Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.678
Filter
1.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731617

ABSTRACT

In this study, a library of 3,7-di(hetero)aryl-substituted 10-(3-trimethylammoniumpropyl)10H-phenothiazine salts is prepared. These title compounds and their precursors are reversible redox systems with tunable potentials. The Hammett correlation gives a very good correlation of the first oxidation potentials with σp parameters. Furthermore, the title compounds and their precursors are blue to green-blue emissive. Screening of the salts reveals for some derivatives a distinct inhibition of several pathogenic bacterial strains (Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli, Aconetobacter baumannii, and Klebsiella pneumoniae) in the lower micromolar range.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Phenothiazines , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Phenothiazines/pharmacology , Phenothiazines/chemistry , Phenothiazines/chemical synthesis , Salts/chemistry , Salts/pharmacology , Staphylococcus aureus/drug effects , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/chemical synthesis , Escherichia coli/drug effects , Oxidation-Reduction , Bacteria/drug effects , Molecular Structure , Structure-Activity Relationship
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731869

ABSTRACT

This review provides a comprehensive overview of recent advancements in the design and synthesis of biologically active quaternary ammonium compounds (QACs). The covered scope extends beyond commonly reviewed antimicrobial derivatives to include synthetic agents with antifungal, anticancer, and antiviral properties. Additionally, this review highlights examples of quaternary ammonium compounds exhibiting activity against protozoa and herbicidal effects, as well as analgesic and anesthetic derivatives. The article also embraces the quaternary-ammonium-containing cholinesterase inhibitors and muscle relaxants. QACs, marked by their inherent permanent charge, also find widespread usage across diverse domains such as fabric softeners, hair conditioners, detergents, and disinfectants. The effectiveness of QACs hinges greatly on finding the right equilibrium between hydrophilicity and lipophilicity. The ideal length of the alkyl chain varies according to the unique structure of each QAC and its biological settings. It is expected that this review will provide comprehensive data for medicinal and industrial chemists to design and develop novel QAC-based products.


Subject(s)
Quaternary Ammonium Compounds , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/pharmacology , Humans , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry
3.
Sci Rep ; 14(1): 12496, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821995

ABSTRACT

Designing materials capable of disinfecting water without releasing harmful by-products is an ongoing challenge. Here, we report a novel polycationic sponge material synthesized from chitosan derivatives and cellulose fibers, exhibiting antibacterial properties. The design of such material is based on three key principles. First, the formation of a highly porous structure through cryogelation for an extensive surface area. Second, the incorporation of cationic quaternary ammonium moieties onto chitosan to enhance bacterial adsorption and antibacterial activity. Lastly, the reinforcement of mechanical properties through integration of cellulose fibers. The presented sponge materials exhibit up to a 4-log (99.99%) reduction within 6 h against both gram-positive B. subtilis and gram-negative E. coli. Notably, QCHI90/Cell, with the highest surface charge, exhibits a 2-4.5 log reduction within 1 h of incubation time. The eco-friendly synthesis from water and readily available biomaterials, along with cost-effectiveness and simplicity, underscores its versatility and feasibility of upscaling. Together with its outstanding antibacterial activity, this macroporous biomaterial emerges as a promising candidate for water disinfection applications.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Cellulose , Chitosan , Escherichia coli , Water Purification , Escherichia coli/drug effects , Biocompatible Materials/chemistry , Cellulose/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Water Purification/methods , Chitosan/chemistry , Water Microbiology , Bacillus subtilis/drug effects , Porosity , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Adsorption
4.
Int J Nanomedicine ; 19: 3697-3714, 2024.
Article in English | MEDLINE | ID: mdl-38681091

