Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.575
Filter
1.
Malar J ; 23(1): 138, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720269

ABSTRACT

BACKGROUND: Artemisinin resistance in Plasmodium falciparum threatens global malaria elimination efforts. To contain and then eliminate artemisinin resistance in Eastern Myanmar a network of community-based malaria posts was instituted and targeted mass drug administration (MDA) with dihydroartemisinin-piperaquine (three rounds at monthly intervals) was conducted. The prevalence of artemisinin resistance during the elimination campaign (2013-2019) was characterized. METHODS: Throughout the six-year campaign Plasmodium falciparum positive blood samples from symptomatic patients and from cross-sectional surveys were genotyped for mutations in kelch-13-a molecular marker of artemisinin resistance. RESULT: The program resulted in near elimination of falciparum malaria. Of 5162 P. falciparum positive blood samples genotyped, 3281 (63.6%) had K13 mutations. The prevalence of K13 mutations was 73.9% in 2013 and 64.4% in 2019. Overall, there was a small but significant decline in the proportion of K13 mutants (p < 0.001). In the MDA villages there was no significant change in the K13 proportions before and after MDA. The distribution of different K13 mutations changed substantially; F446I and P441L mutations increased in both MDA and non-MDA villages, while most other K13 mutations decreased. The proportion of C580Y mutations fell from 9.2% (43/467) before MDA to 2.3% (19/813) after MDA (p < 0.001). Similar changes occurred in the 487 villages where MDA was not conducted. CONCLUSION: The malaria elimination program in Kayin state, eastern Myanmar, led to a substantial reduction in falciparum malaria. Despite the intense use of artemisinin-based combination therapies, both in treatment and MDA, this did not select for artemisinin resistance.


Subject(s)
Antimalarials , Artemisinins , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Artemisinins/pharmacology , Artemisinins/therapeutic use , Myanmar , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Humans , Cross-Sectional Studies , Female , Male , Adolescent , Adult , Mass Drug Administration , Young Adult , Mutation , Child , Child, Preschool , Middle Aged , Quinolines/pharmacology , Quinolines/therapeutic use , Disease Eradication/statistics & numerical data , Piperazines
2.
Proc Natl Acad Sci U S A ; 121(20): e2322688121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709925

ABSTRACT

Brain metastatic breast cancer is particularly lethal largely due to therapeutic resistance. Almost half of the patients with metastatic HER2-positive breast cancer develop brain metastases, representing a major clinical challenge. We previously described that cancer-associated fibroblasts are an important source of resistance in primary tumors. Here, we report that breast cancer brain metastasis stromal cell interactions in 3D cocultures induce therapeutic resistance to HER2-targeting agents, particularly to the small molecule inhibitor of HER2/EGFR neratinib. We investigated the underlying mechanisms using a synthetic Notch reporter system enabling the sorting of cancer cells that directly interact with stromal cells. We identified mucins and bulky glycoprotein synthesis as top-up-regulated genes and pathways by comparing the gene expression and chromatin profiles of stroma-contact and no-contact cancer cells before and after neratinib treatment. Glycoprotein gene signatures were also enriched in human brain metastases compared to primary tumors. We confirmed increased glycocalyx surrounding cocultures by immunofluorescence and showed that mucinase treatment increased sensitivity to neratinib by enabling a more efficient inhibition of EGFR/HER2 signaling in cancer cells. Overexpression of truncated MUC1 lacking the intracellular domain as a model of increased glycocalyx-induced resistance to neratinib both in cell culture and in experimental brain metastases in immunodeficient mice. Our results highlight the importance of glycoproteins as a resistance mechanism to HER2-targeting therapies in breast cancer brain metastases.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Drug Resistance, Neoplasm , Glycocalyx , Quinolines , Receptor, ErbB-2 , Stromal Cells , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Brain Neoplasms/secondary , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Glycocalyx/metabolism , Animals , Cell Line, Tumor , Stromal Cells/metabolism , Stromal Cells/pathology , Quinolines/pharmacology , Mice , Cell Communication , Coculture Techniques , Mucin-1/metabolism , Mucin-1/genetics , Signal Transduction , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors
3.
SAR QSAR Environ Res ; 35(5): 343-366, 2024 May.
Article in English | MEDLINE | ID: mdl-38776241

