Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.856
Filter
1.
Eur J Med Chem ; 272: 116463, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38704944

ABSTRACT

Butyrylcholinesterase (BChE) has attracted wide interest as a promising target in Alzheimer's disease (AD) investigation. BChE is considered to play a compensable role of hydrolyzing acetylcholine (ACh), and its positive correlation with ß-amyloid (Aß) deposition also promotes disease progression. Herein, we uncovered a selective potent BChE inhibitor S21-1011 (eqBChE IC50 = 0.059 ± 0.006 µM, hBChE IC50 = 0.162 ± 0.069 µM), which presented satisfactory druggability and therapeutic efficacy in AD models. In pharmacokinetics (PK) studies, S21-1011 showed excellent blood-brain barrier (BBB) permeability, metabolism stability and high oral-bioavailability. In pharmacodynamic (PD) studies, it protected neural cells from toxicity and inflammation stimulation in vitro. Besides, it also exerted anti-inflammatory effect and alleviated cognitive impairment in mice models induced by lipopolysaccharides (LPS) and Aß. Generally, this compound has been confirmed to function as a neuroprotector and cognition improver in various AD pathology-like models. Therefore, S21-1011, a novel potent BChE inhibitor, could be considered as a potential anti-AD candidate worthy of more profound investigation.


Subject(s)
Alzheimer Disease , Butyrylcholinesterase , Cholinesterase Inhibitors , Quinolines , Butyrylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Mice , Humans , Structure-Activity Relationship , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Drug Discovery , Molecular Structure , Male , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Dose-Response Relationship, Drug , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/chemical synthesis , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Inflammation/drug therapy , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects
2.
SAR QSAR Environ Res ; 35(5): 343-366, 2024 May.
Article in English | MEDLINE | ID: mdl-38776241

ABSTRACT

Most of pharmaceutical agents display a number of biological activities. It is obvious that testing even one compound for thousands of biological activities is not practically possible. A computer-aided prediction is therefore the method of choice in this case to select the most promising bioassays for particular compounds. Using the PASS Online software, we determined the probable anti-inflammatory action of the 12 new hybrid dithioloquinolinethiones derivatives. Chemical similarity search in the World-Wide Approved Drugs (WWAD) and DrugBank databases did not reveal close structural analogues with the anti-inflammatory action. Experimental testing of anti-inflammatory activity of the synthesized compounds in the carrageenan-induced inflammation mouse model confirmed the computational predictions. The anti-inflammatory activity of the studied compounds (2a, 3a-3k except for 3j) varied between 52.97% and 68.74%, being higher than the reference drug indomethacin (47%). The most active compounds appeared to be 3h (68.74%), 3k (66.91%) and 3b (63.74%) followed by 3e (61.50%). Thus, based on the in silico predictions a novel class of anti-inflammatory agents was discovered.


Subject(s)
Anti-Inflammatory Agents , Carrageenan , Quantitative Structure-Activity Relationship , Quinolines , Animals , Mice , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , Inflammation/drug therapy , Inflammation/chemically induced , Thiones/chemistry , Thiones/pharmacology , Male , Edema/drug therapy , Edema/chemically induced
3.
Int J Biol Macromol ; 269(Pt 2): 132102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729465

ABSTRACT

Optically pure 1,2,3,4-tetrahydroquinolines (THQs) represent a class of important motifs in many natural products and pharmaceutical agents. While recent advances on redox biocatalysis have demonstrated the great potential of amine oxidases, all the transformations focused on 2-substituted THQs. The corresponding biocatalytic method for the preparation of chiral 4-substituted THQs is still challenging due to the poor activity and stereoselectivity of the available enzyme. Herein, we developed a biocatalytic kinetic resolution approach for enantiodivergent synthesis of 4-phenyl- or alkyl-substituted THQs. Through structure-guided protein engineering of cyclohexylamine oxidase derived from Brevibacterium oxidans IH-35 A (CHAO), the variant of CHAO (Y215H/Y214S) displayed improved specific activity toward model substrate 4-phenyl substituted THQ (0.14 U/mg, 13-fold higher than wild-type CHAO) with superior (R)-stereoselectivity (E > 200). Molecular dynamics simulations show that CHAO Y215H/Y214S allows a suitable substrate positioning in the expanded binding pocket to be facilely accessed, enabling enhanced activity and stereoselectivity. Furthermore, a series of 4-alkyl-substituted THQs can be transformed by CHAO Y215H/Y214S, affording R-isomers with good yields (up to 50 %) and excellent enantioselectivity (up to ee > 99 %). Interestingly, the monoamine oxidase from Pseudomonas fluorescens Pf0-1 (PfMAO1) with opposite enantioselectivity was also mined. Together, this system enriches the kinetic resolution methods for the synthesis of chiral THQs.


