Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Arch Virol ; 166(3): 987-990, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33462672

ABSTRACT

We report the complete nucleotide sequence of the genome of a novel virus in ringspot-diseased common oak (Quercus robur L.). The newly identified pathogen is associated with leaf symptoms such as mottle, chlorotic spots and ringspots on diseased trees. High-throughput sequencing (HTS, Illumina RNASeq) was used to explore the virome of a ringspot-diseased oak that had chlorotic ringspots of suspected viral origin on leaves for several years. Bioinformatic analysis of the HTS dataset followed by RT-PCR enabled us to determine complete sequences of four RNA genome segments of a novel virus. These sequences showed high similarity to members of the genus Emaravirus, which includes segmented negative-stranded RNA viruses of economic importance. To verify the ends of each RNA, we conducted rapid amplification of cDNA ends (RACE). We identified an additional genome segment (RNA 5) by RT-PCR using a genus-specific primer (PDAP213) to the conserved 3´ and 5´termini in order to amplify full-length genome segments. RNA 5 encodes a 21-kDa protein that is homologous to the silencing suppressor P8 of High Plains wheat mosaic virus. The five viral RNAs were consistently detected by RT-PCR in ringspot-diseased oaks in Germany, Sweden, and Norway. We conclude that the virus represents a new member of the genus Emaravirus affecting oaks in Germany and in Scandinavia, and we propose the name "common oak ringspot-associated emaravirus" (CORaV).


Subject(s)
Bunyaviridae/classification , Bunyaviridae/genetics , Genome, Viral/genetics , Plant Viruses/genetics , Quercus/virology , Amino Acid Sequence , Base Sequence , Bunyaviridae/isolation & purification , Germany , High-Throughput Nucleotide Sequencing , Norway , Phylogeny , Plant Diseases/virology , Plant Leaves/virology , Plant Viruses/classification , RNA, Viral/genetics , Sequence Alignment , Sweden
2.
Am Nat ; 165(1): 16-31, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15729637

ABSTRACT

Interactions between insects and their baculovirus pathogens are often described using simple disease models. Baculoviruses, however, are transmitted when insects consume virus-contaminated foliage, and foliage variability, whether within or between host-plant species, can affect viral infectiousness. Insect-baculovirus interactions may thus be embedded in a tritrophic interaction with the insect's host plant, but disease models include only the host and the pathogen. We tested these models by measuring the transmission of a baculovirus of gypsy moths (Lymantria dispar) on red oak (Quercus rubra) and white oak (Quercus alba) in the field in six experiments over four years. In all experiments, there were only weak effects of host-tree species, and in only one did the best-fitting model include tree species effects. These weak effects of foliage variability on transmission were not due to a lack of foliage variability on viral infectiousness, because when larvae were force-fed virus-contaminated foliage, infection rates were higher on white oak. Our results suggest that feeding behavior plays an important role in baculovirus transmission and that models can usefully describe baculovirus dynamics even without including foliage variability. Our work provides a clear example of how two-species models are sometimes sufficient to describe what appear to be tritrophic interactions.


Subject(s)
Baculoviridae/physiology , Models, Biological , Moths/virology , Quercus/virology , Animals , Feeding Behavior , Larva/physiology , Moths/growth & development , Moths/physiology , Plant Leaves/virology , Quercus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...