ABSTRACT

Most of pharmaceutical agents display a number of biological activities. It is obvious that testing even one compound for thousands of biological activities is not practically possible. A computer-aided prediction is therefore the method of choice in this case to select the most promising bioassays for particular compounds. Using the PASS Online software, we determined the probable anti-inflammatory action of the 12 new hybrid dithioloquinolinethiones derivatives. Chemical similarity search in the World-Wide Approved Drugs (WWAD) and DrugBank databases did not reveal close structural analogues with the anti-inflammatory action. Experimental testing of anti-inflammatory activity of the synthesized compounds in the carrageenan-induced inflammation mouse model confirmed the computational predictions. The anti-inflammatory activity of the studied compounds (2a, 3a-3k except for 3j) varied between 52.97% and 68.74%, being higher than the reference drug indomethacin (47%). The most active compounds appeared to be 3h (68.74%), 3k (66.91%) and 3b (63.74%) followed by 3e (61.50%). Thus, based on the in silico predictions a novel class of anti-inflammatory agents was discovered.


Subject(s)
Anti-Inflammatory Agents , Carrageenan , Quantitative Structure-Activity Relationship , Quinolines , Animals , Mice , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , Inflammation/drug therapy , Inflammation/chemically induced , Thiones/chemistry , Thiones/pharmacology , Male , Edema/drug therapy , Edema/chemically induced
4.
Biol Res ; 57(1): 32, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797855

ABSTRACT

BACKGROUND: The liver serves as a metabolic hub within the human body, playing a crucial role in various essential functions, such as detoxification, nutrient metabolism, and hormone regulation. Therefore, protecting the liver against endogenous and exogenous insults has become a primary focus in medical research. Consequently, the potential hepatoprotective properties of multiple 4-phenyltetrahydroquinolines inspired us to thoroughly study the influence of four specially designed and synthesized derivatives on carbon tetrachloride (CCl4)-induced liver injury in rats. METHODS AND RESULTS: Seventy-seven Wistar albino male rats weighing 140 ± 18 g were divided into eleven groups to investigate both the toxicity profile and the hepatoprotective potential of 4-phenyltetrahydroquinolines. An in-vivo hepatotoxicity model was conducted using CCl4 (1 ml/kg body weight, a 1:1 v/v mixture with corn oil, i.p.) every 72 h for 14 days. The concurrent treatment of rats with our newly synthesized compounds (each at a dose of 25 mg/kg body weight, suspended in 0.5% CMC, p.o.) every 24 h effectively lowered transaminases, preserved liver tissue integrity, and mitigated oxidative stress and inflammation. Moreover, the histopathological examination of liver tissues revealed a significant reduction in liver fibrosis, which was further supported by the immunohistochemical analysis of α-SMA. Additionally, the expression of the apoptotic genes BAX and BCL2 was monitored using real-time PCR, which showed a significant decrease in liver apoptosis. Further investigations unveiled the ability of the compounds to significantly decrease the expression of autophagy-related proteins, Beclin-1 and LC3B, consequently inhibiting autophagy. Finally, our computer-assisted simulation dockingonfirmed the obtained experimental activities. CONCLUSION: Our findings suggest that derivatives of 4-phenyltetrahydroquinoline demonstrate hepatoprotective properties in CCl4-induced liver damage and fibrosis in rats. The potential mechanism of action may be due to the inhibition of autophagy in liver cells.


Subject(s)
Autophagy , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury , Quinolines , Rats, Wistar , Animals , Autophagy/drug effects , Male , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Rats , Quinolines/pharmacology , Oxidative Stress/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Protective Agents/pharmacology , Apoptosis/drug effects , Disease Models, Animal
5.
Nat Commun ; 15(1): 4099, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816352

ABSTRACT

Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Interferon Regulatory Factor-3 , Interleukin-33 , Pancreatic Neoplasms , Protein Serine-Threonine Kinases , Quinolines , Signal Transduction , Interleukin-33/metabolism , Animals , Interferon Regulatory Factor-3/metabolism , Humans , Pancreatic Neoplasms/prevention & control , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Mice , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Quinolines/pharmacology , Quinolines/therapeutic use , Inflammation/prevention & control , Inflammation/metabolism , Pancreatitis, Chronic/prevention & control , Pancreatitis, Chronic/metabolism , Toll-Like Receptor 3/metabolism , Mice, Inbred C57BL , Toll-Like Receptor 4/metabolism , Mevalonic Acid/metabolism , Male , Female , Mice, Knockout
6.
Chemosphere ; 359: 142362, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768786