Subject(s)
Quinolines , Kinetics , Stereoisomerism , Quinolines/chemistry , Biocatalysis , Brevibacterium/enzymology , Substrate Specificity , Molecular Dynamics Simulation , Monoamine Oxidase/metabolism , Monoamine Oxidase/chemistry
4.
Mikrochim Acta ; 191(5): 288, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671226

ABSTRACT

As a neurodegenerative disorder, Alzheimer's disease (AD) is characterized by cognitive dysfunction and behavioral impairment. Among the various genetic risk factors for AD, apoE4 gene plays a pivotal role in the onset and progression of AD, and detection of apoE4 gene holds significance for prevention and early diagnosis of AD. Herein, dual-signal fluorescence detection of fragments associated with apoE ε4 allele near codon 112 (Tc1) and codon 158 (Tc2) was achieved using DNA tetrahedron nanostructure (DTN). The Förster resonance energy transfer (FRET) process in the DTN was initiated in which the nucleic acid intercalating dye thiazole orange (TO) served as the donor and the cyanine dyes of cyanine3 (Cy3) and cyanine5 (Cy5) at the two vertices of DTN served as the acceptors. In the presence of Tc1 and Tc2, the FRET process between TO and the cyanine dyes was hindered by the enzymatic cleavage reaction, which ensures the dual-signal fluorescence assay of apoE4 gene sites. The limit of detection for Tc1 and Tc2 was estimated to be 0.82 nM and 0.77 nM, respectively, and the whole assay was accomplished within 1 h on a microplate reader. The proposed method thus possesses the advantages of easy operation, short detection time, and high-throughput capability.


Subject(s)
Apolipoprotein E4 , Carbocyanines , DNA , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Apolipoprotein E4/genetics , Fluorescence Resonance Energy Transfer/methods , Humans , Fluorescent Dyes/chemistry , DNA/chemistry , DNA/genetics , Carbocyanines/chemistry , Benzothiazoles/chemistry , Nanostructures/chemistry , Quinolines/chemistry , Limit of Detection
5.
Bioorg Med Chem Lett ; 106: 129770, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38677560

ABSTRACT

We have previously reported the total synthesis and structure-activity relationships (SAR) of 2-prenylated benzopyrans with PPAR agonist activity. Herein, we have described the synthesis and PPAR activity of 2-prenylated benzopyrans and 2-prenylated quinolines. The benzopyran nucleus was generated via enamine-catalyzed Kabbe condensation, and the quinoline nucleus via Friedländer condensation. Results demonstrated that both benzopyran (5a) and quinoline (4b) derivatives bearing a γ,δ-unsaturated ester displayed a pan-PPAR agonism. They were full PPARα agonists, but showed different preferences for PPARγ and PPARß/δ activation. It was noteworthy that quinoline 4b displayed full hPPARα activation (2-fold than WY-14,643), weak PPARß/δ and partial PPARγ activation. In addition, quinoline 4b showed anti-inflammatory effects on macrophages by reducing LPS-induced expression of both MCP-1 and IL-6. Therefore, 4b emerges as a first-in-class promising hit compound for the development of potential therapeutics aimed at treating metabolic syndrome, metabolic dysfunction-associated fatty liver disease (MAFLD), and its associated cardiovascular comorbidities.


