Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.754
Filter
1.
BMC Plant Biol ; 24(1): 488, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825683

ABSTRACT

BACKGROUND: The periderm is basic for land plants due to its protective role during radial growth, which is achieved by the polymers deposited in the cell walls. In most trees, like holm oak, the first periderm is frequently replaced by subsequent internal periderms yielding a heterogeneous outer bark made of a mixture of periderms and phloem tissues, known as rhytidome. Exceptionally, cork oak forms a persistent or long-lived periderm which results in a homogeneous outer bark of thick phellem cell layers known as cork. Cork oak and holm oak distribution ranges overlap to a great extent, and they often share stands, where they can hybridize and produce offspring showing a rhytidome-type bark. RESULTS: Here we use the outer bark of cork oak, holm oak, and their natural hybrids to analyse the chemical composition, the anatomy and the transcriptome, and further understand the mechanisms underlying periderm development. We also include a unique natural hybrid individual corresponding to a backcross with cork oak that, interestingly, shows a cork-type bark. The inclusion of hybrid samples showing rhytidome-type and cork-type barks is valuable to approach cork and rhytidome development, allowing an accurate identification of candidate genes and processes. The present study underscores that abiotic stress and cell death are enhanced in rhytidome-type barks whereas lipid metabolism and cell cycle are enriched in cork-type barks. Development-related DEGs showing the highest expression, highlight cell division, cell expansion, and cell differentiation as key processes leading to cork or rhytidome-type barks. CONCLUSION: Transcriptome results, in agreement with anatomical and chemical analyses, show that rhytidome and cork-type barks are active in periderm development, and suberin and lignin deposition. Development and cell wall-related DEGs suggest that cell division and expansion are upregulated in cork-type barks whereas cell differentiation is enhanced in rhytidome-type barks.


Subject(s)
Plant Bark , Quercus , Quercus/genetics , Quercus/growth & development , Plant Bark/genetics , Plant Bark/chemistry , Plant Bark/metabolism , Transcriptome , Hybridization, Genetic , Cell Wall/metabolism , Gene Expression Regulation, Plant , Lipids
2.
Clin Nutr ESPEN ; 61: 230-236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777439

ABSTRACT

BACKGROUND AND AIM: Frequent administration of blood in ß-thalassemia patients can lead to over-loaded iron, a reduction in the levels of antioxidant activities in the body, and oxidative stress. This study was done to evaluate the antioxidant and protective effect of aqueous oak (Quercus brantii) extract supplementation on these patients. METHODS: This clinical trial was performed on 60 major ß thalassemia patients dividing them into intervention and control groups. In addition to taking desferrioxamine (DFO), the control and intervention groups received respectively placebo capsule supplementation and aqueous Quercus extract capsules (300 mg/day) for 3 months. Serum lipid profiles (LDL-c, HDL-c, triglyceride), Total Antioxidant Capacity (TAC), Glucose, Uric acid, urea nitrogen (BUN), Creatinine, LFT (Liver Function Tests) such as SGOT, SGPT, ALP, Total bilirubin, Direct bilirubin, ferritin, MDA and carbonyl protein (CO) levels were measured before and after the period. In addition, the activity of catalase (CAT), and superoxide dismutase (SOD) was measured in the red blood cell. Furthermore, antioxidant activity and total phenolic content of aqueous Quercus were recorded to standardize capsule formulation. RESULTS: Mean serum MDA, and protein CO, significantly decreased in the intervention group with ß-TM after 3 months of treatment with Quercus extract. In addition, the superoxide dismutase (SOD) enzyme and Total antioxidant capacity (TAC) significantly increased in comparison with the control group. Changes in serum creatinine, BUN, and alanine transferase were not significant. In the study, Quercus extract capsules contain 48/56 mg gallic acid/g (dry extract) total phenol, 58/6 mg/g (dry extract), and flavonoids of 63/8 µg/ml antioxidant power which by GC/MS analysis has been measured. At the end of the study, serum MDA decreased from 48.65 ± 8.74 to 43.94 ± 10.39 µ mol/l after administration of oak extract and protein CO dropped from 2.44 ± 0.38 to 1.2 ± 0.31 nmol DNPH/mg protein after administration of the oak extract. At the end of the study serum, TAC increased in patients interventional group from 907 ± 319 to 977 ± 327 µmol FeSO4/l compared to the control group 916 ± 275 to 905.233 ± 233 µmol FeSO4/l with placebo, and SOD increased from 1577 ± 325 to 2079 ± 554 U/l (compared to 1687 ± 323 U/l with placebo). The treatment effect of Quercus was measured using a mixed-effects model of variance analysis for changes in MDA, protein CO, TAC, and SOD, with significant effects being demonstrated for each laboratory parameter (P = 0.15, P = 0.001, P = 0.02, and P < 0.003, respectively). CONCLUSIONS: Aqueous Quercus extract, due to its high antioxidant potential, reduced MDA, serum carbonyl protein, and increased superoxide dismutase activity effectively decreased serum OS and enhanced serum antioxidant capacity in patients with ß-thalassemia major. oak given as an adjuvant therapy to standard iron chelators may provide an improvement in the OS measurements obtained in these patients. REGISTRATION INFORMATION: This study was submitted, evaluated, and approved by the Iranian Registry of Clinical Trials (IRCT: http://www.irct.ir; IRCT2015101411819N4), which was established for national medical schools in Iran.


