Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.811
Filter
1.
J Zoo Wildl Med ; 55(2): 301-312, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875187

ABSTRACT

The wild rhinoceros populations have declined drastically in the past decades because the rhinoceros are heavily hunted for their horns. Zoological institutions aim to conserve rhinoceros populations in captivity, but one of the challenges of ex situ conservation is to provide food sources that resemble those available in the wild. Considering that the mammalian gut microbiota is a pivotal player in their host's health, the gut microbiota of rhinoceros may also play a role in the bioavailability of nutrients. Therefore, this study aims to characterize the fecal microbiome composition of grazing white rhinoceros (WR; Ceratotherium simum) and greater one-horned rhinoceros (GOHR; Rhinoceros unicornis) as well as the browsing black rhinoceros (BR; Diceros bicornis) kept in European zoos. Over the course of 1 yr, 166 fecal samples in total were collected from 9 BR (n = 39), 10 GOHR (n = 56), and 14 WR (n = 71) from 23 zoological institutions. The bacterial composition in the samples was determined using 16S rRNA gene Illumina sequencing. The fecal microbiomes of rhinoceros clustered by species, with BR clustering more distantly from GOHR and WR. Furthermore, the data report clustering of rhinoceros microbiota according to individual rhinoceros and institutional origin, showing that zoological institutions play a significant role in shaping the gut microbiome of rhinoceros species. In addition, BR exhibit a relatively higher microbial diversity than GOHR and WR. BR seem more susceptible to microbial gut changes and appear to have a more diverse microbiome composition among individuals than GOHR and WR. These data expand on the role of gut microbes and can provide baseline data for continued efforts in rhinoceros conservation and health status.


Subject(s)
Animals, Zoo , Gastrointestinal Microbiome , Perissodactyla , Animals , Perissodactyla/microbiology , Animals, Zoo/microbiology , Europe , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Species Specificity , Feces/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Bacterial/genetics
2.
Elife ; 132024 May 13.
Article in English | MEDLINE | ID: mdl-38739430

ABSTRACT

A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.


All organisms, from animals to bacteria, are subject to genetic parasites, such as viruses and transposons. Genetic parasites are pieces of nucleic acids (DNA or RNA) that can use a cell's machinery to copy themselves at the expense of their hosts. This often leads to the host's demise, so organisms evolved many types of defense mechanisms. One of the most ancient and common forms of defense against viruses and transposons is the targeted restriction of nucleic acids, that is, deployment of host enzymes that can destroy or restrict nucleic acids containing specific sequence motifs or modifications. In bacteria, many of the restriction enzymes targeting parasitic genetic elements are formed by fusions of proteins from the so-called McrBC systems with a protein domain called EVE. EVE and other functionally similar domains are a part of proteins that recognize and bind modified bases in nucleic acids. Enzymes can use the ability of these specificity domains to bind modified bases to detect non-host nucleic acids. Bell et al. conducted a comprehensive computational search for McrBC systems and discovered a large and highly diverse branch of this family with unusual characteristic structural and functional domains. These features include regions that form long alpha-helices (coils) that coil with other alpha-helices (known as coiled-coils), as well as several distinct enzymatic domains that break down nucleic acids (known as nucleases). They call these systems CoCoNuTs (coiled-coiled nuclease tandems). All CoCoNuTs contain domains, including EVE-like ones, which are predicted to interact with components of the RNA-based systems responsible for producing proteins in the cell (translation), suggesting that the CoCoNuTs have an important impact on protein abundance and RNA metabolism. Bell et al.'s findings will be of interest to scientists working on prokaryotic immunity and virulence. Furthermore, similarities between CoCoNuTs and components of eukaryotic RNA-degrading systems suggest evolutionary connections between this diverse family of bacterial predicted RNA restriction systems and RNA regulatory pathways of eukaryotes. Further deciphering the mechanisms of CoCoNuTs could shed light on how certain pathways of RNA metabolism and regulation evolved, and how they may contribute to advances in biotechnology.