Subject(s)
Metabolic Syndrome , Quinolines , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Structure-Activity Relationship , Humans , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Molecular Structure , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Macrophages/drug effects , Macrophages/metabolism , Dose-Response Relationship, Drug , Benzopyrans/pharmacology , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Animals , Mice
6.
Bioorg Chem ; 147: 107359, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613925

ABSTRACT

Twenty N-substituted pyrrolo[3,4-c]quinoline-1,3-diones 3a-t were synthesized by a cyclization reaction of Pfitzinger's quinoline ester precursor with the selected aromatic, heteroaromatic and aliphatic amines. The structures of all derivatives were confirmed by IR, 1H NMR, 13C NMR and HRMS spectra, while their purity was determined using HPLC techniques. Almost all compounds were identified as a new class ofpotent inhibitors against hDHODH among which 3a and 3t were the most active ones with the same IC50 values of 0.11 µM, about seven times better than reference drug leflunomide. These two derivatives also exhibited very low cytotoxic effects toward healthy HaCaT cells and the optimal lipophilic properties with logP value of 1.12 and 2.07 respectively, obtained experimentally at physiological pH. We further evaluated the comparative differences in toxicological impact of the three most active compounds 3a, 3n and 3t and reference drug leflunomide. The rats were divided into five groups and were treated intraperitoneally, control group (group I) with a single dose of leflunomide (20 mg/kg) group II and the other three groups, III, IV and V were treated with 3a, 3n and 3t (20 mg/kg bw) separately. The investigation was performed in liver, kidney and blood by examining serum biochemical parameters and parameters of oxidative stress.


Subject(s)
Dihydroorotate Dehydrogenase , Enzyme Inhibitors , Oxidoreductases Acting on CH-CH Group Donors , Animals , Humans , Male , Rats , Cell Line , Dose-Response Relationship, Drug , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroles/chemical synthesis , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Rats, Wistar , Structure-Activity Relationship , Quinolones/chemical synthesis , Quinolones/chemistry , Quinolones/pharmacology
7.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673734

ABSTRACT

Phenothiazine derivatives are widely studied in various fields such as biology, chemistry, and medicine research because of their pharmaceutical effects. The first compound used successfully in the treatment of psychosis was a phenthiazine derivative, chlorpromazine. Apart from its activity in neurons, chlorpromazine has also been reported to display anticancer and antibacterial properties. In this study, we present the synthesis and research on the activity of A549, MDA, MiaPaCa, PC3, and HCT116 cancer cell lines and of S. aureus, S. epidermidis, E. coli, and P. aeruginosa bacterial strains against a series of new tetracyclic chlorpromazine analogues containing a quinoline scaffold in their structure instead of the benzene ring and various substituents at the thiazine nitrogen. The structure of these novel molecules has been determined by 1H NMR, 13C NMR, and HRMS spectral techniques. The seven most active of the twenty-four new chlorpromazine analogues tested were selected to study the mechanism of cytotoxic action. Their ability to induce apoptosis or necrosis in cancer cells was assessed by flow cytometry analysis. The results obtained confirmed the proapoptotic activity of selected compounds, especially in terms of inducing late apoptosis or necrosis in cancer cell lines A549, MiaPaCa-2, and HCT-116. Furthermore, studies on the induction of cell cycle arrest suggest that the new chlorpromazine analogues exert antiproliferative effects by inducing cell cycle arrest in the S phase and, consequently, apoptosis.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Apoptosis , Chlorpromazine , Phenothiazines , Quinolines , Humans , Chlorpromazine/pharmacology , Chlorpromazine/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Phenothiazines/pharmacology , Phenothiazines/chemistry , Phenothiazines/chemical synthesis , Cell Line, Tumor , Apoptosis/drug effects , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Microbial Sensitivity Tests , Cell Proliferation/drug effects , Structure-Activity Relationship , HCT116 Cells
8.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673872