Subject(s)
Antioxidants , Oxidative Stress , Plant Extracts , Quercus , beta-Thalassemia , Humans , Quercus/chemistry , Oxidative Stress/drug effects , beta-Thalassemia/blood , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Male , Female , Adult , Superoxide Dismutase/blood , Iran , Young Adult , Dietary Supplements , Catalase/blood , Deferoxamine/therapeutic use , Adolescent , Malondialdehyde/blood , Creatinine/blood
3.
Plant Physiol Biochem ; 211: 108724, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744084

ABSTRACT

Heavy metal pollution is a global environmental problem, and Quercus variabilis has a stronger tolerance to Cd stress than do other species. We aimed to explore the physiological response and molecular mechanisms of Q. variabilis to Cd stress. In this study, the antioxidant enzyme activities of leaves were determined, while the photosynthetic parameters of leaves were measured using Handy PEA, and ion fluxes and DEGs in the roots were investigated using noninvasive microtest technology (NMT) and RNA sequencing techniques, respectively. Cd stress at different concentrations and for different durations affected the uptake patterns of Cd2+ and H+ by Q. variabilis and affected the photosynthetic efficiency of leaves. Moreover, there was a positive relationship between antioxidant enzyme (CAT and POD) activity and Cd concentration. Transcriptome analysis revealed that many genes, including genes related to the cell wall, glutathione metabolism, ion uptake and transport, were significantly upregulated in response to cadmium stress in Q. variabilis roots. WGCNA showed that these DEGs could be divided into eight modules. The turquoise and blue modules exhibited the strongest correlations, and the most significantly enriched pathways were the phytohormone signaling pathway and the phenylpropanoid biosynthesis pathway, respectively. These findings suggest that Q. variabilis can bolster plant tolerance by modulating signal transduction and increasing the synthesis of compounds, such as lignin, under Cd stress. In summary, Q. variabilis can adapt to Cd stress by increasing the activity of antioxidant enzymes, and regulating the fluxes of Cd2+ and H+ ions and the expression of Cd stress-related genes.


Subject(s)
Cadmium , Gene Expression Regulation, Plant , Quercus , Stress, Physiological , Quercus/metabolism , Quercus/drug effects , Quercus/genetics , Cadmium/toxicity , Cadmium/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics , Gene Expression Regulation, Plant/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Photosynthesis/drug effects , Antioxidants/metabolism
4.
Sci Total Environ ; 931: 172925, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38697551

ABSTRACT

Subfossil pine and oak tree trunks were excavated during exploitation of the Budwity peatland in Northern Poland. Based on dendrochronological analysis, the woodland successions in peatland were reconstructed and correlated with moisture dynamics of the peatland ecosystem inferred from the high-resolution multi-proxy analysis of the peatland deposits. From the results of dendrochronological analysis and the 14C wiggle matching methods, four floating pine chronologies (5882-5595; 5250-5089; 3702-3546; and 2222-1979 mod. cal BP) and two oak chronologies (4932-4599 and 4042-3726 mod. cal BP) were developed. The organic sediments of the peatland (6 m thick) were deposited over approximately nine thousand years. The lower complex (525-315 cm) comprises minerogenic peat, while the upper complex (315.0-0.0 cm) is composed of ombrogenic peat. Subfossil tree trunks are distributed across various peat horizons, which suggests multiple stages of tree colonisation followed by subsequent dying-off phases. Multiproxy sediment analyses (lithological, geochemical and δ13C stable isotope, pollen, plant macrofossils, Cladocera, diatom, and Diptera analyses) indicate that the two earliest phases of pine colonisation (5882-5595 and 5250-5089 mod. cal BP) and the two stages of oak colonisation (4932-4599 and 4042-3726 mod. cal BP) were associated with periodic drying of the peatland. Conversely, tree dying-off phases occurred during periods of increased water levels in the peatland, coinciding with stages of increasing climate humidity during the Holocene. The two most recent phases of pine colonisation occurred during the ombrogenic stage of mire development. Remnants of the dead forest from these phases, marked by subfossil trunks still rooted in the ground, were preserved and exposed presently during peat exploitation, approximately 2.5 m below ground level. The identified phases of tree colonisation and subsequent dying-off phases show correlation with analogical phenomena observed in the other investigated European peatlands.