ABSTRACT

Introduction: Over 75% of clinical microbiological infections are caused by bacterial biofilms that grow on wounds or implantable medical devices. This work describes the development of a new poly(diallyldimethylammonium chloride) (PDADMAC)/alginate-coated gold nanorod (GNR/Alg/PDADMAC) that effectively disintegrates the biofilms of Staphylococcus aureus (S. aureus), a prominent pathogen responsible for hospital-acquired infections. Methods: GNR was synthesised via seed-mediated growth method, and the resulting nanoparticles were coated first with Alg and then PDADMAC. FTIR, zeta potential, transmission electron microscopy, and UV-Vis spectrophotometry analysis were performed to characterise the nanoparticles. The efficacy and speed of the non-coated GNR and GNR/Alg/PDADMAC in disintegrating S. aureus-preformed biofilms, as well as their in vitro biocompatibility (L929 murine fibroblast) were then studied. Results: The synthesised GNR/Alg/PDADMAC (mean length: 55.71 ± 1.15 nm, mean width: 23.70 ± 1.13 nm, aspect ratio: 2.35) was biocompatible and potent in eradicating preformed biofilms of methicillin-resistant (MRSA) and methicillin-susceptible S. aureus (MSSA) when compared to triclosan, an antiseptic used for disinfecting S. aureus colonisation on abiotic surfaces in the hospital. The minimum biofilm eradication concentrations of GNR/Alg/PDADMAC (MBEC50 for MRSA biofilm = 0.029 nM; MBEC50 for MSSA biofilm = 0.032 nM) were significantly lower than those of triclosan (MBEC50 for MRSA biofilm = 10,784 nM; MBEC50 for MRSA biofilm 5967 nM). Moreover, GNR/Alg/PDADMAC was effective in eradicating 50% of MRSA and MSSA biofilms within 17 min when used at a low concentration (0.15 nM), similar to triclosan at a much higher concentration (50 µM). Disintegration of MRSA and MSSA biofilms was confirmed by field emission scanning electron microscopy and confocal laser scanning microscopy. Conclusion: These findings support the potential application of GNR/Alg/PDADMAC as an alternative agent to conventional antiseptics and antibiotics for the eradication of medically important MRSA and MSSA biofilms.


Subject(s)
Alginates , Anti-Bacterial Agents , Biofilms , Gold , Nanotubes , Polyethylenes , Quaternary Ammonium Compounds , Staphylococcus aureus , Biofilms/drug effects , Gold/chemistry , Gold/pharmacology , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Alginates/chemistry , Alginates/pharmacology , Nanotubes/chemistry , Animals , Mice , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyethylenes/chemistry , Polyethylenes/pharmacology , Staphylococcal Infections/drug therapy , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Cell Line , Microbial Sensitivity Tests , Metal Nanoparticles/chemistry
5.
Int J Biol Macromol ; 267(Pt 2): 131486, 2024 May.
Article in English | MEDLINE | ID: mdl-38604420

ABSTRACT

The molecular brush structures have been developed on cotton textiles for long-term and efficient broad-spectrum antimicrobial performances through the cooperation of alkyl-chain and quaternary ammonium sites. Results show that efficient antibacterial performances can be achieved by the regulation of the alkyl chain length and quaternary ammonium sites. The antibacterial efficiency of the optimized molecular brush structure of [3-(N,N-Dimethylamino)propyl]trimethoxysilane with cetyl modification on cotton textiles (CT-DM-16) can reach more than 99 % against both E. coli and S. aureus. Alkyl-chain grafting displayed significantly improvement in the antibacterial activity against S. aureus with (N,N-Diethyl-3-aminopropyl)trimethoxysilane modification on cotton textiles (CT-DE) based materials. The positive N sites and alkyl chains played important roles in the antibacterial process. Proteomic analysis reveals that the contributions of cytoskeleton and membrane-enclosed lumen in differentially expressed proteins have been increased for the S. aureus antibacterial process, confirming the promoted puncture capacity with alkyl-chain grafting. Theoretical calculations indicate that the positive charge of N sites can be enhanced through alkyl-chain grafting, and the possible distortion of the brush structure in application can further increase the positive charge of N sites. Uncovering the regulation mechanism is considered to be important guidance to develop novel and practical antibacterial materials.