ABSTRACT

Dyes based on quinoline and quinoxaline skeletons were designed for application as visible light photoinitiators. The obtained compounds absorb electromagnetic radiation on the border between ultraviolet and visible light, which allows the use of dental lamps as light sources during the initiation of the photopolymerization reaction. Their another desirable feature is the ability to create a long-lived excited state, which enables the chain reaction to proceed through the mechanism of intermolecular electron transfer. In two-component photoinitiating systems, in the presence of an electron donor or a hydrogen atom donor, the synthesized compounds show excellent abilities to photoinitiate the polymerization of acrylates. In control tests, the efficiency of photopolymerization using modified quinoline and quinoxaline derivatives is comparable to that obtained using a typical, commercial photoinitiator for dentistry, camphorquinone. Moreover, the use of the tested compounds requires a small amount of photoinitiator (only 0.04% by weight) to initiate the reaction. The research also showed a significant acceleration of the photopolymerization process and shortening of the reaction time. In practice, this means that the new two-component initiating systems can be used in much lower concentrations without slowing down the speed of obtaining polymer materials. It is worth emphasizing that these two features of the new initiating system allow for cost reduction by reducing financial outlays on both materials (photoinitiators) and electricity.


Subject(s)
Coloring Agents , Light , Polymerization , Quinolines , Quinoxalines , Quinolines/chemistry , Quinoxalines/chemistry , Quinoxalines/chemical synthesis , Coloring Agents/chemistry , Photochemical Processes
9.
Chem Commun (Camb) ; 60(36): 4785-4788, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38602157

ABSTRACT

We show that covalent labelling of sialic acids on live cell surfaces or mucin increases the fluorescence of the fluorescence molecular rotors (FMRs) CCVJ, Cy3 and thioazole orange, enabling wash-free imaging of cell surfaces. Dual labelling with an FMR and an environmentally insensitive dye allows detection of changes that occur, for example, when cross-linking is altered.


Subject(s)
Fluorescent Dyes , Fluorescent Dyes/chemistry , Humans , Polysaccharides/chemistry , Nucleic Acids/chemistry , Nucleic Acids/analysis , Carbocyanines/chemistry , Staining and Labeling/methods , Fluorescence , Quinolines/chemistry , Benzothiazoles/chemistry
10.
J Agric Food Chem ; 72(17): 10097-10105, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38630689

ABSTRACT

With the booming development of food manufacturing, developing ideal analytical tools to precisely quantify food additives is highly sought after in the food science field. Herein, a new series of quinoline-derived multifunctional fluorescent probes has been synthesized. Bearing double reactive sites, these compounds display fluorescence response toward both bisulfite (HSO3-) and hypochlorous acid (HClO). Among these compact structures, compound ethyl-2-cyano-3-(6-(methylthio)quinolin-2-yl)acrylate (QTE) was screened out. Probe QTE not only shows ratiometric variation toward HSO3- with little cross talk but also performs turn-off signal toward HClO. In addition, probe QTE has been utilized for bioimaging of HClO in living cells. Furthermore, the HSO3- content in dried food samples has been appraised by QTE with satisfactory results. Meanwhile, relying on the apparent chromaticity change, a flexible dark-box device has been elaborated for chromatic analysis, promoting visualization of HSO3- in the field.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , Quinolines , Sulfites , Fluorescent Dyes/chemistry , Quinolines/chemistry , Hypochlorous Acid/analysis , Humans , Sulfites/analysis , Sulfites/chemistry , Food Analysis/methods
11.
Org Biomol Chem ; 22(18): 3708-3724, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38639206

ABSTRACT

Despite the high global prevalence, rheumatoid arthritis lacks a satisfactory treatment. Hence, the present study is undertaken to design and synthesize novel anti-inflammatory compounds. For this, quinoline and anthranilic acid, two medicinally-privileged moieties, were linked by pharmacophore hybridization, and following their computational assessments, three hybrids 5a-c were synthesized in good over all yields. The in vitro and in vivo anti-inflammatory potential of these hybrids was determined by anti-denaturation and anti-proteinase, and carrageenan-induced paw edema models. The computational studies of these hybrids revealed their drug-likeness, optimum pharmacokinetics, and less toxicity. Moreover, they demonstrated high binding affinity (-9.4 to -10.6 kcal mol-1) and suitable binding interactions for TNF-α, FLAP, and COX-II. A three-step synthetic route resulted in the hybrids 5a-c with 83-86% yield of final step. At 50 µg mL-1, the antiprotease and anti-denaturation activity of compound 5b was significantly higher than 5a and 5c. Furthermore, 5b significantly reduced the edema in the right paw of the rats that received carrageenan. The results of this study indicate the medicinal worth of the novel hybrids in treating inflammatory disorders such as rheumatoid arthritis.