ABSTRACT

Quantitative Structure Activity Relation (QSAR) models are mathematical techniques used to link structural characteristics with biological activities, thus considered a useful tool in drug discovery, hazard evaluation, and identifying potentially lethal molecules. The QSAR regulations are determined by the Organization for Economic Cooperation and Development (OECD). QSAR models are helpful in discovering new drugs and chemicals to treat severe diseases. In order to improve the QSAR model's predictive power for biological activities of naturally occurring indoloquinoline derivatives against different cancer cell lines, a modified machine learning (ML) technique is presented in this paper. The Arithmetic Optimization Algorithm (AOA) operators are used in the suggested model to enhance the performance of the Sinh Cosh Optimizer (SCHO). Moreover, this improvement functions as a feature selection method that eliminates superfluous descriptors. An actual dataset gathered from previously published research is utilized to evaluate the performance of the suggested model. Moreover, a comparison is made between the outcomes of the suggested model and other established methodologies. In terms of pIC50 values for different indoloquinoline derivatives against human MV4-11 (leukemia), human HCT116 (colon cancer), and human A549 (lung cancer) cell lines, the suggested model achieves root mean square error (RMSE) of 0.6822, 0.6787, 0.4411, and 0.4477, respectively. The biological application of indoloquinoline derivatives as possible anticancer medicines is predicted with a high degree of accuracy by the suggested model, as evidenced by these findings.


Subject(s)
Algorithms , Quantitative Structure-Activity Relationship , Quinolines , Humans , Quinolines/chemistry , Quinolines/pharmacology , Cell Line, Tumor , Machine Learning , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Indoles/chemistry , Indoles/pharmacology
7.
Biomed Pharmacother ; 175: 116725, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744219

ABSTRACT

Qualitative alterations in type I collagen due to pathogenic variants in the COL1A1 or COL1A2 genes, result in moderate and severe Osteogenesis Imperfecta (OI), a rare disease characterized by bone fragility. The TGF-ß signaling pathway is overactive in OI patients and certain OI mouse models, and inhibition of TGF-ß through anti-TGF-ß monoclonal antibody therapy in phase I clinical trials in OI adults is rendering encouraging results. However, the impact of TGF-ß inhibition on osteogenic differentiation of mesenchymal stem cells from OI patients (OI-MSCs) is unknown. The following study demonstrates that pediatric skeletal OI-MSCs have imbalanced osteogenesis favoring the osteogenic commitment. Galunisertib, a small molecule inhibitor (SMI) that targets the TGF-ß receptor I (TßRI), favored the final osteogenic maturation of OI-MSCs. Mechanistically, galunisertib downregulated type I collagen expression in OI-MSCs, with greater impact on mutant type I collagen, and concomitantly, modulated the expression of unfolded protein response (UPR) and autophagy markers. In vivo, galunisertib improved trabecular bone parameters only in female oim/oim mice. These results further suggest that type I collagen is a tunable target within the bone ECM that deserves investigation and that the SMI, galunisertib, is a promising new candidate for the anti-TGF-ß targeting for the treatment of OI.


Subject(s)
Collagen Type I , Down-Regulation , Mesenchymal Stem Cells , Osteogenesis Imperfecta , Osteogenesis , Pyrazoles , Quinolines , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/drug therapy , Osteogenesis/drug effects , Osteogenesis/genetics , Animals , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Down-Regulation/drug effects , Collagen Type I/genetics , Collagen Type I/metabolism , Female , Quinolines/pharmacology , Mice , Child , Pyrazoles/pharmacology , Male , Cell Differentiation/drug effects , Mutation , Disease Models, Animal , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Child, Preschool , Cells, Cultured , Transforming Growth Factor beta/metabolism , Unfolded Protein Response/drug effects , Signal Transduction/drug effects
8.
Am J Vet Res ; 85(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38697189

