the level of genomic and exon architecture but also in terms of the canonical CLCA2 protein domain organization. The putatively prototypical galline CLCA2 (gCLCA2) was cloned and immunoblotting as well as immunofluorescence analyses of heterologously expressed gCLCA2 revealed protein cleavage, glycosylation patterns and anchoring in the plasma membrane similar to those of most mammalian CLCA2 orthologues. Immunohistochemistry found highly conserved CLCA2 expression in epidermal keratinocytes in all birds and mammals investigated. Our results suggest a highly conserved and likely evolutionarily indispensable role of CLCA2 in keratinocyte function. Its high degree of conservation on the genomic, biochemical and expressional levels stands in contrast to the dynamic structural complexities and proposed functional diversifications between mammalian and avian CLCA1 homologues, insinuating a significant degree of negative selection of CLCA2 orthologues among birds and mammals. Finally, and again in contrast to CLCA1, the high conservation of CLCA2 makes it a strong candidate for studying basic properties of the functionally still widely unresolved CLCA gene family.


Subject(s)
Chickens , Mammals , Animals , Mammals/genetics , Chickens/genetics , Quail/genetics , Genomics , Turkeys/genetics
20.
PLoS One ; 17(9): e0274189, 2022.
Article in English | MEDLINE | ID: mdl-36099302

ABSTRACT

Characterizing genetic structure across a species' range is relevant for management and conservation as it can be used to define population boundaries and quantify connectivity. Wide-ranging species residing in continuously distributed habitat pose substantial challenges for the characterization of genetic structure as many analytical methods used are less effective when isolation by distance is an underlying biological pattern. Here, we illustrate strategies for overcoming these challenges using a species of significant conservation concern, the Greater Sage-grouse (Centrocercus urophasianus), providing a new method to identify centers of genetic differentiation and combining multiple methods to help inform management and conservation strategies for this and other such species. Our objectives were to (1) describe large-scale patterns of population genetic structure and gene flow and (2) to characterize genetic subpopulation centers across the range of Greater Sage-grouse. Samples from 2,134 individuals were genotyped at 15 microsatellite loci. Using standard STRUCTURE and spatial principal components analyses, we found evidence for four or six areas of large-scale genetic differentiation and, following our novel method, 12 subpopulation centers of differentiation. Gene flow was greater, and differentiation reduced in areas of contiguous habitat (eastern Montana, most of Wyoming, much of Oregon, Nevada, and parts of Idaho). As expected, areas of fragmented habitat such as in Utah (with 6 subpopulation centers) exhibited the greatest genetic differentiation and lowest effective migration. The subpopulation centers defined here could be monitored to maintain genetic diversity and connectivity with other subpopulation centers. Many areas outside subpopulation centers are contact zones where different genetic groups converge and could be priorities for maintaining overall connectivity. Our novel method and process of leveraging multiple different analyses to find common genetic patterns provides a path forward to characterizing genetic structure in wide-ranging, continuously distributed species.


Subject(s)
Galliformes , Animals , Conservation of Natural Resources/methods , Ecosystem , Galliformes/genetics , Genetics, Population , Humans , Microsatellite Repeats/genetics , Quail/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...