Subject(s)
Drug Design , Edema , Molecular Docking Simulation , Quinolines , ortho-Aminobenzoates , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Animals , Edema/drug therapy , Edema/chemically induced , ortho-Aminobenzoates/chemistry , ortho-Aminobenzoates/pharmacology , ortho-Aminobenzoates/chemical synthesis , Rats , Carrageenan , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Molecular Structure , Rats, Wistar , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Dose-Response Relationship, Drug , Structure-Activity Relationship , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/chemistry
12.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38678002

ABSTRACT

AIMS: This study aimed to develop an editable structural scaffold for improving drug development, including pharmacokinetics and pharmacodynamics of antibiotics by using synthetic compounds derived from a (hetero)aryl-quinoline hybrid scaffold. METHODS AND RESULTS: In this study, 18 CF3-substituted (hetero)aryl-quinoline hybrid molecules were examined for their potential antibacterial activity against Staphylococcus aureus by determining minimal inhibitory concentrations. These 18 synthetic compounds represent modifications to key regions of the quinoline N-oxide scaffold, enabling us to conduct a structure-activity relationship analysis for antibacterial potency. Among the compounds, 3 m exhibited potency against with both methicillin resistant S. aureus strains, as well as other Gram-positive bacteria, including Enterococcus faecalis and Bacillus subtilis. We demonstrated that 3 m disrupted the bacterial proton motive force (PMF) through monitoring the PMF and conducting the molecular dynamics simulations. Furthermore, we show that this mechanism of action, disrupting PMF, is challenging for S. aureus to overcome. We also validated this PMF inhibition mechanism of 3 m in an Acinetobacter baumannii strain with weaken lipopolysaccharides. Additionally, in Gram-negative bacteria, we demonstrated that 3 m exhibited a synergistic effect with colistin that disrupts the outer membrane of Gram-negative bacteria. CONCLUSIONS: Our approach to developing editable synthetic novel antibacterials underscores the utility of CF3-substituted (hetero)aryl-quinoline scaffold for designing compounds targeting the bacterial proton motive force, and for further drug development, including pharmacokinetics and pharmacodynamics.


Subject(s)
Anti-Bacterial Agents , Indoles , Microbial Sensitivity Tests , Proton-Motive Force , Quinolines , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Quinolines/pharmacology , Quinolines/chemistry , Proton-Motive Force/drug effects , Indoles/pharmacology , Indoles/chemistry , Structure-Activity Relationship , Methicillin-Resistant Staphylococcus aureus/drug effects , Molecular Dynamics Simulation , Acinetobacter baumannii/drug effects , Enterococcus faecalis/drug effects , Staphylococcus aureus/drug effects , Bacillus subtilis/drug effects
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124285, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38615416

ABSTRACT

Quinoline yellow (QY), as a food coloring agent, will consume a large number of detoxifying substances in the body after being ingested by the human body, interfering with the normal metabolic functions of the human body, and may cause allergies, diarrhea and other symptoms, as well as a certain degree of carcinogenicity, posing a great threat to human health. As a result, it is critical to develop a fast, sensitive, and effective approach to determining quinoline yellow in food. In this study, carbon dots (N-CQDs) with high fluorescence quantum yield were prepared and used to determine the QY content using the dual mode of internal filtering effect and fluorescence emission shift detection. Both methods showed good linearity in the range of QY concentration of 0.3-3.2 µM, and the detection limits were classified as 2.6 nM and 0.18 µM. In addition, in order to achieve visual detection of QY, fluorescent test strips were constructed using the carbon dots and non-fluorescent qualitative filter paper to make the detection of QY more convenient. This probe presents a novel way for detecting quinoline yellow in food analysis.