Subject(s)
RNA, Bacterial , RNA, Bacterial/metabolism , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , Phylogeny , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacteria/genetics , Bacteria/metabolism , RNA/metabolism , RNA/genetics , RNA/chemistry
3.
Methods Mol Biol ; 2726: 315-346, 2024.
Article in English | MEDLINE | ID: mdl-38780737

ABSTRACT

Although RNA molecules are synthesized via transcription, little is known about the general impact of cotranscriptional folding in vivo. We present different computational approaches for the simulation of changing structure ensembles during transcription, including interpretations with respect to experimental data from literature. Specifically, we analyze different mutations of the E. coli SRP RNA, which has been studied comparatively well in previous literature, yet the details of which specific metastable structures form as well as when they form are still under debate. Here, we combine thermodynamic and kinetic, deterministic, and stochastic models with automated and visual inspection of those systems to derive the most likely scenario of which substructures form at which point during transcription. The simulations do not only provide explanations for present experimental observations but also suggest previously unnoticed conformations that may be verified through future experimental studies.


Subject(s)
Escherichia coli , Nucleic Acid Conformation , RNA Folding , RNA, Bacterial , Thermodynamics , Transcription, Genetic , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Signal Recognition Particle/chemistry , Signal Recognition Particle/metabolism , Signal Recognition Particle/genetics , Kinetics , Computational Biology/methods , Mutation , Models, Molecular
5.
Arch Microbiol ; 206(6): 285, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816572

ABSTRACT

Intracellular pathogens like Brucella face challenges during the intraphagocytic adaptation phase, where the modulation of gene expression plays an essential role in taking advantage of stressors to persist inside the host cell. This study aims to explore the expression of antisense virB2 RNA strand and related genes under intracellular simulation media. Sense and antisense virB2 RNA strands increased expression when nutrient deprivation and acidification were higher, being starvation more determinative. Meanwhile, bspB, one of the T4SS effector genes, exhibited the highest expression during the exposition to pH 4.5 and nutrient abundance. Based on RNA-seq analysis and RACE data, we constructed a regional map depicting the 5' and 3' ends of virB2 and the cis-encoded asRNA_0067. Without affecting the CDS or a possible autonomous RBS, we generate the deletion mutant ΔasRNA_0067, significantly reducing virB2 mRNA expression and survival rate. These results suggest that the antisense asRNA_0067 expression is promoted under exposure to the intraphagocytic adaptation phase stressors, and its deletion is associated with a lower transcription of the virB2 gene. Our findings illuminate the significance of these RNA strands in modulating the survival strategy of Brucella within the host and emphasize the role of nutrient deprivation in gene expression.


Subject(s)
Brucella abortus , Gene Expression Regulation, Bacterial , Brucella abortus/genetics , Brucella abortus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Transcription, Genetic , RNA, Antisense/genetics , RNA, Antisense/metabolism , Stress, Physiological , Animals , Macrophages/microbiology
6.
Genome Biol Evol ; 16(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805023

ABSTRACT

The genetic code consists of 61 codons coding for 20 amino acids. These codons are recognized by transfer RNAs (tRNAs) that bind to specific codons during protein synthesis. All organisms utilize less than all 61 possible anticodons due to base pair wobble: the ability to have a mismatch with a codon at its third nucleotide. Previous studies observed a correlation between the tRNA pool of bacteria and the temperature of their respective environments. However, it is unclear if these patterns represent biological adaptations to maintain the efficiency and accuracy of protein synthesis in different environments. A mechanistic mathematical model of mRNA translation is used to quantify the expected elongation rates and error rate for each codon based on an organism's tRNA pool. A comparative analysis across a range of bacteria that accounts for covariance due to shared ancestry is performed to quantify the impact of environmental temperature on the evolution of the tRNA pool. We find that thermophiles generally have more anticodons represented in their tRNA pool than mesophiles or psychrophiles. Based on our model, this increased diversity is expected to lead to increased missense errors. The implications of this for protein evolution in thermophiles are discussed.


Subject(s)
Bacteria , Evolution, Molecular , RNA, Transfer , Temperature , RNA, Transfer/genetics , Bacteria/genetics , Codon , RNA, Bacterial/genetics , Anticodon/genetics , Protein Biosynthesis , Models, Genetic , Genetic Code
7.
Nucleic Acids Res ; 52(10): 5852-5865, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38742638