Subject(s)
Anti-Bacterial Agents , Cotton Fiber , Escherichia coli , Staphylococcus aureus , Textiles , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Silanes/chemistry
6.
Int J Biol Macromol ; 267(Pt 2): 131549, 2024 May.
Article in English | MEDLINE | ID: mdl-38626838

ABSTRACT

After skin tissue trauma, wound infections caused by bacteria posed a great threat to skin repair. However, resistance to antibiotics, the current treatment of choice for bacterial infections, greatly affected the efficiency of anti-infection and wound healing. Therefore, there has been a critical need for the development of novel antimicrobial materials and advanced therapeutic methods to aid in skin repair. In this paper, rGO-PDA@ZIF-8 nanofillers were prepared by coating graphene oxide (GO) with dopamine (DA), followed by in situ growth of zeolite imidazolate framework-8 (ZIF-8). Using polyvinyl alcohol (PVA) and chitosan quaternary ammonium salt (CS) as matrix materials, along with polyethylene glycol (PEG) as a pore-forming agent, and rGO-PDA@ZIF-8 as an antimicrobial nano-filler, we successfully prepared rGO-PDA@ZIF-8/PVA/CS composite hydrogels with a directional macroporous structure using bidirectional freezing method and phase separation technique. This hydrogel exhibited excellent mechanical properties, good solubility and water retention capabilities. In addition, the hydrogel demonstrated excellent biocompatibility. Most notably, it not only exhibited excellent bactericidal effect against E. coli and S. aureus (99.1 % and 99.0 %, respectively) under the synergistic effect of intrinsic antibacterial activity and photothermal antibacterial, but also exhibited the ability to promote wound healing, making it a promising candidate for wound healing applications.


Subject(s)
Anti-Bacterial Agents , Chitosan , Escherichia coli , Hydrogels , Polyvinyl Alcohol , Quaternary Ammonium Compounds , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Polyvinyl Alcohol/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing/drug effects , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Porosity , Graphite/chemistry , Graphite/pharmacology , Animals , Zeolites/chemistry , Zeolites/pharmacology , Mice , Microbial Sensitivity Tests
7.
Int J Biol Macromol ; 268(Pt 2): 131871, 2024 May.
Article in English | MEDLINE | ID: mdl-38677691

ABSTRACT

Multifunctional hydrogels have been developed to meet the various requirements of wound healing. Herein, an innovative hydrogel (QCMC-HA-PEG) was formed through the Schiff base reaction, composed of quaternary ammonium-modified carboxymethyl chitosan (QCMC), hyaluronic acid (HA), and 8-arms Polyethylene Glycol aldehyde (8-ARM-PEG-CHO). The resulting hydrogels exhibited good mechanical and adhesive properties with improved antibacterial efficacy against both Gram-positive and Gram-negative bacteria compared to CMC hydrogels. QCMC-HA-PEG hydrogels demonstrated remarkable adhesive ability in lap-shear test. Furthermore, the incorporation of MnO2 nanosheets into the hydrogel significantly enhanced its reactive oxygen species (ROS) scavenging and oxygen generation capabilities. Finally, experimental results from a full-thickness skin wound model revealed that the QCMC-HA-PEG@MnO2 hydrogel promoted skin epithelization, collagen deposition, and inflammatory regulation significantly accelerated the wound healing process. Therefore, QCMC-HA-PEG@MnO2 hydrogel could be a promising wound dressing to promote wound healing.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Chitosan , Hydrogels , Quaternary Ammonium Compounds , Wound Healing , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Reactive Oxygen Species/metabolism , Mice , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Oxides/chemistry , Oxides/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Skin/drug effects
8.
J Dent ; 145: 105022, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670330