Subject(s)
Carbon , Nitrogen , Quantum Dots , Quinolines , Spectrometry, Fluorescence , Quantum Dots/chemistry , Carbon/chemistry , Spectrometry, Fluorescence/methods , Quinolines/chemistry , Nitrogen/chemistry , Food Coloring Agents/analysis , Limit of Detection , Fluorescent Dyes/chemistry
14.
Bioorg Chem ; 147: 107323, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583254

ABSTRACT

Phosphatidylinositide-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) have recently been identified as potential cancer targets. In our work, a new family of quinoline analogues was designed, developed, and evaluated as dual inhibitors of PI3Kδ/mTOR. The preliminary biological activity analysis led to the discovery of the lead compounds 5h and 5e. Compounds 5h and 5e exhibited excellent anti-tumor potency with IC50 of 0.26 µM and 0.34 µM against Ramos cells, respectively. Importantly, based on the enzymatic activity assay results, compounds 5h and 5e were identified as dual inhibitors of PI3Kδ and mTOR, with IC50 values of 0.042 µM and 0.056 µM for PI3Kδ and 0.059 µM and 0.073 µM for mTOR, respectively. Furthermore, these compounds showed superior selectivity for blocking PI3Kδ compared to other PI3K isoforms (α, ß, and γ), supporting the concept of developing inhibitors that specifically target PI3Kδ/mTOR. The most effective compound 5h was chosen for additional biological testing. At a low dose of 0.5 µM, a western blot investigation confirmed the anticancer effects by inhibiting the PAM cascade, which in turn reduced downstream biomarkers pAkt (Ser473), pAkt (Thr308), and pRPS6 (Ser235/236). Furthermore, it increased apoptosis at the early (10.03 times) and late (17.95 times) stages in the Annexin-V assay as compared to the standard. In addition, the expression of p53, caspase-3, caspase-9, and the Bax/BCl-2 ratio were all significantly increased by compound 5h in the ELISA assay. Based on these results, it appears that 5h may activate the intrinsic apoptosis pathway, which in turn triggers cell death. Furthermore, the anticancer effects could be attributed to the inhibition of PI3Kδ/mTOR, as shown by docking interactions. Lastly, it demonstrated improved in vitro metabolic stability and passed the in silico ADMET/drug-likeness test. This profile recommends 5h for future in vivo PK-PD and efficacy investigations in animal cancer models.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Phosphoinositide-3 Kinase Inhibitors , Quinolines , TOR Serine-Threonine Kinases , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Structure-Activity Relationship , Molecular Structure , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Cell Proliferation/drug effects , Quinolines/pharmacology , Quinolines/chemistry , Quinolines/chemical synthesis , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , MTOR Inhibitors/pharmacology , MTOR Inhibitors/chemical synthesis , MTOR Inhibitors/chemistry , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism
15.
J Nat Prod ; 87(4): 1103-1115, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38600744

ABSTRACT

Twelve new alkaloids, scolopenolines A-L (1-7, 9-11, 13, 14), along with six known analogues, were isolated from Scolopendra subspinipes mutilans, identified by analysis of spectroscopic data and quantum chemical and computational methods. Scolopenoline A (1), a unique guanidyl-containing C14 quinoline alkaloid, features a 6/6/5 ring backbone. Scolopenoline B (2) is a novel sulfonyl-containing heterodimer comprising quinoline and tyramine moieties. Scolopenoline G (7) presents a rare C12 quinoline skeleton with a 6/6/5 ring system. Alkaloids 1, 8, 10, and 15-18 display anti-inflammatory activity, while 10 and 16-18 also exhibit anti-renal-fibrosis activity. Drug affinity responsive target stability and RNA-interference assays show that Lamp2 might be a potentially important target protein of 16 for anti-renal-fibrosis activity.