ABSTRACT

Small RNAs (sRNAs) and riboswitches represent distinct classes of RNA regulators that control gene expression upon sensing metabolic or environmental variations. While sRNAs and riboswitches regulate gene expression by affecting mRNA and protein levels, existing studies have been limited to the characterization of each regulatory system in isolation, suggesting that sRNAs and riboswitches target distinct mRNA populations. We report that the expression of btuB in Escherichia coli, which is regulated by an adenosylcobalamin (AdoCbl) riboswitch, is also controlled by the small RNAs OmrA and, to a lesser extent, OmrB. Strikingly, we find that the riboswitch and sRNAs reduce mRNA levels through distinct pathways. Our data show that while the riboswitch triggers Rho-dependent transcription termination, sRNAs rely on the degradosome to modulate mRNA levels. Importantly, OmrA pairs with the btuB mRNA through its central region, which is not conserved in OmrB, indicating that these two sRNAs may have specific targets in addition to their common regulon. In contrast to canonical sRNA regulation, we find that OmrA repression of btuB is lost using an mRNA binding-deficient Hfq variant. Together, our study demonstrates that riboswitch and sRNAs modulate btuB expression, providing an example of cis- and trans-acting RNA-based regulatory systems maintaining cellular homeostasis.


Subject(s)
Cobamides , Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , RNA, Bacterial , RNA, Messenger , Riboswitch , Riboswitch/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Cobamides/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Peptide Chain Initiation, Translational , RNA Helicases/genetics , RNA Helicases/metabolism , Endoribonucleases/metabolism , Endoribonucleases/genetics , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Bacterial Outer Membrane Proteins , Polyribonucleotide Nucleotidyltransferase , Membrane Transport Proteins
8.
PLoS Pathog ; 20(5): e1012187, 2024 May.
Article in English | MEDLINE | ID: mdl-38718038

ABSTRACT

The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has significant challenges to human health and clinical treatment, with KPC-2-producing CRKP being the predominant epidemic strain. Therefore, there is an urgent need to identify new therapeutic targets and strategies. Non-coding small RNA (sRNA) is a post-transcriptional regulator of genes involved in important biological processes in bacteria and represents an emerging therapeutic strategy for antibiotic-resistant bacteria. In this study, we analyzed the transcription profile of KPC-2-producing CRKP using RNA-seq. Of the 4693 known genes detected, the expression of 307 genes was significantly different from that of carbapenem-sensitive Klebsiella pneumoniae (CSKP), including 133 up-regulated and 174 down-regulated genes. Both the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly related to metabolism. In addition, we identified the sRNA expression profile of KPC-2-producing CRKP for the first time and detected 115 sRNAs, including 112 newly discovered sRNAs. Compared to CSKP, 43 sRNAs were differentially expressed in KPC-2-producing CRKP, including 39 up-regulated and 4 down-regulated sRNAs. We chose sRNA51, the most significantly differentially expressed sRNA in KPC-2-producing CRKP, as our research subject. By constructing sRNA51-overexpressing KPC-2-producing CRKP strains, we found that sRNA51 overexpression down-regulated the expression of acrA and alleviated resistance to meropenem and ertapenem in KPC-2-producing CRKP, while overexpression of acrA in sRNA51-overexpressing strains restored the reduction of resistance. Therefore, we speculated that sRNA51 could affect the resistance of KPC-2-producing CRKP by inhibiting acrA expression and affecting the formation of efflux pumps. This provides a new approach for developing antibiotic adjuvants to restore the sensitivity of CRKP.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella pneumoniae , RNA, Bacterial , RNA, Small Untranslated , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , Gene Expression Regulation, Bacterial , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Klebsiella Infections/genetics , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics
9.
Mol Microbiol ; 121(6): 1217-1227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38725184

ABSTRACT

The hmuR operon encodes proteins for the uptake and utilization of heme as a nutritional iron source in Bradyrhizobium japonicum. The hmuR operon is transcriptionally activated by the Irr protein and is also positively controlled by HmuP by an unknown mechanism. An hmuP mutant does not express the hmuR operon genes nor does it grow on heme. Here, we show that hmuR expression from a heterologous promoter still requires hmuP, suggesting that HmuP does not regulate at the transcriptional level. Replacement of the 5' untranslated region (5'UTR) of an HmuP-independent gene with the hmuR 5'UTR conferred HmuP-dependent expression on that gene. Recombinant HmuP bound an HmuP-responsive RNA element (HPRE) within the hmuR 5'UTR. A 2 nt substitution predicted to destabilize the secondary structure of the HPRE abolished both HmuP binding activity in vitro and hmuR expression in cells. However, deletion of the HPRE partially restored hmuR expression in an hmuP mutant, and it rescued growth of the hmuP mutant on heme. These findings suggest that the HPRE is a negative regulatory RNA element that is suppressed when bound by HmuP to express the hmuR operon.