ABSTRACT

OBJECTIVES: To evaluate the erosion preventive effect of 38 % silver diamine fluoride (SDF) solution in enamel and dentin of human permanent teeth. METHODS: Ninety enamel and ninety dentin blocks were prepared from permanent molars and allocated into three groups. Gp-SDF received a one-off application of 38 % SDF solution. Gp-SNF received a one-off application of a solution containing 800 ppm stannous chloride and 500 ppm fluoride. Gp-DW received a one-off application of deionized water. The blocks were submitted to acid challenge at pH 3.2, 2 min, 5 times/day for 7 days. All blocks were immersed in human saliva between cycles for one hour. The crystal characteristics, percentage of surface microhardness loss (%SMHL), surface loss, and elemental analysis and surface morphology were examined by X-ray diffraction (XRD), microhardness test, non-contact profilometry, and energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM), respectively. Data of%SMHL and surface loss were analyzed by one-way ANOVA. RESULTS: XRD spectra revealed that fluorapatite and silver compounds formed in Gp-SDF, while fluorapatite and stannous compounds formed in Gp-SNF. Gp-DW presented only hydroxyapatite. The median (interquartile range) of%SMHL in Gp-SDF, Gp-SNF and Gp-DW were 27.86(3.66), 43.41(2.45), and 46.40(3.54) in enamel (p< 0.001), and 14.21(1.57), 27.99(1.95), and 33.18(1.73) in dentin, respectively (p < 0.001). The mean (standard deviation, µm) of surface loss of Gp-SDF, Gp-SNF, and Gp-DW were 2.81(0.59), 4.28(0.67), and 4.63(0.64) in enamel (p < 0.001) and 4.13(0.69), 6.04(0.61), and 7.72(0.66) in dentin, respectively (p < 0.001). SEM images exhibited less enamel corruption and more dentinal tubular occlusion in Gp-SDF compared to Gp-SNF and Gp-DW. EDS analysis showed silver was detected in Gp-SDF while stannous was detected in the dentin block of Gp-SNF. CONCLUSION: 38 % SDF yielded superior results in protecting enamel and dentin blocks from dental erosion compared to SNF and DW. CLINICAL SIGNIFICANCE: Topical application of 38 % SDF is effective in preventing dental erosion in human enamel and dentin.


Subject(s)
Dental Enamel , Dentin , Fluorides, Topical , Hardness , Microscopy, Electron, Scanning , Quaternary Ammonium Compounds , Silver Compounds , Spectrometry, X-Ray Emission , Tooth Erosion , X-Ray Diffraction , Humans , Quaternary Ammonium Compounds/pharmacology , Dental Enamel/drug effects , Fluorides, Topical/pharmacology , Tooth Erosion/prevention & control , Dentin/drug effects , Hydrogen-Ion Concentration , Apatites , Tin Compounds/pharmacology , Saliva/drug effects , Saliva/chemistry , Surface Properties , Materials Testing , Time Factors
9.
Colloids Surf B Biointerfaces ; 238: 113914, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663310

ABSTRACT

Combining with various antibacterial mechanisms is the preferred strategy to fabricate coatings with effective antibacterial performance. Herein, Cu2O nanoparticles and dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride, a kind of quaternary ammonium salt (QAS), were simultaneously incorporated into a moisture-curable acrylic resin in order to achieve both contact-killing and release-killing abilities for antibacterial coatings. The surface morphology, surface composition and basic properties of the coatings were thoroughly characterized. The antibacterial performance of the coatings was determined by in-vitro bacteriostatic test. Under the constant total mass fraction of antibacterial agents, both Cu2O and QAS content possessed the highest value on the coating surface at Cu2O/QAS mass ratio of 1:1, and correspondingly, the coatings reached sterilizing rate above 99 % against both E. coli and S. loihica, indicating the existence of synergistic effect between Cu2O and QAS. The synergistic antibacterial mechanism of the coatings involved two aspects. Firstly, the combination of contact-killing and release-killing biocides resulted in high bactericidal and antibiofilm activity against different bacteria. Further, the grafting of QAS molecules on the surface of Cu2O particles brought about the spontaneous migration of nanoparticles to the coating surface. The interaction between Cu2O and QAS also inhibited the phase separation of QAS and prolonged the release of Cu2+ at the same time. The coatings, therefore, exhibited stable antibacterial performance at varied service conditions.