ABSTRACT

OBJECTIVE: To examine the potential of galangin in a mouse model of ovalbumin (OVA)-induced allergic rhinitis (AR), as chronic AR, induced by immunoglobulin-E (IgE), leads to histamine release and nasal inflammation, and although galangin exhibits antiasthmatic and anti-inflammatory potential, its effect on AR is yet to be investigated. ANIMALS: 126 BALB/c mice. METHODS: AR induction involved sensitizing female mice with OVA (5%, 500 µL, IP) for 14 days. Post OVA challenge, the mice were divided into 7 groups (n = 18/group), including normal, AR control, montelukast (10 mg/kg), galangin (5, 10, and 20 mg/kg), and per se (galangin [20 mg/kg] treatment. Various outcomes were evaluated, including nasal symptoms, histopathology, biochemistry, and nasal lavage fluid inflammatory cytokines and signaling pathways in nasal mucosal to assess galangin potential in AR. RESULTS: In AR mice, galangin (10 and 20 mg/kg) significantly (P < .05) reduced sneezing, rubbing, and nasal discharge post-OVA challenge. Galangin treatment attenuated (P < .05) elevated serum histamine, ß-hexosaminidase, IgE, and Immunoglobulin G1 levels in AR control mice. Additionally, galangin significantly (P < .05) decreased OVA-induced alterations in IL-4, IL-6, IL-13, and interferon-γ levels in nasal lavage fluid compared to AR control mice. Western blot analysis demonstrated that galangin lowered OVA-induced AR by significantly (P < .05) downregulating the phosphorylated protein kinase B and mammalian target of rapamycin-protein expressions while markedly (P < .05) upregulating the glycogen synthase kinase-3ß protein expressions in nasal mucosal. Galangin also significantly ameliorated (P < .05) the OVA-induced histological aberrations in the nasal mucosa, reflected by reduced eosinophil infiltration, hyperplasia, and edema. CLINICAL RELEVANCE: Galangin exhibits antihistaminic and anti-inflammatory effects in AR mice by regulating IgE-mediated histamine and inflammatory release and modulating the phosphatidylinositol 3-kinase/Ak strain transforming/mammalian target of rapamycin pathways.


Subject(s)
Flavonoids , Mice, Inbred BALB C , Ovalbumin , Rhinitis, Allergic , Animals , Flavonoids/pharmacology , Flavonoids/therapeutic use , Mice , Female , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/chemically induced , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Disease Models, Animal , Quinolines/pharmacology , Quinolines/therapeutic use , Cytokines/metabolism , Nasal Mucosa/drug effects , Immunoglobulin E/blood , Acetates , Cyclopropanes , Sulfides
9.
Eur J Med Chem ; 272: 116463, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38704944

ABSTRACT

Butyrylcholinesterase (BChE) has attracted wide interest as a promising target in Alzheimer's disease (AD) investigation. BChE is considered to play a compensable role of hydrolyzing acetylcholine (ACh), and its positive correlation with ß-amyloid (Aß) deposition also promotes disease progression. Herein, we uncovered a selective potent BChE inhibitor S21-1011 (eqBChE IC50 = 0.059 ± 0.006 µM, hBChE IC50 = 0.162 ± 0.069 µM), which presented satisfactory druggability and therapeutic efficacy in AD models. In pharmacokinetics (PK) studies, S21-1011 showed excellent blood-brain barrier (BBB) permeability, metabolism stability and high oral-bioavailability. In pharmacodynamic (PD) studies, it protected neural cells from toxicity and inflammation stimulation in vitro. Besides, it also exerted anti-inflammatory effect and alleviated cognitive impairment in mice models induced by lipopolysaccharides (LPS) and Aß. Generally, this compound has been confirmed to function as a neuroprotector and cognition improver in various AD pathology-like models. Therefore, S21-1011, a novel potent BChE inhibitor, could be considered as a potential anti-AD candidate worthy of more profound investigation.


