Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.781
Filter
1.
Pak J Pharm Sci ; 37(2(Special)): 463-473, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822551

ABSTRACT

Solanum lyratum Thunb., a traditional Chinese herbal medicine, has a promising background. However, the anti-inflammatory effects of its component steroid alkaloid have not been explored. In this study, animal and cell experiments were performed to investigate the anti-inflammatory effects and mechanism of action of Solanum lyratum Thunb steroid alkaloid (SLTSA), in order to provide evidence for its potential utilization. SLTSA effectively inhibited ear swelling and acute abdominal inflammation of mice. We observed concentration-dependent inhibition of pro-inflammatory cytokines by SLTSA, as confirmed by the ELISA and RT-qPCR results. Flow cytometry, immunofluorescence and RT-qPCR analyses revealed that SLTSA suppressed TLR4 expression. Western blot results indicated that SLTSA inhibited the activation of the TLR4/MyD88/NF-κB signaling pathway. Our study demonstrated that SLTSA possesses anti-inflammatory properties.


Subject(s)
Alkaloids , Anti-Inflammatory Agents , Signal Transduction , Solanum , Animals , Solanum/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Mice , Alkaloids/pharmacology , Alkaloids/isolation & purification , Signal Transduction/drug effects , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Cytokines/metabolism , RAW 264.7 Cells , Myeloid Differentiation Factor 88/metabolism , Male
2.
Carbohydr Polym ; 339: 122256, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823922

ABSTRACT

Recently, the intestinal lymphatic transport based on Peyer's patches (PPs) is emerging as a promising absorption pathway for natural polysaccharides. Herein, the aim of this study is to investigate the PP-based oral absorption of a pectic polysaccharide from Smilax china L. (SCLP), as well as its uptake and transport mechanisms in related immune cells. Taking advantages of the traceability of fluorescently labeled SCLP, we confirmed that SCLP could be absorbed into PPs and captured by their mononuclear phagocytes (dendritic cells and macrophages) following oral administration. Subsequently, the systematic in vitro study suggested that the endocytic mechanisms of SCLP by model mononuclear phagocytes (BMDCs and RAW264.7 cells) mainly involved caveolae-mediated endocytosis, macropinocytosis and phagocytosis. More importantly, SCLP directly binds and interacts with toll-like receptor 2 (TLR2) and galectin 3 (Gal-3) receptor, and was taken up by mononuclear phagocytes in receptor-mediated manner. After internalization, SCLP was intracellularly transported primarily through endolysosomal pathway and ultimately localized in lysosomes. In summary, this work reveals novel information and perspectives about the in vivo fate of SCLP, which will contribute to further research and utilization of SCLP and other pectic polysaccharides.


Subject(s)
Peyer's Patches , Smilax , Animals , Mice , RAW 264.7 Cells , Peyer's Patches/metabolism , Smilax/chemistry , Endocytosis , Pectins/chemistry , Pectins/metabolism , Macrophages/metabolism , Macrophages/drug effects , Phagocytosis/drug effects , Phagocytes/metabolism , Phagocytes/drug effects , Toll-Like Receptor 2/metabolism , Mice, Inbred BALB C , Male , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Administration, Oral
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 652-659, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708497