Subject(s)
Pinus , Quercus , Soil , Wetlands , Poland , Soil/chemistry , Environmental Monitoring , Hydrology , Ecosystem , Geologic Sediments/chemistry
5.
Sci Adv ; 10(22): eado6611, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820152

ABSTRACT

Northern glacial refugia are a hotly debated concept. The idea that many temperate organisms survived the Last Glacial Maximum (LGM; ~26.5 to 19 thousand years) in several sites across central and northern Europe stems from phylogeographic analyses, yet direct fossil evidence has thus far been missing. Here, we present the first unequivocal proof that thermophilous trees such as oak (Quercus), linden (Tilia), and common ash (Fraxinus excelsior) survived the LGM in Central Europe. The persistence of the refugium was promoted by a steady influx of hydrothermal waters that locally maintained a humid and warm microclimate. We reconstructed the geological and palaeohydrological factors responsible for the emergence of hot springs during the LGM and argue that refugia of this type, allowing the long-term survival and rapid post-LGM dispersal of temperate elements, were not exceptional in the European periglacial zone.


Subject(s)
Hot Springs , Refugium , Trees , Europe , Trees/genetics , Phylogeography , Desert Climate , Ice Cover , Fossils , Quercus/genetics
6.
Tree Physiol ; 44(5)2024 May 05.
Article in English | MEDLINE | ID: mdl-38696364

ABSTRACT

Modeling and simulating the growth of the branching of tree species remains a challenge. With existing approaches, we can reconstruct or rebuild the branching architectures of real tree species, but the simulation of the growth process remains unresolved. First, we present a tree growth model to generate branching architectures that resemble real tree species. Secondly, we use a quantitative morphometric approach to infer the shape similarity of the generated simulations and real tree species. Within a functional-structural plant model, we implement a set of biological parameters that affect the branching architecture of trees. By modifying the parameter values, we aim to generate basic shapes of spruce, pine, oak and poplar. Tree shapes are compared using geometric morphometrics of landmarks that capture crown and stem outline shapes. Five biological parameters, namely xylem flow, shedding rate, proprioception, gravitysense and lightsense, most influenced the generated tree branching patterns. Adjusting these five parameters resulted in the different tree shapes of spruce, pine, oak, and poplar. The largest effect was attributed to gravity, as phenotypic responses to this effect resulted in different growth directions of gymnosperm and angiosperm branching architectures. Since we were able to obtain branching architectures that resemble real tree species by adjusting only a few biological parameters, our model is extendable to other tree species. Furthermore, the model will also allow the simulation of structural tree-environment interactions. Our simplifying approach to shape comparison between tree species, landmark geometric morphometrics, showed that even the crown-trunk outlines capture species differences based on their contrasting branching architectures.


Subject(s)
Models, Biological , Trees , Trees/growth & development , Trees/anatomy & histology , Xylem/growth & development , Xylem/anatomy & histology , Quercus/growth & development , Quercus/anatomy & histology , Quercus/physiology , Picea/growth & development , Picea/anatomy & histology , Picea/physiology , Plant Stems/growth & development , Plant Stems/anatomy & histology , Pinus/growth & development , Pinus/anatomy & histology , Computer Simulation
7.
Am J Bot ; 111(5): e16333, 2024 May.
Article in English | MEDLINE | ID: mdl-38757608

ABSTRACT

PREMISE: During the last centuries, the area covered by urban landscapes is increasing all over the world. Urbanization can change local habitats and decrease connectivity among these habitats, with important consequences for species interactions. While several studies have found a major imprint of urbanization on plant-insect interactions, the effects of urbanization on seed predation remain largely unexplored. METHODS: We investigated the relative impact of sunlight exposure, leaf litter, and spatial connectivity on predation by moth and weevil larvae on acorns of the pedunculate oak across an urban landscape during 2018 and 2020. We also examined whether infestations by moths and weevils were independent of each other. RESULTS: While seed predation varied strongly among trees, seed predation was not related to differences in sunlight exposure, leaf litter, or spatial connectivity. Seed predation by moths and weevils was negatively correlated at the level of individual acorns in 2018, but positively correlated at the acorn and the tree level in 2020. CONCLUSIONS: Our study sets the baseline expectation that urban seed predators are unaffected by differences in sunlight exposure, leaf litter, and spatial connectivity. Overall, our findings suggest that the impact of local and spatial factors on insects within an urban context may depend on the species guild. Understanding the impact of local and spatial factors on biodiversity, food web structure, and ecosystem functioning can provide valuable insights for urban planning and management strategies aimed at promoting urban insect diversity.