Subject(s)
Anti-Bacterial Agents , Copper , Escherichia coli , Microbial Sensitivity Tests , Quaternary Ammonium Compounds , Surface Properties , Copper/chemistry , Copper/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Escherichia coli/drug effects , Particle Size , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Acrylic Resins/chemistry , Acrylic Resins/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology
10.
Colloids Surf B Biointerfaces ; 238: 113889, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574404

ABSTRACT

A novel core-shell with a tetradecyl dimethyl benzyl ammonium chloride-modified montmorillonite (TDMBA/MMT) interlayer silk fibroin (SF)/poly(lactic acid) (PLLA) nanofibrous membrane was fabricated using a simple conventional electrospinning method. Scanning electron microscopy and pore size analyses revealed that this core-shell with TDMBA/MMT interlayer maintained its nanofibrous morphology and larger pore structure more successfully than SF/PLLA nanofibrous membranes after treatment with 75% ethanol vapor. Transmission electron microscopy and energy-dispersive X-ray spectroscopy analyses testified that the SF/PLLA-TDMBA/MMT nanofibers exhibited a core-shell with an interlayer structure, with SF/PLLA in the core-shell layer and TDMBA/MMT in the interlayer. The formation of a core-shell with interlayer nanofibers was primarily attributed to the uniform dispersion of TDMBA/MMT nanosheets in a solution owing to its exfoliation using hexafluoroisopropanol and then preparing a stable spinning solution similar to an emulsion. Compared to SF/PLLA nanofibrous membranes, the core-shell structure with TDMBA/MMT interlayers of SF/PLLA nanofibrous membranes exhibited enhanced hydrophilicity, thermal stability, mechanical properties as well as improved and long-lasting antimicrobial performance against Escherichia coli and Staphylococcus aureus without cytotoxicity.


Subject(s)
Bentonite , Escherichia coli , Nanofibers , Staphylococcus aureus , Bentonite/chemistry , Bentonite/pharmacology , Nanofibers/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Fibroins/chemistry , Fibroins/pharmacology , Polyesters/chemistry , Polyesters/pharmacology , Membranes, Artificial , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Mice , Animals
11.
ACS Appl Mater Interfaces ; 16(17): 22493-22503, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647220

ABSTRACT

Poly(levodopa) nanoparticles (P(l-DOPA) NPs) are another kind of melanin mimetic besides well-established polydopamine nanoparticles (PDA NPs). Due to the presence of carboxyl groups, the oxidative polymerization of l-DOPA to obtain particles was not as efficient as that of dopamine. Several established methods toward P(l-DOPA) NP fabrication do not combine convenience, morphological regularity, size controllability, low cost, and adaptability to metal-free application scenarios. In this work, P(l-DOPA) NPs were successfully prepared in hot water with the assistant of organic quaternary ammonium, due to the extra physical cross-linking mediated by cations. The employed physical interactions could also be affected by quaternary ammonium structure (i.e., number of cation heads, length of alkyl chain) to achieve different polymerization acceleration effects. The obtained P(l-DOPA) NPs retained superior photothermal properties and outperformed PDA-based melanin materials. Furthermore, P(l-DOPA) NPs were used in photothermal tumor therapy and showed better efficacy. This study offers new insights into the synthesis of melanin-like materials, as well as new understanding of the interaction between quaternary ammonium and bioinspired polyphenolic materials.


Subject(s)
Dihydroxyphenylalanine/analogs & derivatives , Indoles , Levodopa , Melanins , Nanoparticles , Quaternary Ammonium Compounds , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Nanoparticles/chemistry , Melanins/chemistry , Animals , Mice , Levodopa/chemistry , Photothermal Therapy , Humans , Cell Line, Tumor , Polymers/chemistry , Polymers/chemical synthesis , Polymers/pharmacology
12.
J Biomater Sci Polym Ed ; 35(8): 1236-1257, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460114