ABSTRACT

OBJECTIVE: To investigate the protective effect of arbutin against CCl4-induced hepatic fibrosis in mice and explore the underlying mechanisms. METHODS: Twenty-four C57BL/6 mice were randomly divided into control group, model group, and low- and high-dose arbutin treatment (25 and 50 mg/kg, respectively) groups. Mouse models of liver fibrosis were established by intraperitoneal injection of CCl4, and arbutin was administered daily via gavage for 6 weeks. After the treatments, serum biochemical parameters of the mice were tested, and liver tissues were taken for HE staining, Sirius Red staining and immunohistochemical staining. RT-qPCR was used to detect the mRNA levels of α-SMA, Pdgfb, Col1α1, Timp-1, Ccl2 and Tnf-a, and Western blotting was performed to detect α-SMA protein expression in the liver tissues. In the cell experiment, the effect of arbutin treatment for 24 h on THP-1 and RAW264.7 cell migration and recruitment was examined using Transwell migration assay and DAPI staining; The changes in protein levels of Akt, p65, Smad3, p-Akt, p-p65, p-Smad3 and α-SMA in arbutintreated LX-2 cells were detected with Western blotting. RESULTS: Arbutin treatment significantly lowered serum alanine aminotransferase and aspartate aminotransferase levels, alleviated liver tissue damage and collagen deposition, and reduced macrophage infiltration and α-SMA protein expression in the liver of the mouse models (P < 0.05 or 0.001). Arbutin treatment also significantly reduced CCl4-induced elevation of a-SMA, Pdgfb, Col1α1, Timp-1, Ccl2 and Tnf-a mRNA levels in mice (P < 0.05). In the cell experiment, arbutin treatment obviously inhibited migration and recruitment of THP-1 and RAW264.7 cells and lowered the phosphorylation levels of Akt, p65 and Smad3 and the protein expression level of α-SMA in LX-2 cells. CONCLUSION: Arbutin ameliorates liver inflammation and fibrosis in mice by inhibiting hepatic stellate cell activation via reducing macrophage recruitment and infiltration and suppressing activation of the Akt/NF-κB and Smad signaling pathways.


Subject(s)
Arbutin , Liver Cirrhosis , Macrophages , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Male , Mice , Arbutin/pharmacology , Arbutin/therapeutic use , Carbon Tetrachloride , Cell Movement/drug effects , Disease Models, Animal , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Liver/metabolism , Liver/pathology , Liver/drug effects , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Smad Proteins/metabolism
4.
J Nanobiotechnology ; 22(1): 294, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807127

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is one chronic and relapsing inflammatory bowel disease. Macrophage has been reputed as one trigger for UC. Recently, phosphodiesterase 4 (PDE4) inhibitors, for instance roflumilast, have been regarded as one latent approach to modulating macrophage in UC treatment. Roflumilast can decelerate cyclic adenosine monophosphate (cAMP) degradation, which impedes TNF-α synthesis in macrophage. However, roflumilast is devoid of macrophage-target and consequently causes some unavoidable adverse reactions, which restrict the utilization in UC. RESULTS: Membrane vesicles (MVs) from probiotic Escherichia coli Nissle 1917 (EcN 1917) served as a drug delivery platform for targeting macrophage. As model drugs, roflumilast and MnO2 were encapsulated in MVs (Rof&MnO2@MVs). Roflumilast inhibited cAMP degradation via PDE4 deactivation and MnO2 boosted cAMP generation by activating adenylate cyclase (AC). Compared with roflumilast, co-delivery of roflumilast and MnO2 apparently produced more cAMP and less TNF-α in macrophage. Besides, Rof&MnO2@MVs could ameliorate colitis in mouse model and regulate gut microbe such as mitigating pathogenic Escherichia-Shigella and elevating probiotic Akkermansia. CONCLUSIONS: A probiotic-based nanoparticle was prepared for precise codelivery of roflumilast and MnO2 into macrophage. This biomimetic nanoparticle could synergistically modulate cAMP in macrophage and ameliorate experimental colitis.


Subject(s)
Aminopyridines , Benzamides , Cyclic AMP , Cyclopropanes , Macrophages , Manganese Compounds , Oxides , Probiotics , Animals , Aminopyridines/pharmacology , Mice , Cyclic AMP/metabolism , Probiotics/pharmacology , Cyclopropanes/pharmacology , Cyclopropanes/chemistry , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Benzamides/pharmacology , Benzamides/chemistry , Oxides/pharmacology , Oxides/chemistry , Macrophages/drug effects , Macrophages/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/chemistry , Colitis/drug therapy , Colitis/chemically induced , RAW 264.7 Cells , Escherichia coli/drug effects , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Male , Disease Models, Animal
5.
Front Immunol ; 15: 1406438, 2024.
Article in English | MEDLINE | ID: mdl-38817611