Subject(s)
Ecosystem , Moths , Quercus , Seeds , Weevils , Animals , Seeds/physiology , Moths/physiology , Weevils/physiology , Quercus/physiology , Larva/physiology , Urbanization , Cities , Sunlight , Food Chain
8.
Environ Res ; 252(Pt 3): 119048, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38697595

ABSTRACT

Adsorption is considered an interesting option for removing antibiotics from the environment because of its simple design, low cost, and potential efficiency. In this work we evaluated three by-products (pine bark, oak ash, and mussel shell) as bio-adsorbents for the antibiotic azithromycin (AZM). Furthermore, they were added at doses of 48 t ha-1 to four different soils, then comparing AZM removal for soils with and without bio-adsorbents. Batch-type experiments were used, adding AZM concentrations between 2.5 and 600 µmol L-1 to the different bio-adsorbents and soil + bio-adsorbent mixtures. Regarding the bio-adsorbents, oak ash showed the best adsorption scores (9600 µmol kg-1, meaning >80% retention), followed by pine bark (8280 µmol kg-1, 69%) and mussel shell (between 3000 and 6000 µmol kg-1, 25-50% retention). Adsorption data were adjusted to different models (Linear, Freundlich and Langmuir), showing that just mussel shell presented an acceptable fitting to the Freundlich equation, while pine bark and oak ash did not present a good adjustment to any of the three models. Regarding desorption, the values were always below the detection limit, indicating a rather irreversible adsorption of AZM onto these three by-products. Furthermore, the results showed that when the lowest concentrations of AZM were added to the not amended soils they adsorbed 100% of the antibiotic, whereas when the highest concentrations of AZM were spread, the adsorption decreased to 55%. However, when any of the three bio-adsorbents was added to the soils, AZM adsorption reached 100% for all the antibiotic concentrations used. Desorption was null in all cases for both soils with and without bio-adsorbents. These results, corresponding to an investigation carried out for the first time for the antibiotic AZM, can be seen as relevant in the search of low-cost alternative treatments to face environmental pollution caused by this emerging contaminant.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Bivalvia , Pinus , Plant Bark , Quercus , Animals , Adsorption , Quercus/chemistry , Plant Bark/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/analysis , Azithromycin/chemistry , Azithromycin/analysis , Pinus/chemistry , Bivalvia/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Animal Shells/chemistry
9.
Physiol Plant ; 176(3): e14333, 2024.
Article in English | MEDLINE | ID: mdl-38710501

ABSTRACT

Condensed tannins are widely present in the fruits and seeds of plants and effectively prevent them from being eaten by animals before maturity due to their astringent taste. In addition, condensed tannins are a natural compound with strong antioxidant properties and significant antibacterial effects. Four samples of mature and near-mature Quercus fabri acorns, with the highest and lowest condensed tannin content, were used for genome-based transcriptome sequencing. The KEGG enrichment analysis revealed that the differentially expressed genes (DEGs) were highly enriched in phenylpropanoid biosynthesis and starch and sucrose metabolism. Given that the phenylpropanoid biosynthesis pathway is a crucial step in the synthesis of condensed tannins, we screened for significantly differentially expressed transcription factors and structural genes from the transcriptome data of this pathway and found that the expression levels of four MADS-box, PAL, and 4CL genes were significantly increased in acorns with high condensed tannin content. The quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) experiment further validated this result. In addition, yeast one-hybrid assay confirmed that three MADS-box transcription factors could bind the promoter of the 4CL gene, thereby regulating gene expression levels. This study utilized transcriptome sequencing to discover new important regulatory factors that can regulate the synthesis of acorn condensed tannins, providing new evidence for MADS-box transcription factors to regulate the synthesis of secondary metabolites in fruits.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Proanthocyanidins , Quercus , Proanthocyanidins/metabolism , Proanthocyanidins/biosynthesis , Quercus/genetics , Quercus/metabolism , Transcriptome/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/genetics , Fruit/metabolism
10.
J Environ Manage ; 357: 120841, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581898