ABSTRACT

Diabetic wounds are prone to develop chronic wounds due to bacterial infection and persistent inflammatory response. However, traditional dressings are monofunctional, lack bioactive substances, have limited bacterial inhibition as well as difficulties in adhesion and retention. These limit the therapeutic efficacy of traditional dressings on diabetic wounds. Therefore, finding and developing efficient and safe wound dressings is currently an urgent clinical need. In this study, an antimicrobial gel loaded with silver nanoparticles (AgNPs) (referred to as AgNPs@QAC-CBM) was prepared by crosslinking quaternary ammonium chitosan (QAC) with carbomer (CBM) as a gel matrix. AgNPs@QAC-CBM exhibited a reticulated structure, strong adhesion, good stability, and remarkable bactericidal properties, killing 99.9% of Escherichia coli, Staphylococcus aureus, Candida albicans, and Pseudomonas aeruginosa within 1 min. Furthermore, AgNPs@QAC-CBM improved the wound microenvironment and accelerated wound healing in diabetic mice by promoting tissue production and collagen deposition, inducing M2 macrophages, reducing pro-inflammatory factor secretion and increasing anti-inflammatory factor levels. Moreover, AgNPs@QAC-CBM was proven to be safe for use through skin irritation and cytotoxicity tests, as they did not cause any irritation or toxicity. To summarize, AgNPs@QAC-CBM showed promising potential in enhancing the diabetic wound healing process.


Subject(s)
Anti-Inflammatory Agents , Diabetes Mellitus, Experimental , Metal Nanoparticles , Silver , Wound Healing , Silver/chemistry , Silver/pharmacology , Wound Healing/drug effects , Animals , Metal Nanoparticles/chemistry , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Chitosan/chemistry , Chitosan/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Gels/chemistry , Pseudomonas aeruginosa/drug effects , Candida albicans/drug effects , Male , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Bandages
13.
ACS Biomater Sci Eng ; 10(5): 3029-3040, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38551901

ABSTRACT

Polycationic polymers are widely studied antiseptics, and their efficacy is usually quantified by the solution concentration required to kill a fraction of a population of cells (e.g., by Minimum Bactericidal Concentration (MBC)). Here we describe how the response to a polycationic antimicrobial varies greatly among members of even a monoclonal population of bacteria bathed in a single common antimicrobial concentration. We use fluorescence microscopy to measure the adsorption of a labeled cationic polymer, polydiallyldimethylammmonium chloride (PDADMAC, Mw ≈ 4 × 105 g mol-1) and the time course of cell response via a cell permeability indicator for each member of an ensemble of either Escherichia coli, Staphylococcus aureus, or Pseudomonas aeruginosa cells. This is a departure from traditional methods of evaluating synthetic antimicrobials, which typically measure the overall response of a collection of cells at a particular time and therefore do not assess the diversity within a population. Cells typically die after they reach a threshold adsorption of PDADMAC, but not always. There is a substantial time lag of about 5-10 min between adsorption and death, and the time to die of an individual cell is well correlated with the rate of adsorption. The amount adsorbed and the time-to-die differ among species but follow a trend of more adsorption on more negatively charged species, as expected for a cationic polymer. The study of individual cells via time-lapse microscopy reveals additional details that are lost when measuring ensemble properties at a particular time.


Subject(s)
Escherichia coli , Pseudomonas aeruginosa , Staphylococcus aureus , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Polyethylenes/chemistry , Polyethylenes/pharmacology , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/chemistry , Polyelectrolytes/chemistry , Polyelectrolytes/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Polymers/pharmacology , Polymers/chemistry , Microscopy, Fluorescence , Adsorption
14.
Carbohydr Res ; 538: 109078, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513462

ABSTRACT

N-(4-N'-pyridine-benzylcarbonyl chloride) chitosan (CBPyC), N-p-biguanidine benzoyl chitosan (CSBG), and N-(p-biguanidine -1-pyridine-4-benzylcarbonyl chloride) chitosan (CSQPG) were synthesized. The structures of prepared chitosan derivatives were characterized using nuclear magnetic resonance spectroscopy (NMR) and ultraviolet-visible (UV-vis) spectroscopy, and the degree of substitution was determined through elemental analysis (EA) and evaluated on the basis of the integral values in 1H NMR. The antibacterial activities of chitosan derivatives against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were investigated in vitro using antibacterial rate, minimal inhibitory concentration and minimum bacterial concentration assays. The antibiofilm activity was also assessed using the crystal violet assay. CSQPC exhibited higher antibacterial and antibiofilm activities against E. coli and S. aureus compared to CBPyC and CSBG. The antibacterial rate of CSQPG against E. coli and S. aureus at a concentration of 0.5 mg/mL was 43.3% and 100%, respectively. The biofilm inhibition rate of CSQPG at 0.5 MIC against E. coli and S. aureus was 56.5% and 69.1%, respectively. At a concentration of 2.5 mg/mL, the biofilm removal rates of E. coli and S. aureus were 72.9% and 90.1%, respectively. The antibacterial and antibiofilm activities of CSQPG were better than CSBG and CBPyC, and the combination of guanidine and quaternary ammonium further improved the positive charge density of chitosan and enhanced its antibacterial activity.