Subject(s)
Alzheimer Disease , Butyrylcholinesterase , Cholinesterase Inhibitors , Quinolines , Butyrylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Mice , Humans , Structure-Activity Relationship , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Drug Discovery , Molecular Structure , Male , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Dose-Response Relationship, Drug , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/chemical synthesis , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Inflammation/drug therapy , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects
10.
Medicina (Kaunas) ; 60(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38792932

ABSTRACT

Background and Objectives: The influence of montelukast (MK), an antagonist of cysLT1 leukotriene receptors, on lung lesions caused by experimental diabetes was studied. Materials and Methods: The study was conducted on four groups of six adult male Wistar rats. Diabetes was produced by administration of streptozotocin 65 mg/kg ip. in a single dose. Before the administration of streptozotocin, after 72 h, and after 8 weeks, the serum values of glucose, SOD, MDA, and total antioxidant capacity (TAS) were determined. After 8 weeks, the animals were anesthetized and sacrificed, and the lungs were harvested and examined by optical microscopy. Pulmonary fibrosis, the extent of lung lesions, and the lung wet-weight/dry-weight ratio were evaluated. Results: The obtained results showed that MK significantly reduced pulmonary fibrosis (3.34 ± 0.41 in the STZ group vs. 1.73 ± 0.24 in the STZ+MK group p < 0.01) and lung lesion scores and also decreased the lung wet-weight/dry-weight (W/D) ratio. SOD and TAS values increased significantly when MK was administered to animals with diabetes (77.2 ± 11 U/mL in the STZ group vs. 95.7 ± 13.3 U/mL in the STZ+MK group, p < 0.05, and 25.52 ± 2.09 Trolox units in the STZ group vs. 33.29 ± 1.64 Trolox units in the STZ+MK group, respectively, p < 0.01), and MDA values decreased. MK administered alone did not significantly alter any of these parameters in normal animals. Conclusions: The obtained data showed that by blocking the action of peptide leukotrienes on cysLT1 receptors, montelukast significantly reduced the lung lesions caused by diabetes. The involvement of these leukotrienes in the pathogenesis of fibrosis and other lung diabetic lesions was also demonstrated.


Subject(s)
Acetates , Cyclopropanes , Diabetes Mellitus, Experimental , Lung , Quinolines , Rats, Wistar , Sulfides , Cyclopropanes/therapeutic use , Animals , Quinolines/therapeutic use , Quinolines/pharmacology , Acetates/therapeutic use , Acetates/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/physiopathology , Male , Rats , Lung/drug effects , Pulmonary Fibrosis/drug therapy , Leukotriene Antagonists/therapeutic use , Leukotriene Antagonists/pharmacology , Streptozocin , Blood Glucose/analysis , Blood Glucose/drug effects
11.
Eur J Pharmacol ; 975: 176639, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38729415

ABSTRACT

Anlotinib, an orally administered small molecule inhibitor of receptor tyrosine kinases (RTKs), exerts significant anti-angiogenic and vascular normalization effects. However, the mechanisms underlying its involvement in tumor metabolic reprogramming are still unclear. This study aims to investigate the distribution and expression levels of metabolites within tumors after anlotinib treatment using spatial metabolomics analysis. Subsequently, by integrating the transcriptomics and proteomics analyses, we identified that anlotinib treatment primarily modulated four metabolic pathways, including taurine and hypotaurine metabolism, steroid synthesis, pentose phosphate pathway, and lipid biosynthesis. This regulation significantly influenced the metabolic levels of compounds such as sulfonic acids, cholesterol, inositol phosphate pyrophosphate, and palmitoyl-CoA in the tumor, thereby impacting tumor initiation and progression. This study provides potential metabolic biomarkers for anlotinib treatment in tumors.


Subject(s)
Indoles , Quinolines , Quinolines/pharmacology , Indoles/pharmacology , Indoles/therapeutic use , Animals , Humans , Metabolomics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice , Proteomics , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Male , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Multiomics
12.
Front Cell Infect Microbiol ; 14: 1396786, 2024.
Article in English | MEDLINE | ID: mdl-38746786

ABSTRACT

Antimalarial resistance to the first-line partner drug piperaquine (PPQ) threatens the effectiveness of artemisinin-based combination therapy. In vitro piperaquine resistance is characterized by incomplete growth inhibition, i.e. increased parasite growth at higher drug concentrations. However, the 50% inhibitory concentrations (IC50) remain relatively stable across parasite lines. Measuring parasite viability of a drug-resistant Cambodian Plasmodium falciparum isolate in a parasite reduction ratio (PRR) assay helped to better understand the resistance phenotype towards PPQ. In this parasite isolate, incomplete growth inhibition translated to only a 2.5-fold increase in IC50 but a dramatic decrease of parasite killing in the PRR assay. Hence, this pilot study reveals the potential of in vitro parasite viability assays as an important, additional tool when it comes to guiding decision-making in preclinical drug development and post approval. To the best of our knowledge, this is the first time that a compound was tested against a drug-resistant parasite in the in vitro PRR assay.