ABSTRACT

Introduction: Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterised by itching, erythema, and epidermal barrier dysfunction. The pathogenesis of AD is complex and multifactorial; however,mast cell (MC) activation has been reported to be one of the crucial mechanisms in the pathogenesis of AD. The MC receptor Mas related G protein-coupled receptor-X2 (MRGPRX2) has been identified as a prominent alternative receptor to the IgE receptor in causing MC activation and the subsequent release of inflammatory mediators. The current study aimed to evaluate the therapeutic effect of a novel small molecule MRGPRX2 antagonist GE1111 in AD using in vitro and in vivo approaches. Methods: We developed an in vitro cell culture disease model by using LAD-2 MC, HaCaT keratinocytes and RAW 264.7 macrophage cell lines. We challenged keratinocytes and macrophage cells with CST-14 treated MC supernatant in the presence and absence of GE1111 and measured the expression of tight junction protein claudin 1, inflammatory cytokines and macrophage phagocytosis activity through immunohistochemistry, western blotting, RT-qPCR and fluorescence imaging techniques. In addition to this, we developed a DFNB-induced AD model in mice and evaluated the protective effect and underlying mechanism of GE1111. Results and Discussion: Our in vitro findings demonstrated a potential therapeutic effect of GE1111, which inhibits the expression of TSLP, IL-13, MCP-1, TNF-a, and IL-1ß in MC and keratinocytes. In addition to this, GE1111 was able to preserve the expression of claudin 1 in keratinocytes and the phagocytotic activity of macrophage cells. The in vivo results demonstrated that GE1111 treatment significantly reduced phenotypic changes associated with AD (skin thickening, scaling, erythema and epidermal thickness). Furthermore, immunohistochemical analysis demonstrated that GE1111 treatment preserved the expression of the tight junction protein Involucrin and reduced the expression of the inflammatory mediator periostin in the mouse model of AD. These findings were supported by gene and protein expression analysis, where GE1111 treatment reduced the expression of TSLP, IL-13, and IL-1ß, as well as downstream signalling pathways of MRGPRX2 in AD skin lesions. In conclusion, our findings provide compelling in vitro and in vivo evidence supporting the contribution of MRGPRX2-MC interaction with keratinocytes and macrophages in the pathogenesis of AD.


Subject(s)
Cytokines , Dermatitis, Atopic , Disease Models, Animal , Keratinocytes , Receptors, G-Protein-Coupled , Receptors, Neuropeptide , Skin , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/immunology , Mice , Cytokines/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Humans , Receptors, Neuropeptide/antagonists & inhibitors , Receptors, Neuropeptide/metabolism , Skin/pathology , Skin/drug effects , Skin/metabolism , Skin/immunology , Keratinocytes/drug effects , Keratinocytes/metabolism , HaCaT Cells , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Mast Cells/drug effects , Mast Cells/immunology , Mast Cells/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , RAW 264.7 Cells , Inflammation Mediators/metabolism
6.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731476

ABSTRACT

Although the wide variety of bioactivities of curcumin has been reported by researchers, the clinical application of curcumin is still limited due to its poor aqueous solubility. In view of this, a series of dimethylaminomethyl-substituted curcumin derivatives were designed and synthesized (compounds 1-15). Acetate of these derivatives were prepared (compounds 1a-15a). The Mannich reaction and aldol condensation reaction are the main reactions involved in this study. Compounds 6, 10, 12, 3a, 5a, 6a, 7a, 8a, 10a, 11a, 12a, 13a, 14a, and 15a exhibited better in vitro anti-inflammatory activity compared to curcumin in the RAW264.7 cell line. Compounds 5, 1a, 5a, 8a, and 12a exhibited better in vitro antioxidant activity compared to curcumin in the PC 12 cell line. Compounds 11, 13, 5a, 7a, and 13a exhibited better in vitro radiation protection compared to curcumin in the PC 12 cell line. The aqueous solubilities of all the curcumin derivative acetates were greatly improved compared to curcumin.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Curcumin , Radiation-Protective Agents , Solubility , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/chemical synthesis , Curcumin/analogs & derivatives , Animals , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/chemical synthesis , Radiation-Protective Agents/chemistry , Drug Design , Structure-Activity Relationship , Molecular Structure , PC12 Cells , Rats , Water/chemistry
7.
Molecules ; 29(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731523