Subject(s)
Chitosan , Chitosan/pharmacology , Chitosan/chemistry , Salts , Staphylococcus aureus , Escherichia coli , Chlorides , Biofilms , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Pyridines
15.
Environ Res ; 251(Pt 2): 118688, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38493855

ABSTRACT

The widespread usage of quaternary ammonium compounds (QACs) as disinfectants during the COVID-19 pandemic poses significant environmental risks, such as toxicity to organisms and the emergence of superbugs. In this study, different inorganic salts (NaCl, KCl, CaCl2, MgCl2) were used to induce endophytes LSE01 isolated from hyperaccumulating plants. After five generations of cultivation under 80 g/L NaCl, the minimum inhibitory concentration (MIC) of LSE01 to QACs increased by about 3-fold, while its degradation extent increased from 8% to 84% for C12BDMA-Cl and 5%-89% for C14BDMA-Cl. Transmission electron microscopy (TEM) and three-dimensional fluorescence spectra indicated that the cells induced by high concentration of salt caused plasmolysis and secreted more bound extracellular polymeric substances (B-EPS); these changes are likely to be an important reason for the observed increased resistance and enhanced degradation extent of LSE01 to QACs. Our findings suggest that salt-induction could be an effective way to enhance the resistance and removal of toxic organic pollutants by functional microorganisms.


Subject(s)
Endophytes , Quaternary Ammonium Compounds , Salinity , Quaternary Ammonium Compounds/pharmacology , Microbial Sensitivity Tests , Bacteria/drug effects , Biodegradation, Environmental
16.
STAR Protoc ; 5(1): 102890, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38341848

ABSTRACT

Quaternary ammonium compounds exhibit diverse applications as antibiotics, as surfactants, in paper industries, in sewage treatment, and in aquaculture. Here, we present a protocol for synthesizing a library of bioactive quaternary ammonium betaine derivatives under blue LED in water. We describe steps for preparing diazo compounds, synthesizing glycine betaine derivatives, and isolating pure final compounds via precipitation from an aqueous reaction mixture. This protocol promotes a sustainable approach by using water as the reaction medium and room temperature reactions. For complete details on the use and execution of this protocol, please refer to Rath et al. (2023).1.


Subject(s)
Ammonium Compounds , Betaine , Betaine/pharmacology , Quaternary Ammonium Compounds/pharmacology , Water
17.
J Dent ; 142: 104878, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311016

ABSTRACT

OBJECTIVES: Untreated caries in primary teeth is one of the most prevalent health problems in children worldwide. Silver diamine fluoride (SDF) non-invasively arrests caries but causes staining unlike Nano Silver Fluoride (NSF) which causes no stains. This study compared the effect of NSF and 38 % SDF on the oral health related quality of life (OHRQoL) of preschool children after 6 months. METHODS: Children were included if they were younger than 4 years, with at least one active lesion, ICDAS score ≥3, attending nurseries in a rural area in Alexandria, Egypt. They were randomly assigned to receive NSF once at baseline, or SDF at baseline and after 6 months. The Arabic version of the Early Childhood Oral Health Impact Scale (A-ECOHIS) was used to assess the OHRQoL. The groups were compared using chi-square test and the effect of the intervention on OHRQoL was assessed using multiple linear regression. RESULTS: 360 children were included, mean (SD) age = 42.3 (8.2) months. After 6 months, NSF had significantly lower A-ECOHIS scores than SDF in bivariate analysis (p< 0.05) and in regression analysis (B= -5.02, p = 0.001) after adjusting for confounders. There were significant reductions in the A-ECOHIS total and domains' scores in both study groups, except for the social interaction domain in the SDF group. CONCLUSION: After 6-month, both agents significantly improved children's OHRQoL although NSF had a significantly better impact on OHRQoL than SDF. CLINICAL SIGNIFICANCE: Patient-reported outcomes support the inclusion of the two agents among the options for ECC management with better effect on quality of life after NSF. TRIAL REGISTRATION: The trial was registered in the clinicaltrials.gov registry (#NCT05255913).