ABSTRACT

Quercus gilva, an evergreen tree species in Quercus section Cyclobalanopsis, is an ecologically and economically valuable species in subtropical regions of East Asia. Predicting the impact of climate change on potential distribution of Q. gilva can provide a scientific basis for the conservation and utilization of its genetic resources, as well as for afforestation. In this study, 74 distribution records of Q. gilva and nine climate variables were obtained after data collection and processing. Current climate data downloaded from WorldClim and future climate data predicted by four future climate scenarios (2040s SSP1-2.6, 2040s SSP5-8.5, 2060s SSP1-2.6, and 2060s SSP5-8.5) mainly based on greenhouse gases emissions of distribution sites were used in MaxEnt model with optimized parameters to predict distribution dynamics of Q. gilva and its response to climate change. The results showed that the predicted current distribution was consistent with natural distribution of Q. gilva, which was mainly located in Hunan, Jiangxi, Zhejiang, Fujian, Guizhou, and Taiwan provinces of China, as well as Japan and Jeju Island of South Korea. Under current climate conditions, precipitation factors played a more significant role than temperature factors on distribution of Q. gilva, and precipitation of driest quarter (BIO17) is the most important restriction factor for its current distribution (contribution rate of 57.35%). Under future climate conditions, mean temperature of driest quarter (BIO9) was the essential climate factor affecting future change in potential distribution of Q. gilva. As the degree of climatic anomaly increased in the future, the total area of predicted distribution of Q. gilva showed a shrinking trend (decreased by 12.24%-45.21%) and Q. gilva would migrate to high altitudes and latitudes. The research results illustrated potential distribution range and suitable climate conditions of Q. gilva, which can provide essential theoretical references for the conservation, development, and utilization of Q. gilva and other related species.


Subject(s)
Greenhouse Gases , Quercus , Climate Change , China , Taiwan , Ecosystem
11.
BMC Plant Biol ; 24(1): 302, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38637784

ABSTRACT

BACKGROUND: Early blight (EB) of Tomatoes, caused by Alternaria solani, is a serious fungal disease that adversely affects tomato production. Infection is characterized by dark lesions on leaves, stems, and fruits. Several agrochemicals can be used to control infection, these chemicals may disrupt environmental equilibrium. An alternative technology is needed to address this significant fungal threat. This study was designed to control the growth of EB in tomatoes caused by A. solani, using green-fabricated silver nanoparticles (Ag-NPs). RESULTS: Ag-NPs were synthesized through an environmentally friendly and cost-effective approach using leaf extract of Quercus incana Roxb. (Fagaceae). The physico-chemical characterization of the Ag-NPs was conducted through UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectrometry. The Ag-NPs produced were round with a mean diameter of 27 nm. The antifungal activity of these Ag-NPs was assessed through in vitro Petri plate and in vitro leaflet assays against A. solani. The green fabricated Ag-NPs exhibited excellent antifungal activity in vitro at a concentration of 100 mg/l against A. solani, inhibiting growth by 98.27 ± 1.58% and 92.79 ± 1.33% during Petri plate and leaflet assays, respectively. CONCLUSION: In conclusion, this study suggests the practical application of green-fabricated Ag-NPs from Q. incana leaf extract against A. solani to effectively control EB disease in tomatoes.


Subject(s)
Alternaria , Metal Nanoparticles , Quercus , Solanum lycopersicum , Silver/chemistry , Metal Nanoparticles/chemistry , Antifungal Agents , Spectroscopy, Fourier Transform Infrared , Plant Extracts/pharmacology , Plant Extracts/chemistry , X-Ray Diffraction , Anti-Bacterial Agents
12.
Ying Yong Sheng Tai Xue Bao ; 35(3): 597-605, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646746

ABSTRACT

We investigated the inter- and intra-species differences of leaf vein traits of three dominant Quercus species, Q. wutaishanica, Q. aliena var. acutiserrata, and Q. variabilis of Niubeiling (subtropical humid climate) and Taohuagou (warm temperate semi-humid climate), located in the eastern and western Qinling Mountains. The nine examined leaf vein traits included primary leaf vein width, secondary leaf vein width, mean fine vein width, primary vein density, fine vein density, vein areole diameter, areole density, 3D fine vein surface area, and fine vein volume. We further elucidated the influencing mechanisms and regulatory pathways of biotic and abiotic factors on leaf vein traits. The results showed that species identity had significant effects on eight out of nine leaf vein traits except 3D fine vein surface area, while habitat had significant effects on primary leaf vein width, secondary leaf vein width, vein areole diameter, fine vein density, and areole density. Altitude had significant effects on primary vein density, mean fine vein width, vein areole diameter, fine vein density and areole density. Habitat, tree species identity, and altitude had significantly interactive effects on primary leaf vein density, 3D fine vein surface area, and fine vein volume. There were significant differences in primary leaf vein width, mean fine vein width, areole density, 3D fine vein surface area, fine vein volume, primary vein density of Q. wutaishanica between the two studied habitats, but the differences were only found in secondary leaf vein width and areole density of Q. aliena var. acutiserrata and Q. variabilis. The examined leaf vein traits were influenced both by biotic and abiotic factors, with varying effect sizes. Among the biotic factors, petiole length, leaf length and width ratio had strong effect on leaf vein traits. Among the abiotic factors, climatic and soil factors had high effect size on vein traits, with the former being higher than the latter. Leaf vein traits were affected directly by biotic factors, but indirectly by abiotic factors (soil and climatic factors) via regulating biotic factors (leaf stoichiometry and leaf phenotypic traits).