ABSTRACT

This study reports an innovative approach for producing nanoplastics (NP) from various types of domestic waste plastics without the use of chemicals. The plastic materials used included water bottles, styrofoam plates, milk bottles, centrifuge tubes, to-go food boxes, and plastic bags, comprising polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), high-density polyethylene (HDPE), and Poly (Ethylene-co-Methacrylic Acid) (PEMA). The chemical composition of these plastics was confirmed using Raman and FTIR spectroscopy, and they were found to have irregular shapes. The resulting NP particles ranged from 50 to 400 nm in size and demonstrated relative stability when suspended in water. To assess their impact, the study investigated the effects of these NP particulates on cell viability and the expression of genes involved in inflammation and oxidative stress using a macrophage cell line. The findings revealed that all types of NP reduced cell viability in a concentration-dependent manner. Notably, PS, HDPE, and PP induced significant reductions in cell viability at lower concentrations, compared to PEMA and PET. Moreover, exposure to NP led to differential alterations in the expression of inflammatory genes in the macrophage cell line. Overall, this study presents a viable method for producing NP from waste materials that closely resemble real-world NP. Furthermore, the toxicity studies demonstrated distinct cellular responses based on the composition of the NP, shedding light on the potential environmental and health impacts of these particles.


Subject(s)
Cell Survival , Macrophages , Microplastics , Cell Survival/drug effects , Macrophages/drug effects , Macrophages/metabolism , Animals , Mice , Nanoparticles/chemistry , Plastics/chemistry , RAW 264.7 Cells , Gene Expression/drug effects , Cell Line , Gene Expression Regulation/drug effects , Waste Products/analysis , Particle Size
8.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731567

ABSTRACT

A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-ß-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.


Subject(s)
Macrophages , Phagocytosis , Polygonatum , Polysaccharides , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Polygonatum/chemistry , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Animals , Phagocytosis/drug effects , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , RAW 264.7 Cells , Cytokines/metabolism , Cell Proliferation/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/isolation & purification , Molecular Weight
9.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731604

ABSTRACT

Edible grey oyster mushroom, Pleurotus sajor-caju, ß (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom ß-glucan using Hevea ß-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.


Subject(s)
Cell Differentiation , NF-kappa B , NFATC Transcription Factors , Osteoclasts , Pleurotus , RANK Ligand , Receptor Activator of Nuclear Factor-kappa B , Signal Transduction , Animals , Mice , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/cytology , RAW 264.7 Cells , RANK Ligand/metabolism , Cell Differentiation/drug effects , Signal Transduction/drug effects , NF-kappa B/metabolism , Pleurotus/chemistry , Receptor Activator of Nuclear Factor-kappa B/metabolism , NFATC Transcription Factors/metabolism , Proto-Oncogene Proteins c-fos/metabolism , beta-Glucans/pharmacology , beta-Glucans/chemistry , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Osteogenesis/drug effects
10.
ACS Appl Mater Interfaces ; 16(20): 25856-25868, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38726921

ABSTRACT

Artificial peroxisomes (AP) with enzyme-mimetic catalytic activity and recruitment ability have drawn a great deal of attention in fabricating protocell systems for scavenging reactive oxygen species (ROS), modulating the inflammatory microenvironment, and reprogramming macrophages, which is of great potential in treating inflammatory diseases such as rheumatoid arthritis (RA). Herein, a macrophage membrane-cloaked Cu-coordinated polyphthalocyanine-based AP (CuAP) is prepared with a macrocyclic conjugated polymerized network and embedded Cu-single atomic active center, which mimics the catalytic activity and coordination environment of natural superoxide dismutase and catalase, possesses the inflammatory recruitment ability of macrophages, and performs photoacoustic imaging (PAI)-guided treatment. The results of both in vitro cellular and in vivo animal experiments demonstrated that the CuAP under ultrasound and microbubbles could efficiently scavenge excess ROS in cells and tissues, modulate microenvironmental inflammatory cytokines such as interleukin-1ß, tumor necrosis factor-α, and arginase-1, and reprogram macrophages by polarization of M1 (proinflammatory phenotype) to M2 (anti-inflammatory phenotype). We believe this study offers a proof of concept for engineering multifaceted AP and a promising approach for a PAI-guided treatment platform for RA.