Subject(s)
5' Untranslated Regions , Bacterial Proteins , Bradyrhizobium , Gene Expression Regulation, Bacterial , Operon , RNA-Binding Proteins , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Operon/genetics , 5' Untranslated Regions/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Heme/metabolism , Promoter Regions, Genetic , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , Protein Binding
10.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692564

ABSTRACT

Small non-coding 6S RNA mimics DNA promoters and binds to the σ70 holoenzyme of bacterial RNA polymerase (RNAP) to suppress transcription of various genes mainly during the stationary phase of cell growth or starvation. This inhibition can be relieved upon synthesis of short product RNA (pRNA) performed by RNAP from the 6S RNA template. Here, we have shown that pRNA synthesis depends on specific contacts of 6S RNA with RNAP and interactions of the σ finger with the RNA template in the active site of RNAP, and is also modulated by the secondary channel factors. We have adapted a molecular beacon assay with fluorescently labeled σ70 to analyze 6S RNA release during pRNA synthesis. We found the kinetics of 6S RNA release to be oppositely affected by mutations in the σ finger and in the CRE pocket of core RNAP, similarly to the reported role of these regions in promoter-dependent transcription. Secondary channel factors, DksA and GreB, inhibit pRNA synthesis and 6S RNA release from RNAP, suggesting that they may contribute to the 6S RNA-mediated switch in transcription during stringent response. Our results demonstrate that pRNA synthesis depends on a similar set of contacts between RNAP and 6S RNA as in the case of promoter-dependent transcription initiation and reveal that both processes can be regulated by universal transcription factors acting on RNAP.


Subject(s)
DNA-Directed RNA Polymerases , Escherichia coli Proteins , RNA, Bacterial , Sigma Factor , Transcription, Genetic , DNA-Directed RNA Polymerases/metabolism , Sigma Factor/metabolism , Sigma Factor/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , Promoter Regions, Genetic , RNA, Untranslated/metabolism , RNA, Untranslated/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Protein Binding , Transcriptional Elongation Factors
11.
Cell Host Microbe ; 32(5): 634-636, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723602

ABSTRACT

Bacterial genomes are littered with exogenous: competing DNA elements. Here, Sprenger et al. demonstrate that the Vibrio cholerae prophage VP882 modulates host functions via production of regulatory sRNAs to promote phage development. Alternatively, host sRNAs inhibit the VP882 lytic phase by specifically regulating phage genes.


Subject(s)
Prophages , Vibrio cholerae , Vibrio cholerae/genetics , Prophages/genetics , Prophages/physiology , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Genome, Bacterial , Bacteriophages/genetics , Bacteriophages/physiology , Gene Expression Regulation, Bacterial , RNA, Bacterial/genetics , RNA, Bacterial/metabolism
12.
Nat Commun ; 15(1): 3955, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729929

ABSTRACT

Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.


Subject(s)
DNA-Directed RNA Polymerases , Gene Expression Regulation, Bacterial , Lactococcus lactis , Nucleic Acid Conformation , RNA, Bacterial , Riboswitch , Transcription, Genetic , Riboswitch/genetics , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/chemistry , Manganese/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Single Molecule Imaging
13.
Nucleic Acids Res ; 52(10): 5880-5894, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38682613

ABSTRACT

Dihydrouridine (D) is a common modified base found predominantly in transfer RNA (tRNA). Despite its prevalence, the mechanisms underlying dihydrouridine biosynthesis, particularly in prokaryotes, have remained elusive. Here, we conducted a comprehensive investigation into D biosynthesis in Bacillus subtilis through a combination of genetic, biochemical, and epitranscriptomic approaches. Our findings reveal that B. subtilis relies on two FMN-dependent Dus-like flavoprotein homologs, namely DusB1 and DusB2, to introduce all D residues into its tRNAs. Notably, DusB1 exhibits multisite enzyme activity, enabling D formation at positions 17, 20, 20a and 47, while DusB2 specifically catalyzes D biosynthesis at positions 20 and 20a, showcasing a functional redundancy among modification enzymes. Extensive tRNA-wide D-mapping demonstrates that this functional redundancy impacts the majority of tRNAs, with DusB2 displaying a higher dihydrouridylation efficiency compared to DusB1. Interestingly, we found that BsDusB2 can function like a BsDusB1 when overexpressed in vivo and under increasing enzyme concentration in vitro. Furthermore, we establish the importance of the D modification for B. subtilis growth at suboptimal temperatures. Our study expands the understanding of D modifications in prokaryotes, highlighting the significance of functional redundancy in this process and its impact on bacterial growth and adaptation.