Subject(s)
Alkaloids , Animals, Poisonous , Chilopoda , Animals , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Molecular Structure , Arthropods/chemistry , Fibrosis/drug therapy , Kidney/drug effects , Quinolines/pharmacology , Quinolines/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans
16.
Chemistry ; 30(29): e202400722, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38497675

ABSTRACT

A guanine-rich oligonucleotide based on a human telomeric sequence but with the first three-nucleotide intervening stretch replaced by a putative 15-nucleotide hairpin-forming sequence shows a pH-dependent folding into different quadruplex-duplex hybrids in a potassium containing buffer. At slightly acidic pH, the quadruplex domain adopts a chair-type conformation. Upon increasing the pH, a transition with a midpoint close to neutral pH to a major and minor (3+1) hybrid topology with either a coaxially stacked or orthogonally oriented duplex stem-loop occurs. NMR-derived high-resolution structures reveal that an adenine protonation is prerequisite for the formation of a non-canonical base quartet, capping the outer G-tetrad at the quadruplex-duplex interface and stabilizing the antiparallel chair conformation in an acidic environment. Being directly associated with interactions at the quadruplex-duplex interface, this unique pH-dependent topological transition is fully reversible. Coupled with a conformation-sensitive optical readout demonstrated as a proof of concept using the fluorescent dye thiazole orange, the present quadruplex-duplex hybrid architecture represents a potentially valuable pH-sensing system responsive in a physiological pH range of 7±1.


Subject(s)
G-Quadruplexes , Hydrogen-Ion Concentration , Humans , Benzothiazoles/chemistry , DNA/chemistry , Oligonucleotides/chemistry , Quinolines/chemistry , Nucleic Acid Conformation , Fluorescent Dyes/chemistry , Telomere/chemistry , Guanine/chemistry , Magnetic Resonance Spectroscopy
17.
Bioorg Med Chem ; 103: 117681, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38492541

ABSTRACT

This article includes a thorough examination of the inhibitory potential of quinoline-based drugs on cancer cells, as well as an explanation of their modes of action. Quinoline derivatives, due to their various chemical structures and biological activity, have emerged as interesting candidates in the search for new anticancer drugs. The review paper delves into the numerous effects of quinoline-based chemicals in cancer progression, including apoptosis induction, cell cycle modification, and interference with tumor-growth signaling pathways. Mechanistic insights on quinoline derivative interactions with biological targets enlightens their therapeutic potential. However, obstacles such as poor bioavailability, possible off-target effects, and resistance mechanisms make it difficult to get these molecules from benchside to bedside. Addressing these difficulties might be critical for realizing the full therapeutic potential of quinoline-based drugs in cancer treatment.


Subject(s)
Antineoplastic Agents , Neoplasms , Quinolines , Humans , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Cell Death , Cell Cycle , Quinolines/chemistry
18.
Eur J Med Chem ; 269: 116332, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38508120

ABSTRACT

The inhibition of the α-glucosidase enzyme is crucial for targeting type 2 diabetes mellitus (DM). This study introduces a series of synthetic analogs based on thiomethylacetamide-quinoline derivatives linked to diphenyl-imidazole as highly potential α-glucosidase inhibitors. Twenty derivatives were synthesized and screened in vitro against α-glucosidase, revealing IC50 values ranging from 0.18 ± 0.00 to 2.10 ± 0.07 µM, in comparison to the positive control, acarbose. Among these derivatives, compound 10c (IC50 = 0.180 µM) demonstrated the highest potency and revealed a competitive inhibitory mechanism in kinetic studies (Ki = 0.15 µM). Docking and molecular dynamic evaluations elucidated the binding mode of 10c with the active site residues of the α-glucosidase enzyme. Moreover, in vivo assessments on a rat model of DM affirmed the anti-diabetic efficacy of 10c, evidenced by reduced fasting and overall blood glucose levels. The histopathological evaluation enhanced pancreatic islet architecture and hepatocytes in liver sections. In conclusion, novel 2-(quinoline-2-ylthio)acetamide derivatives as potent α-glucosidase inhibitors were developed. Compound 10c emerged as a promising candidate for diabetes management, warranting further investigation for potential clinical applications and mechanistic insights.