Subject(s)
Arthritis, Rheumatoid , Macrophages , Photoacoustic Techniques , Animals , Macrophages/metabolism , Mice , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/therapy , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Humans , Copper/chemistry , Copper/pharmacology
11.
ACS Appl Mater Interfaces ; 16(20): 25665-25675, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38735053

ABSTRACT

Tumor-associated macrophages (TAMs) usually adopt a tumor-promoting M2-like phenotype, which largely impedes the immune response and therapeutic efficacy of solid tumors. Repolarizing TAMs from M2 to the antitumor M1 phenotype is crucial for reshaping the tumor immunosuppressive microenvironment (TIME). Herein, we developed self-assembled nanoparticles from the polymeric prodrug of resiquimod (R848) to reprogram the TIME for robust cancer immunotherapy. The polymeric prodrug was constructed by conjugating the R848 derivative to terminal amino groups of the linear dendritic polymer composed of linear poly(ethylene glycol) and lysine dendrimer. The amphiphilic prodrug self-assembled into nanoparticles (PLRS) of around 35 nm with a spherical morphology. PLRS nanoparticles could be internalized by antigen-presenting cells (APCs) in vitro and thus efficiently repolarized macrophages from M2 to M1 and facilitated the maturation of APCs. In addition, PLRS significantly inhibited tumor growth in the 4T1 orthotopic breast cancer model with much lower systemic side effects. Mechanistic studies suggested that PLRS significantly stimulated the TIME by repolarizing TAMs into the M1 phenotype and increased the infiltration of cytotoxic T cells into the tumor. This study provides an effective polymeric prodrug-based strategy to improve the therapeutic efficacy of R848 in cancer immunotherapy.


Subject(s)
Imidazoles , Immunotherapy , Nanoparticles , Prodrugs , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/therapeutic use , Animals , Mice , Imidazoles/chemistry , Imidazoles/pharmacology , Nanoparticles/chemistry , Female , Mice, Inbred BALB C , Cell Line, Tumor , Humans , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , RAW 264.7 Cells , Polyethylene Glycols/chemistry , Tumor Microenvironment/drug effects , Dendrimers/chemistry , Dendrimers/pharmacology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism
12.
ACS Appl Mater Interfaces ; 16(20): 25757-25772, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738757

ABSTRACT

The development of therapeutics with high antimicrobial activity and immunomodulatory effects is urgently needed for the treatment of infected wounds due to the increasing danger posed by recalcitrant-infected wounds. In this study, we developed light-controlled antibacterial, photothermal, and immunomodulatory biomimetic N/hPDA@M nanoparticles (NPs). This nanoplatform was developed by loading flavonoid naringenin onto hollow mesoporous polydopamine NPs in a π-π-stacked configuration and encasing them with macrophage membranes. First, our N/hPDA@M NPs efficiently neutralized inflammatory factors present within the wound microenvironment by the integration of macrophage membranes. Afterward, the N/hPDA@M NPs effectively dismantled bacterial biofilms through a combination of the photothermal properties of PDA and the quorum sensing inhibitory effects of naringenin. It is worth noting that N/hPDA@M NPs near-infrared-enhanced release of naringenin exhibited specificity toward the NF-κB-signaling pathway, effectively mitigating the inflammatory response. This innovative design not only conferred remarkable antibacterial properties upon the N/hPDA@M NPs but also endowed them with the capacity to modulate inflammatory responses, curbing excessive inflammation and steering macrophage polarization toward the M2 phenotype. As a result, this multifaceted approach significantly contributes to expediting the healing process of infected skin wounds.


Subject(s)
Anti-Bacterial Agents , Biofilms , Indoles , NF-kappa B , Nanoparticles , Quorum Sensing , Wound Healing , Biofilms/drug effects , Nanoparticles/chemistry , Mice , NF-kappa B/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Wound Healing/drug effects , Animals , Quorum Sensing/drug effects , Indoles/chemistry , Indoles/pharmacology , Signal Transduction/drug effects , Flavanones/chemistry , Flavanones/pharmacology , RAW 264.7 Cells , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Polymers/chemistry , Polymers/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Wound Infection/drug therapy , Wound Infection/microbiology , Wound Infection/pathology , Immunomodulating Agents/chemistry , Immunomodulating Agents/pharmacology , Humans
13.
J Nanobiotechnology ; 22(1): 270, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769551