Subject(s)
Antimalarials , Drug Resistance , Inhibitory Concentration 50 , Malaria, Falciparum , Plasmodium falciparum , Quinolines , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Quinolines/pharmacology , Antimalarials/pharmacology , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Parasitic Sensitivity Tests , Pilot Projects , Artemisinins/pharmacology
13.
Cell Mol Life Sci ; 81(1): 238, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795180

ABSTRACT

BRAFV600E represents a constitutively active onco-kinase and stands as the most prevalent genetic alteration in thyroid cancer. However, the clinical efficacy of small-molecule inhibitors targeting BRAFV600E is often limited by acquired resistance. Here, we find that nerve/glial antigen 2 (NG2), also known as chondroitin sulfate proteoglycan 4 (CSPG4), is up-regulated in thyroid cancers, and its expression is increased with tumor progression in a BRAFV600E-driven thyroid cancer mouse model. Functional studies show that NG2 knockout almost does not affect tumor growth, but significantly improves the response of BRAF-mutant thyroid cancer cells to BRAF inhibitor PLX4720. Mechanistically, the blockade of ERK-dependent feedback by BRAF inhibitor can activate receptor tyrosine kinase (RTK) signaling, causing the resistance to this inhibitor. NG2 knockout attenuates the PLX4720-mediated feedback activation of several RTKs, improving the sensitivity of BRAF-mutant thyroid cancer cells to this inhibitor. Based on this finding, we propose and demonstrate an alternative strategy for targeting NG2 to effectively treat BRAF-mutant thyroid cancers by combining multiple kinase inhibitor (MKI) Sorafenib or Lenvatinib with PLX4720. Thus, this study uncovers a new mechanism in which NG2 contributes to the resistance of BRAF-mutant thyroid cancer cells to BRAF inhibitor, and provides a promising therapeutic option for BRAF-mutant thyroid cancers.


Subject(s)
Drug Resistance, Neoplasm , Indoles , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Sulfonamides , Thyroid Neoplasms , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Humans , Animals , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Indoles/pharmacology , Mice , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Sulfonamides/pharmacology , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Sorafenib/pharmacology , Quinolines/pharmacology , Mutation , Antigens/metabolism , Proteoglycans/metabolism , Membrane Proteins , Chondroitin Sulfate Proteoglycans
14.
Anticancer Agents Med Chem ; 24(3): 185-192, 2024.
Article in English | MEDLINE | ID: mdl-38629154

ABSTRACT

BACKGROUND: In a previous work from the author of this study, the compound of 9IV-c, ((E)-2-(3,4- dimethoxystyryl)-6,7,8-trimethoxy-N-(3,4,5-trimethoxyphenyl)quinoline-4-amine) was synthesized, and the effects of potent activity on the multiple human tumor cell lines were evaluated considering the spindle formation together with the microtubule network. METHODS: Accordingly, cytotoxic activity, apoptotic effects, and the therapeutic efficiency of compound 9IV-c on A549 and C26 cell lines were investigated in this study. RESULTS: The compound 9IV-c demonstrated high cytotoxicity against A549 and C26 cell lines with IC50 = 1.66 and 1.21 µM, respectively. The flow cytometric analysis of the A549 cancer cell line treated with compound 9IVc showed that This compound induced cell cycle arrest at the G2/M phase and apoptosis. Western blotting analysis displayed that compound 9IV-c also elevated the Bax/Bcl-2 ratio and increased the activation of caspase-9 and -3 but not caspase-8. CONCLUSION: These data presented that the intrinsic pathway was responsible for 9IV-c -induced cell apoptosis. In vivo studies demonstrated that treatment with the compound of 9IV-c at 10 mg/kg dose led to a decrease in tumor growth compared to the control group. It was found that there was not any apparent body weight loss in the period of treatment. Also, in the vital organs of the BALB/c mice, observable pathologic changes were not detected.