Subject(s)
Dental Caries , Fluorides , Child, Preschool , Humans , Cariostatic Agents/therapeutic use , Dental Caries/drug therapy , Dental Caries/prevention & control , Dental Caries Susceptibility , Fluorides/therapeutic use , Fluorides, Topical/therapeutic use , Quality of Life , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/therapeutic use , Silver Compounds/therapeutic use
19.
Chemosphere ; 352: 141386, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316276

ABSTRACT

The growing number of infections caused by drug-resistant bacteria which arise from the overuse of antibiotics has severely affected the normal operation of human society. The high antibacterial activity of QAS makes it promising as an alternative to antibiotics, but it suffers from secondary pollution due to its non-degradation. Here we have synthesized a class of gemini quaternary ammonium salts (GQAS) with different carbon chain lengths containing ester groups by using facile methylation reaction. Quaternary ammonium groups contribute to insert negatively charged bacterial membranes, resulting in membrane damage and bacteria death. Compared with conventional single-chain QAS, except for the more efficient antibacterial efficiency attribute to the presence of the second carbon chain, GQAS with alterable antibacterial properties can minimize the possibility of bacterial resistance and reduce the accumulation of GQAS in the environment through the introduction of degradable ester groups. GQAS is completely superior to the commercial bactericide benzalkonium chloride (BAC) in both antibacterial activity and degrade performance, which can be used as a more environmentally friendly bactericide.


Subject(s)
Ammonium Compounds , Water Purification , Humans , Salts/pharmacology , Quaternary Ammonium Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria , Sterilization , Carbon , Esters
20.
Macromol Rapid Commun ; 45(9): e2300685, 2024 May.
Article in English | MEDLINE | ID: mdl-38339795

ABSTRACT

The air filtration materials with high efficiency, low resistance, and extra antibacterial property are crucial for personal health protection. Herein, a tree-like polyvinylidene fluoride (PVDF) nanofibrous membrane with hierarchical structure (trunk fiber of 447 nm, branched fiber of 24.7 nm) and high filtration capacity is demonstrated. Specifically, 2-hydroxypropyl trimethyl ammonium chloride terminated hyperbranched polymer (HBP-HTC) with near-spherical three-dimensional molecular structure and adjustable terminal positive groups is synthesized as an additive for PVDF electrospinning to enhance the jet splitting and promote the formation of branched ultrafine nanofibers, achieving a coverage rate of branched nanofibers over 90% that is superior than small molecular quaternary ammonium salts. The branched nanofibers network enhances mechanical properties and filtration efficiency (99.995% for 0.26 µm sodium chloride particles) of the PVDF/HBP-HTC membrane, which demonstrates reduced pressure drop (122.4 Pa) and a quality factor up to 0.083 Pa-1 on a 40 µm-thick sample. More importantly, the numerous quaternary ammonium salt groups of HBP-HTC deliver excellent antibacterial properties to the PVDF membranes. Bacterial inhibitive rate of 99.9% against both S. aureus and E. coli is demonstrated in a membrane with 3.0 wt% HBP-HTC. This work provides a new strategy for development of high-efficiency and antibacterial protection products.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Nanofibers , Polymers , Polyvinyls , Staphylococcus aureus , Nanofibers/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Polyvinyls/chemistry , Polymers/chemistry , Polymers/pharmacology , Polymers/chemical synthesis , Membranes, Artificial , Microbial Sensitivity Tests , Air Filters , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Filtration/methods , Particle Size , Fluorocarbon Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...