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease of yet undetermined etiology that is accompanied by significant oxidative stress, inflammatory responses,  and damage to joint tissues. In this study, we designed chondroitin sulfate (CS)-modified tragacanth gum-gelatin composite nanocapsules (CS-Cur-TGNCs) loaded with curcumin nanocrystals (Cur-NCs), which rely on the ability of CS to target CD44 to accumulate drugs in inflamed joints. Cur was encapsulated in the form of nanocrystals into tragacanth gum-gelatin composite nanocapsules (TGNCs) by using an inborn microcrystallization method, which produced CS-Cur-TGNCs with a particle size of approximately 80 ± 11.54 nm and a drug loading capacity of 54.18 ± 5.17%. In an in vitro drug release assay, CS-Cur-TGNCs showed MMP-2-responsive properties. During the treatment of RA, CS-Cur-TGNCs significantly inhibited oxidative stress, promoted the polarization of M2-type macrophages to M1-type macrophages, and decreased the expression of inflammatory factors (TNF-α, IL-1ß, and IL-6). In addition, it also exerted excellent anti-inflammatory effects, and significantly alleviated the swelling of joints during the treatment of gouty arthritis (GA). Therefore, CS-Cur-TGNCs, as a novel drug delivery system, could lead to new ideas for clinical therapeutic regimens for RA and GA.


Subject(s)
Chondroitin Sulfates , Curcumin , Gelatin , Nanocapsules , Nanoparticles , Tragacanth , Curcumin/pharmacology , Curcumin/chemistry , Chondroitin Sulfates/chemistry , Gelatin/chemistry , Animals , Nanocapsules/chemistry , Nanoparticles/chemistry , Mice , Tragacanth/chemistry , RAW 264.7 Cells , Oxidative Stress/drug effects , Arthritis, Rheumatoid/drug therapy , Male , Particle Size , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Macrophages/metabolism , Macrophages/drug effects , Drug Liberation , Rats
14.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691832

ABSTRACT

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Subject(s)
Colitis , Dextran Sulfate , NF-E2-Related Factor 2 , NF-kappa B , Polysaccharides , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Dextran Sulfate/adverse effects , Male , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Inbred C57BL , Protective Agents/pharmacology , Protective Agents/administration & dosage , Protective Agents/chemistry , Liver/drug effects , Liver/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Oxidative Stress/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Mucin-2/genetics , Mucin-2/metabolism
15.
J Nanobiotechnology ; 22(1): 244, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735969

ABSTRACT

Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.


Subject(s)
Macrophages , Nerve Regeneration , Peripheral Nerve Injuries , Polyurethanes , Rats, Sprague-Dawley , Schwann Cells , Animals , Nerve Regeneration/drug effects , Polyurethanes/chemistry , Rats , Macrophages/drug effects , Schwann Cells/drug effects , Nanofibers/chemistry , Sciatic Nerve/drug effects , Guided Tissue Regeneration/methods , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Scaffolds/chemistry , Mice , RAW 264.7 Cells
16.
J Nanobiotechnology ; 22(1): 246, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735970

ABSTRACT

Excessive production of reactive oxygen species (ROS) and inflammation are the key problems that impede diabetic wound healing. In particular, dressings with ROS scavenging capacity play a crucial role in the process of chronic wound healing. Herein, Zr-based large-pore mesoporous metal-organic frameworks (mesoMOFs) were successfully developed for the construction of spatially organized cascade bioreactors. Natural superoxide dismutase (SOD) and an artificial enzyme were spatially organized in these hierarchical mesoMOFs, forming a cascade antioxidant defense system, and presenting efficient intracellular and extracellular ROS scavenging performance. In vivo experiments demonstrated that the SOD@HMUiO-MnTCPP nanoparticles (S@M@H NPs) significantly accelerated diabetic wound healing. Transcriptomic and western blot results further indicated that the nanocomposite could inhibit fibroblast senescence and ferroptosis as well as the stimulator of interferon genes (STING) signaling pathway activation in macrophages mediated by mitochondrial oxidative stress through ROS elimination. Thus, the biomimetic multi-enzyme cascade catalytic system with spatial ordering demonstrated a high potential for diabetic wound healing, where senescence, ferroptosis, and STING signaling pathways may be potential targets.