Subject(s)
Apoptosis , Quinolines , Animals , Mice , Humans , A549 Cells , Mice, Inbred BALB C , Cell Line, Tumor , Quinolines/pharmacology , Cell Proliferation
15.
Cell Chem Biol ; 31(4): 743-759.e8, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38593807

ABSTRACT

Identification of new druggable protein targets remains the key challenge in the current antimalarial development efforts. Here we used mass-spectrometry-based cellular thermal shift assay (MS-CETSA) to identify potential targets of several antimalarials and drug candidates. We found that falcilysin (FLN) is a common binding partner for several drug candidates such as MK-4815, MMV000848, and MMV665806 but also interacts with quinoline drugs such as chloroquine and mefloquine. Enzymatic assays showed that these compounds can inhibit FLN proteolytic activity. Their interaction with FLN was explored systematically by isothermal titration calorimetry and X-ray crystallography, revealing a shared hydrophobic pocket in the catalytic chamber of the enzyme. Characterization of transgenic cell lines with lowered FLN expression demonstrated statistically significant increases in susceptibility toward MK-4815, MMV000848, and several quinolines. Importantly, the hydrophobic pocket of FLN appears amenable to inhibition and the structures reported here can guide the development of novel drugs against malaria.


Subject(s)
Antimalarials , Malaria , Methylamines , Quinolines , Humans , Antimalarials/chemistry , Malaria/drug therapy , Phenols/therapeutic use , Quinolines/pharmacology , Quinolines/metabolism , Drug Development
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 476-482, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660855

ABSTRACT

OBJECTIVE: To study the reversal effect of NVP-BEZ235 on doxorubicin resistance in Burkitt lymphoma RAJI cell line. METHODS: The doxorubicin-resistant cell line was induced by treating RAJI cells with a concentration gradient of doxorubicin. The levels of Pgp, p-AKT, and p-mTOR in cells were detected by Western blot. Cell viability was detected by MTT assay. IC50 was computed by SPSS. RESULTS: The doxorubicin-resistant Burkitt lymphoma cell line, RAJI/DOX, was established successfully. The expression of Pgp and the phosphorylation levels of AKT and mTOR in RAJI/DOX cell line were both higher than those in RAJI cell line. NVP-BEZ235 downregulated the phosphorylation levels of AKT and mTOR in RAJI/DOX cell line. NVP-BEZ235 inhibited the proliferation of RAJI/DOX cell line, and the effect was obvious when it was cooperated with doxorubicin. CONCLUSION: The constitutive activation of PI3K/AKT/mTOR pathway of RAJI/DOX cell line was more serious than RAJI cell line. NVP-BEZ235 reversed doxorubicin resistance of RAJI/DOX cell line by inhibiting the PI3K/AKT/mTOR signal pathway.


Subject(s)
Burkitt Lymphoma , Cell Proliferation , Doxorubicin , Drug Resistance, Neoplasm , Imidazoles , Proto-Oncogene Proteins c-akt , Quinolines , TOR Serine-Threonine Kinases , Humans , Doxorubicin/pharmacology , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/metabolism , Quinolines/pharmacology , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation/drug effects , Imidazoles/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Cell Survival/drug effects , Phosphorylation
17.
J Nat Prod ; 87(4): 1103-1115, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38600744

ABSTRACT

Twelve new alkaloids, scolopenolines A-L (1-7, 9-11, 13, 14), along with six known analogues, were isolated from Scolopendra subspinipes mutilans, identified by analysis of spectroscopic data and quantum chemical and computational methods. Scolopenoline A (1), a unique guanidyl-containing C14 quinoline alkaloid, features a 6/6/5 ring backbone. Scolopenoline B (2) is a novel sulfonyl-containing heterodimer comprising quinoline and tyramine moieties. Scolopenoline G (7) presents a rare C12 quinoline skeleton with a 6/6/5 ring system. Alkaloids 1, 8, 10, and 15-18 display anti-inflammatory activity, while 10 and 16-18 also exhibit anti-renal-fibrosis activity. Drug affinity responsive target stability and RNA-interference assays show that Lamp2 might be a potentially important target protein of 16 for anti-renal-fibrosis activity.