Subject(s)
Biphenyl Compounds , Diabetes Mellitus, Type 2 , Quinolines , Animals , Rats , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Diabetes Mellitus, Type 2/drug therapy , alpha-Glucosidases/metabolism , Kinetics , Molecular Docking Simulation , Imidazoles/pharmacology , Quinolines/pharmacology , Quinolines/chemistry , Acetamides/pharmacology , Structure-Activity Relationship , Molecular Structure
19.
Molecules ; 29(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38398524

ABSTRACT

6-Iodo-substituted carboxy-quinolines were obtained using a one-pot, three-component method with trifluoroacetic acid as a catalyst under acidic conditions. Iodo-aniline, pyruvic acid and 22 phenyl-substituted aldehydes (we varied the type and number of radicals) or O-heterocycles, resulting in different electronic effects, were the starting components. This approach offers advantages such as rapid response times, cost-effective catalysts, high product yields and efficient purification procedures. A comprehensive investigation was conducted to examine the impact of aldehyde structure on the synthesis pathway. A library of compounds was obtained and characterized by FT-IR, MS, 1H NMR and 13C NMR spectroscopy and single-ray crystal diffractometry. Their antimicrobial activity against S. epidermidis, K. pneumonie and C. parapsilosis was tested in vitro. The effect of iodo-quinoline derivatives on microbial adhesion, the initial stage of microbial biofilm development, was also investigated. This study suggests that carboxy-quinoline derivatives bearing an iodine atom are interesting scaffolds for the development of novel antimicrobial agents.


Subject(s)
Anti-Infective Agents , Iodine , Quinolines , Spectroscopy, Fourier Transform Infrared , Anti-Infective Agents/chemistry , Quinolines/chemistry
20.
Eur J Med Chem ; 268: 116238, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38367492

ABSTRACT

Fibroblast activation protein-α (FAP) is a marker of cancer-associated fibroblasts (CAFs) that constitute a significant portion of most carcinomas. Since it plays a critical role in tumor growth and metastasis, its timely detection to identify tumor lesions in early developmental stages using targeted radiopharmaceuticals has gained significant impetus. In the present work, two novel FAP-targeted precursors SB03178 and SB04033 comprising of an atypical benzo[h]quinoline construct were synthesized and either chelated to diagnostic radionuclide gallium-68 or therapeutic radionuclide lutetium-177, with ≥90% radiochemical purities and 22-76% decay-corrected radiochemical yields. natGa-labeled complexes displayed dose-dependent FAP inhibition, with binding potency of natGa-SB03178 being ∼17 times higher than natGa-SB04033. To evaluate their pharmacokinetic profiles, PET imaging and ex vivo biodistribution analyses were executed in FAP-overexpressing HEK293T:hFAP tumor-bearing mice. While both tracers displayed clear tumor visualization that was primarily FAP-arbitrated, with negligible uptake in most peripheral tissues, [68Ga]Ga-SB03178 demonstrated higher tumor uptake and superior tumor-to-background contrast ratios than [68Ga]Ga-SB04033. 177Lu-labeled SB03178 was subjected to tumor retention studies, mouse dosimetry profiling and mouse-to-human dose extrapolations also using the HEK293T:hFAP tumor model. [177Lu]Lu-SB03178 exhibited a combination of high and sustained tumor uptake, with excellent tumor-to-critical organ uptake ratios resulting in a high radiation absorbed dose to the tumor and a low estimated whole-body dose to humans. Our preliminary findings are considerably encouraging to support clinical development of [68Ga]Ga-/[177Lu]Lu-SB03178 theranostic pair for use in a vast majority of FAP-overexpressing neoplasms, particularly carcinomas.


Subject(s)
Carcinoma , Endopeptidases , Membrane Proteins , Quinolines , Humans , Animals , Mice , Gallium Radioisotopes , Tissue Distribution , HEK293 Cells , Radioisotopes , Radiopharmaceuticals/pharmacokinetics , Quinolines/chemistry , Positron Emission Tomography Computed Tomography/methods , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...