Subject(s)
Inflammation , Metal-Organic Frameworks , Reactive Oxygen Species , Wound Healing , Wound Healing/drug effects , Reactive Oxygen Species/metabolism , Animals , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Superoxide Dismutase/metabolism , Porosity , Oxidative Stress/drug effects , Signal Transduction/drug effects , RAW 264.7 Cells , Male , Ferroptosis/drug effects , Macrophages/drug effects , Macrophages/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Diabetes Mellitus, Experimental , Nanoparticles/chemistry , Humans , Antioxidants/pharmacology , Nanocomposites/chemistry , Membrane Proteins
17.
J Nanobiotechnology ; 22(1): 221, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724958

ABSTRACT

Intra-articular drugs used to treat osteoarthritis (OA) often suffer from poor pharmacokinetics and stability. Nano-platforms as drug delivery systems for drug delivery are promising for OA therapy. In this study, we reported an M1 macrophage-targeted delivery system Bai@FA-UIO-66-NH2 based on folic acid (FA) -modified metal-organic framework (MOF) loaded with baicalin (Bai) as antioxidant agent for OA therapy. With outstanding biocompatibility and high drug loading efficiency, Bai@FA-UIO-66-NH2 could be specifically uptaken by LPS-induced macrophages to serve as a potent ROS scavenger, gradually releasing Bai at the subcellular level to reduce ROS production, modulate macrophage polarization to M2, leading to alleviation of synovial inflammation in OA joints. The synergistic effect of Bai@FA-UIO-66-NH2 on macrophage polarization and ROS scavenging significantly improved the therapeutic efficacy of OA, which may provide a new insight into the design of OA precision therapy.


Subject(s)
Flavonoids , Macrophages , Metal-Organic Frameworks , Osteoarthritis , Reactive Oxygen Species , Metal-Organic Frameworks/chemistry , Osteoarthritis/drug therapy , Animals , Flavonoids/pharmacology , Flavonoids/chemistry , Macrophages/drug effects , Macrophages/metabolism , Mice , Reactive Oxygen Species/metabolism , RAW 264.7 Cells , Antioxidants/pharmacology , Antioxidants/chemistry , Drug Delivery Systems/methods , Folic Acid/chemistry , Male , Rats , Lipopolysaccharides/pharmacology , Rats, Sprague-Dawley
18.
BMC Biotechnol ; 24(1): 26, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724967

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, and it leads to irreversible inflammation in intra-articular joints. Current treatment approaches for RA include non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), corticosteroids, and biological agents. To overcome the drug-associated toxicity of conventional therapy and transdermal tissue barrier, an injectable NSAID-loaded hydrogel system was developed and explored its efficacy. RESULTS: The surface morphology and porosity of the hydrogels indicate that they mimic the natural ECM, which is greatly beneficial for tissue healing. Further, NSAIDs, i.e., diclofenac sodium, were loaded into the hydrogel, and the in vitro drug release pattern was found to be burst release for 24 h and subsequently sustainable release of 50% drug up to 10 days. The DPPH assay revealed that the hydrogels have good radical scavenging activity. The biocompatibility study carried out by MTT assay proved good biocompatibility and anti-inflammatory activity of the hydrogels was carried out by gene expression study in RAW 264.7 cells, which indicate the downregulation of several key inflammatory genes such as COX-2, TNF-α & 18s. CONCLUSION: In summary, the proposed ECM-mimetic, thermo-sensitive in situ hydrogels may be utilized for intra-articular inflammation modulation and can be beneficial by reducing the frequency of medication and providing optimum lubrication at intra-articular joints.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Arthritis, Rheumatoid , Hydrogels , Hydrogels/chemistry , Animals , Mice , Arthritis, Rheumatoid/drug therapy , RAW 264.7 Cells , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Diclofenac/pharmacology , Diclofenac/therapeutic use , Drug Liberation
19.
FASEB J ; 38(9): e23645, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703043