Subject(s)
Ecosystem , Plant Leaves , Quercus , Quercus/anatomy & histology , Plant Leaves/anatomy & histology , China , Species Specificity , Altitude
13.
BMC Ecol Evol ; 24(1): 54, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664655

ABSTRACT

BACKGROUND: Bolete cultivation is economically and ecologically valuable. Ectomycorrhizae are advantageous for plant development and productivity. This study investigated how boletes affect the formation of Pinus thunbergii and Quercus acutissima ectomycorrhizae using greenhouse-based mycorrhizal experiments, inoculating P. thunbergii and Q. acutissima with four species of boletes (Suillus bovinus, Suillus luteus, Suillus grevillei, and Retiboletus sinensis). RESULTS: Three months after inoculation, morphological and molecular analyses identified S. bovinus, S. luteus, S. grevillei and R. sinensis ectomycorrhizae formation on the roots of both tree species. The mycorrhizal infection rate ranged from 40 to 55%. The host plant species determined the mycorrhiza morphology, which was independent of the bolete species. Differences in plant growth, photosynthesis, and endogenous hormone secretion primarily correlated with the host plant species. Infection with all four bolete species significantly promoted the host plants' growth and photosynthesis rates; indole-3-acetic acid, zeatin, and gibberellic acid secretion increased, and the abscisic acid level significantly decreased. Indole-3-acetic acid was also detected in the fermentation broths of all bolete species. CONCLUSIONS: Inoculation with bolete and subsequent mycorrhizae formation significantly altered the morphology and hormone content in the host seedlings, indicating growth promotion. These findings have practical implications for culturing pine and oak tree species.


Subject(s)
Mycorrhizae , Pinus , Quercus , Mycorrhizae/physiology , Quercus/microbiology , Quercus/growth & development , Pinus/microbiology , Pinus/growth & development , Basidiomycota/physiology , Plant Roots/microbiology , Plant Roots/growth & development , Plant Growth Regulators/metabolism , Photosynthesis
14.
Sci Total Environ ; 927: 172166, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575023

ABSTRACT

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.


Subject(s)
Droughts , Forests , Trees , Trees/physiology , Italy , Quercus/growth & development , Quercus/physiology , Climate Change , Pinus/physiology , Pinus/growth & development , Environmental Monitoring , Fraxinus/physiology , Fraxinus/growth & development , Acer/growth & development , Acer/physiology
15.
Sci Rep ; 14(1): 7784, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565553

ABSTRACT

In Iran, native oak species are under threat from episodes of Charcoal Disease, a decline syndrome driven by abiotic stressors (e.g. drought, elevated temperature) and biotic components, Biscogniauxia mediterranea (De Not.) Kuntze and Obolarina persica (M. Mirabolfathy). The outbreak is still ongoing and the country's largest ever recorded. Still, the factors driving its' epidemiology in time and space are poorly known and such knowledge is urgently needed to develop strategies to counteract the adverse effects. In this study, we developed a generic framework based on experimental, machine-learning algorithms and spatial analyses for landscape-level prediction of oak charcoal disease outbreaks. Extensive field surveys were conducted during 2013-2015 in eight provinces (more than 50 unique counties) in the Zagros ecoregion. Pathogenic fungi were isolated and characterized through morphological and molecular approaches, and their pathogenicity was assessed under controlled water stress regimes in the greenhouse. Further, we evaluated a set of 29 bioclimatic, environmental, and host layers in modeling for disease incidence data using four well-known machine learning algorithms including the Generalized Linear Model, Gradient Boosting Model, Random Forest model (RF), and Multivariate Adaptive Regression Splines implemented in MaxEnt software. Model validation statistics [Area Under the Curve (AUC), True Skill Statistics (TSS)], and Kappa index were used to evaluate the accuracy of each model. Models with a TSS above 0.65 were used to prepare an ensemble model. The results showed that among the different climate variables, precipitation and temperature (Bio18, Bio7, Bio8, and bio9) in the case of O. persica and similarly, gsl (growing season length TREELIM, highlighting the warming climate and the endophytic/pathogenic nature of the fungus) and precipitation in case of B. mediterranea are the most important influencing variables in disease modeling, while near-surface wind speed (sfcwind) is the least important variant. The RF algorithm generates the most robust predictions (ROC of 0.95; TSS of 0.77 and 0.79 for MP and OP, respectively). Theoretical analysis shows that the ensemble model (ROC of 0.95 and 0.96; TSS = 0.79 and 0.81 for MP and OP, respectively), can efficiently be used in the prediction of the charcoal disease spatiotemporal distribution. The oak mortality varied ranging from 2 to 14%. Wood-boring beetles association with diseased trees was determined at 20%. Results showed that water deficiency is a crucial component of the oak decline phenomenon in Iran. The Northern Zagros forests (Ilam, Lorestan, and Kermanshah provinces) along with the southern Zagros forests (Fars and Kohgilouyeh va-Boyer Ahmad provinces) among others are the most endangered areas of potential future pandemics of charcoal disease. Our findings will significantly improve our understanding of the current situation of the disease to pave the way against pathogenic agents in Iran.