Subject(s)
Alkaloids , Animals, Poisonous , Chilopoda , Animals , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Molecular Structure , Arthropods/chemistry , Fibrosis/drug therapy , Kidney/drug effects , Quinolines/pharmacology , Quinolines/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans
18.
Antimicrob Agents Chemother ; 68(5): e0028024, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38587391

ABSTRACT

Testing Plasmodium vivax antimicrobial sensitivity is limited to ex vivo schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using Plasmodium cynomolgi as a model for P. vivax, we determined the physiologically significant delayed death effect induced by doxycycline [IC50(96 h), 1,401 ± 607 nM]. As expected, IC50(96 h) to chloroquine (20.4 nM), piperaquine (12.6 µM), and tafenoquine (1,424 nM) were not affected by extended exposure.


Subject(s)
Aminoquinolines , Antimalarials , Doxycycline , Piperazines , Plasmodium cynomolgi , Plasmodium vivax , Doxycycline/pharmacology , Antimalarials/pharmacology , Aminoquinolines/pharmacology , Plasmodium vivax/drug effects , Plasmodium cynomolgi/drug effects , Chloroquine/pharmacology , Animals , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , Quinolines/pharmacology , Inhibitory Concentration 50 , Humans , Parasitic Sensitivity Tests
19.
Bioorg Med Chem Lett ; 106: 129770, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38677560

ABSTRACT

We have previously reported the total synthesis and structure-activity relationships (SAR) of 2-prenylated benzopyrans with PPAR agonist activity. Herein, we have described the synthesis and PPAR activity of 2-prenylated benzopyrans and 2-prenylated quinolines. The benzopyran nucleus was generated via enamine-catalyzed Kabbe condensation, and the quinoline nucleus via Friedländer condensation. Results demonstrated that both benzopyran (5a) and quinoline (4b) derivatives bearing a γ,δ-unsaturated ester displayed a pan-PPAR agonism. They were full PPARα agonists, but showed different preferences for PPARγ and PPARß/δ activation. It was noteworthy that quinoline 4b displayed full hPPARα activation (2-fold than WY-14,643), weak PPARß/δ and partial PPARγ activation. In addition, quinoline 4b showed anti-inflammatory effects on macrophages by reducing LPS-induced expression of both MCP-1 and IL-6. Therefore, 4b emerges as a first-in-class promising hit compound for the development of potential therapeutics aimed at treating metabolic syndrome, metabolic dysfunction-associated fatty liver disease (MAFLD), and its associated cardiovascular comorbidities.


Subject(s)
Metabolic Syndrome , Quinolines , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Structure-Activity Relationship , Humans , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Molecular Structure , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Macrophages/drug effects , Macrophages/metabolism , Dose-Response Relationship, Drug , Benzopyrans/pharmacology , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Animals , Mice
20.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673734

ABSTRACT

Phenothiazine derivatives are widely studied in various fields such as biology, chemistry, and medicine research because of their pharmaceutical effects. The first compound used successfully in the treatment of psychosis was a phenthiazine derivative, chlorpromazine. Apart from its activity in neurons, chlorpromazine has also been reported to display anticancer and antibacterial properties. In this study, we present the synthesis and research on the activity of A549, MDA, MiaPaCa, PC3, and HCT116 cancer cell lines and of S. aureus, S. epidermidis, E. coli, and P. aeruginosa bacterial strains against a series of new tetracyclic chlorpromazine analogues containing a quinoline scaffold in their structure instead of the benzene ring and various substituents at the thiazine nitrogen. The structure of these novel molecules has been determined by 1H NMR, 13C NMR, and HRMS spectral techniques. The seven most active of the twenty-four new chlorpromazine analogues tested were selected to study the mechanism of cytotoxic action. Their ability to induce apoptosis or necrosis in cancer cells was assessed by flow cytometry analysis. The results obtained confirmed the proapoptotic activity of selected compounds, especially in terms of inducing late apoptosis or necrosis in cancer cell lines A549, MiaPaCa-2, and HCT-116. Furthermore, studies on the induction of cell cycle arrest suggest that the new chlorpromazine analogues exert antiproliferative effects by inducing cell cycle arrest in the S phase and, consequently, apoptosis.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Apoptosis , Chlorpromazine , Phenothiazines , Quinolines , Humans , Chlorpromazine/pharmacology , Chlorpromazine/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Phenothiazines/pharmacology , Phenothiazines/chemistry , Phenothiazines/chemical synthesis , Cell Line, Tumor , Apoptosis/drug effects , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Microbial Sensitivity Tests , Cell Proliferation/drug effects , Structure-Activity Relationship , HCT116 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...