ABSTRACT

Inflammation assumes a pivotal role in the aortic remodeling of aortic dissection (AD). Asiatic acid (AA), a triterpene compound, is recognized for its strong anti-inflammatory properties. Yet, its effects on ß-aminopropionitrile (BAPN)-triggered AD have not been clearly established. The objective is to determine whether AA attenuates adverse aortic remodeling in BAPN-induced AD and clarify potential molecular mechanisms. In vitro studies, RAW264.7 cells pretreated with AA were challenged with lipopolysaccharide (LPS), and then the vascular smooth muscle cells (VSMCs)-macrophage coculture system was established to explore intercellular interactions. To induce AD, male C57BL/6J mice at three weeks of age were administered BAPN at a dosage of 1 g/kg/d for four weeks. To decipher the mechanism underlying the effects of AA, RNA sequencing analysis was conducted, with subsequent validation of these pathways through cellular experiments. AA exhibited significant suppression of M1 macrophage polarization. In the cell coculture system, AA facilitated the transformation of VSMCs into a contractile phenotype. In the mouse model of AD, AA strikingly prevented the BAPN-induced increases in inflammation cell infiltration and extracellular matrix degradation. Mechanistically, RNA sequencing analysis revealed a substantial upregulation of CX3CL1 expression in BAPN group but downregulation in AA-treated group. Additionally, it was observed that the upregulation of CX3CL1 negated the beneficial impact of AA on the polarization of macrophages and the phenotypic transformation of VSMCs. Crucially, our findings revealed that AA is capable of downregulating CX3CL1 expression, accomplishing this by obstructing the nuclear translocation of NF-κB p65. The findings indicate that AA holds promise as a prospective treatment for adverse aortic remodeling by suppressing the activity of NF-κB p65/CX3CL1 signaling pathway.


Subject(s)
Aortic Dissection , Chemokine CX3CL1 , Mice, Inbred C57BL , Pentacyclic Triterpenes , Signal Transduction , Transcription Factor RelA , Vascular Remodeling , Animals , Mice , Male , Aortic Dissection/metabolism , Aortic Dissection/pathology , Aortic Dissection/drug therapy , Pentacyclic Triterpenes/pharmacology , Vascular Remodeling/drug effects , RAW 264.7 Cells , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Aminopropionitrile/pharmacology , Macrophages/metabolism , Macrophages/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects
20.
Clin Exp Pharmacol Physiol ; 51(6): e13865, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692577

ABSTRACT

CTCE-9908, a CXC chemokine receptor 4 (CXCR4) antagonist, prevents CXCR4 phosphorylation and inhibits the interaction with chemokine ligand 12 (CXCL12) and downstream signalling pathways associated with metastasis. This study evaluated the in vitro effects of CTCE-9908 on B16 F10 melanoma cells with the use of mathematical modelling. Crystal violet staining was used to construct a mathematical model of CTCE-9908 B16 F10 (melanoma) and RAW 264.7 (non-cancerous macrophage) cell lines on cell viability to predict the half-maximal inhibitory concentration (IC50). Morphological changes were assessed using transmission electron microscopy. Flow cytometry was used to assess changes in cell cycle distribution, apoptosis via caspase-3, cell survival via extracellular signal-regulated kinase1/2 activation, CXCR4 activation and CXCL12 expression. Mathematical modelling predicted IC50 values from 0 to 100 h. At IC50, similar cytotoxicity between the two cell lines and ultrastructural morphological changes indicative of cell death were observed. At a concentration 10 times lower than IC50, CTCE-9908 induced inhibition of cell survival (p = 0.0133) in B16 F10 cells but did not affect caspase-3 or cell cycle distribution in either cell line. This study predicts CTCE-9908 IC50 values at various time points using mathematical modelling, revealing cytotoxicity in melanoma and non-cancerous cells. CTCE-9908 significantly inhibited melanoma cell survival at a concentration 10 times lower than the IC50 in B16 F10 cells but not RAW 264.7 cells. However, CTCE-9908 did not affect CXCR4 phosphorylation, apoptosis,\ or cell cycle distribution in either cell line.


Subject(s)
Apoptosis , Cell Survival , Receptors, CXCR4 , Mice , Cell Survival/drug effects , Animals , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Apoptosis/drug effects , Melanoma, Experimental/pathology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , RAW 264.7 Cells , Cell Line, Tumor , Melanoma/pathology , Melanoma/drug therapy , Melanoma/metabolism , Models, Biological , Cell Cycle/drug effects , Chemokine CXCL12/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...