Subject(s)
Ascomycota , Quercus , Quercus/microbiology , Charcoal , Iran/epidemiology
16.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675569

ABSTRACT

There are several highly damaging Phytophthora species pathogenic to forest trees, many of which have been spread beyond their native range by the international trade of live plants and infested materials. Such introductions can be reduced through the development of better tools capable of the early, rapid, and high-throughput detection of contaminated plants. This study utilized a volatilomics approach (solid-phase microextraction coupled to gas chromatography-mass spectrometry) to differentiate between several Phytophthora species in culture and discriminate between healthy and Phytophthora-inoculated European beech and pedunculate oak trees. We tentatively identified 14 compounds that could differentiate eight Phytophthora species from each other in vitro. All of the Phytophthora species examined, except Phytophthora cambivora, uniquely produced at least one compound not observed in the other species; however, most detected compounds were shared between multiple species. Phytophthora polonica had the most unique compounds and was the least similar of all the species examined. The inoculated seedlings had qualitatively different volatile profiles and could be distinguished from the healthy controls by the presence of isokaurene, anisole, and a mix of three unknown compounds. This study supports the notion that volatiles are suitable for screening plant material, detecting tree pathogens, and differentiating between healthy and diseased material.


Subject(s)
Gas Chromatography-Mass Spectrometry , Phytophthora , Plant Diseases , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Plant Diseases/microbiology , Solid Phase Microextraction , Quercus/chemistry , Quercus/microbiology , Fagus/microbiology
17.
Waste Manag ; 181: 114-127, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38608526

ABSTRACT

In this study, phenolic compounds using deep eutectic solvents (DES) were extracted from cork dust, and the biogas production potential of DES-treated cork dust samples was determined. The DES treatment was carried out using choline chloride and formic acid (1:2 M ratio) at various temperatures (90, 110 and 130 °C) and treatment times (20, 40 and 60 min) at a solid-to-solvent ratio of 1:10 g mL-1. The highest total phenolic content (137 mg gallic acid equivalent (GAE) g-1 dry cork dust) was achieved at 110 °C/20 min. The extracts exhibited an antioxidant capacity of up to 56.3 ± 3.1 % 1,1-diphenyl-2-picrylhydazyl (DPPH) inhibition at a dilution rate of 100. DES treatment resulted in minimal sugar solubilization at low temperatures, while approximately 42 % of the xylan fraction in the biomass degraded under severe conditions (e.g., 130 °C/60 min). Catechin, 4-hydroxybenzoic acid and gallic acid were the major phenolics in DES extracts. The biogas yield of DES-treated cork dust increased with treatment severity. The highest biogas yield (115.1mLN gVS-1) was observed at 130 °C/60 min, representing an increase of 125 % compared to the untreated sample. SEM images revealed that the surface structure of the samples became smoother after mild pretreatment and rougher after harsh pretreatment. Compositional and FTIR analyses indicated that a higher biogas formation potential was associated with increased cellulose content in the substrate, which could be attributed to hemicellulose solubilization in the hydrolysate. Overall, DES pretreatment effectively enhanced phenol extraction and anaerobic degradability.


Subject(s)
Biomass , Deep Eutectic Solvents , Dust , Phenols , Phenols/analysis , Dust/analysis , Deep Eutectic Solvents/chemistry , Anaerobiosis , Quercus/chemistry , Biofuels/analysis , Antioxidants/analysis , Formates/analysis , Formates/chemistry
18.
Ying Yong Sheng Tai Xue Bao ; 35(3): 606-614, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646747

ABSTRACT

As the most senstitive plant organs to environmental changes, leaves serve as crucial indicators of plant survival strategies. We measured the morphology, anatomical traits, gas exchange parameters, and chlorophyll fluorescence parameters of Quercus aquifolioides (evergreen broad-leaved) and Sorbus rehderiana (deciduous broad-leaved) at altitudes of 2600, 2800, 3000, 3200 and 3400 m on the eastern edge of the Qinghai-Tibet Plateau, China. We explored the similarity and difference in their responses to altitude change and the ecological adaptation strategy. The results showed that as the altitude increased, leaf dry matter content of Q. aquifolioides decreased, that of S. rehderiana increased, leaf size for both species gradually decreased, and the palisade coefficient of Q. aquifolioides showed a decreasing trend, contrasting with the increasing trend in S. rehderiana. As the altitude increased, the thickness of leaves, palisade tissue, spongy tissue, upper epidermis, and lower epidermis of both species increased significantly, with the increment of 22.4%, 4.9%, 45.1%, 23.3%, 19.6%, and 28.2%, 46.9%, 8.9%, 25.9%, 20.8% at altitude of 3400 m, respectively, compared with the altitude of 2600 m. The gas exchange and chlorophyll fluorescence parameters of S. rehderiana significantly increased with increasing altitude, while Q. aquifolioides showed the opposite trend. Leaf anatomical traits, gas exchange, and chlorophyll fluorescence parameters of both species displayed considerable plasticity. There were significant correlations among most leaf traits and between leaf traits and altitude. The survival strategy of Q. aquifolioides was more conservative in response to altitude changes, while that of S. rehderiana was more active. Both species adapted to different altitudes by adjusting their own traits.


Subject(s)
Altitude , Plant Leaves , Quercus , Sorbus , Quercus/physiology , Quercus/growth & development , China , Ecosystem , Tibet , Adaptation, Physiological
19.
Environ Sci Pollut Res Int ; 31(20): 29536-29548, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38580874

ABSTRACT

The soil-plant transfer of trace elements is a complex system in which many factors are involved such as the availability and bioavailability of elements in the soil, climate, pedological parameters, and the essential or toxic character of the elements. The present study proposes the evaluation of the use of multielement contents in vascular plants for prospecting ore deposits of trace elements of strategic interest for Europe. To accomplish this general goal, a study of the soil-plant transfer of major and trace elements using Quercus ilex as a study plant has been developed in the context of two geological domains with very different characteristics in geological terms and in the presence of ore deposits: the Almadén syncline for Hg and the Guadalmez syncline for Sb. The results have made it possible to differentiate geological domains not only in terms of individual elements, but also as a combination of major and trace elements using Factor Analysis. The bioconcentration factors have demonstrated the uptake of macronutrients and micronutrients in very high concentrations but these were barely dependent, or even independent of the concentrations in the soil, in addition to high values of this factor for Sb. The Factor Analysis allowed for the differentiation of geogenic elements from other linked to stibnite ore deposits (Sb, S, and Cu). This element (Sb) can be uptake by Quercus ilex via the root and from there translocating it to the leaves, showing a direct relation between concentrations in soil and plants. This finding opens the possibility of using Quercus ilex leaves for biogeochemical prospecting of geological domains or lithological types of interest to prospect for Sb deposits.


Subject(s)
Soil Pollutants , Soil , Trace Elements , Spain , Soil/chemistry , Quercus , Environmental Monitoring
20.
Int J Biol Macromol ; 268(Pt 1): 131686, 2024 May.
Article in English | MEDLINE | ID: mdl-38643923

ABSTRACT

Despite a fair amount of lignin conversion during mycelial growth, previous structural analyses have not yet revealed how lignin changes continuously and what the relationship is between lignin and ligninolytic enzymes. To clarify these aspects, Quercus acutissima sawdust attaching Ganoderma lucidum mycelium collected from different growth stage was subjected to analysis of lignin structure and ligninolytic enzyme activity. Two key periods of lignin degradation are found during the cultivation of G. lucidum: hypha rapid growth period and primordium formation period. In the first stage, laccase activity is associated with the opening of structures such as methoxyls, ß-O-4' substructures and guaiacyl units in lignin, as well as the shortening of lignin chains. Manganese peroxidases and lignin peroxidases are more suitable for degrading short chain lignin. The structure of phenylcoumarans and syringyl changes greatly in the second stage. The results from sawdust attaching mycelium provide new insights to help improve the cultivation substrate formulation of G. lucidum and understand biomass valorization better.


Subject(s)
Lignin , Mycelium , Quercus , Reishi , Lignin/metabolism , Lignin/chemistry , Quercus/metabolism , Quercus/chemistry , Quercus/growth & development , Mycelium/metabolism , Mycelium/growth & development , Reishi/metabolism , Reishi/growth & development , Wood/chemistry , Laccase/metabolism , Peroxidases/metabolism , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL
...