Subject(s)
Bacillus subtilis , RNA, Transfer , Uridine , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , RNA, Transfer/metabolism , RNA, Transfer/genetics , Uridine/metabolism , Uridine/analogs & derivatives , Gene Expression
14.
J Bacteriol ; 206(5): e0027823, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38624234

ABSTRACT

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that induces virulence gene expression in response to host-mediated iron starvation. Recently, our laboratory showed that some virulence factors are responsive to iron limitation in static but not shaking growth conditions. One of these is the HSI-2-type six secretion system (T6SS), which is also induced during chronic infection. Iron regulation of T6SS was partially impacted by the iron-responsive PrrF sRNA and completely dependent upon the Pseudomonas quinolone signal (PQS) biosynthetic gene pqsA. Here, we analyzed the impact of iron on the expression of two small regulatory RNAs (sRNAs), RsmY and RsmZ, that activate the expression of T6SS by sequestering the RsmA translation inhibitor. Our results demonstrate that iron starvation induces the expression of RsmY and RsmZ in static but not shaking cultures. We further show that this induction occurs through the rsmY and rsmZ promoters and is dependent upon PqsA. Disruption of either the pqsR gene also eliminated iron-dependent regulation of rsmY and rsmZ promoter activity. Taken together, our results show novel targets of iron regulation that are specific to static growth, highlighting the importance of studying regulatory mechanisms in static communities that may be more representative of growth during chronic infection.IMPORTANCEIron is a central component of various bacterial metabolic pathways making it an important host-acquired nutrient for pathogens to establish infection. Previous iron regulatory studies primarily relied on shaking bacterial cultures; while these ensure cultural homogeneity, they do not reflect growth conditions during infection. We recently showed that static growth of Pseudomonas aeruginosa promotes iron-dependent regulation of a type six secretion system (T6SS), a virulence factor that is induced during chronic infections. In the current study, we found that static growth also promotes iron-dependent regulation of the RsmY and RsmZ sRNAs, which are global regulators that affect T6SS during chronic P. aeruginosa lung infection. Hence, our work demonstrates the Rsm sRNAs as potential effectors of iron regulation during static growth that may also be relevant in chronic infection.


Subject(s)
Gene Expression Regulation, Bacterial , Iron , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/growth & development , Iron/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
15.
Nucleic Acids Res ; 52(8): 4466-4482, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38567721

ABSTRACT

A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of Escherichia coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37°C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65°C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.


Subject(s)
Base Pairing , Escherichia coli , Fluorides , Nucleic Acid Conformation , Riboswitch , Transcription, Genetic , Riboswitch/genetics , Fluorides/chemistry , Escherichia coli/genetics , Molecular Dynamics Simulation , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , RNA Folding , Magnesium/chemistry , Base Sequence , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Thermus/genetics , Thermus/enzymology
16.
Appl Environ Microbiol ; 90(5): e0153823, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38587394

ABSTRACT

A plethora of gene regulatory mechanisms with eccentric attributes in Deinoccocus radiodurans confer it to possess a distinctive ability to survive under ionizing radiation. Among the many regulatory processes, small RNA (sRNA)-mediated regulation of gene expression is prevalent in bacteria but barely investigated in D. radiodurans. In the current study, we identified a novel sRNA, DrsS, through RNA-seq analysis in D. radiodurans cells while exposed to ionizing radiation. Initial sequence analysis for promoter identification revealed that drsS is potentially co-transcribed with sodA and dr_1280 from a single operon. Elimination of the drsS allele in D. radiodurans chromosome resulted in an impaired growth phenotype under γ-radiation. DrsS has also been found to be upregulated under oxidative and genotoxic stresses. Deletion of the drsS gene resulted in the depletion of intracellular concentration of both Mn2+ and Fe2+ by ~70% and 40%, respectively, with a concomitant increase in carbonylation of intracellular protein. Complementation of drsS gene in ΔdrsS cells helped revert its intracellular Mn2+ and Fe2+ concentration and alleviated carbonylation of intracellular proteins. Cells with deleted drsS gene exhibited higher sensitivity to oxidative stress than wild-type cells. Extrachromosomally expressed drsS in ΔdrsS cells retrieved its oxidative stress resistance properties by catalase-mediated detoxification of reactive oxygen species (ROS). In vitro binding assays indicated that DsrS directly interacts with the coding region of the katA transcript, thus possibly protecting it from cellular endonucleases in vivo. This study identified a novel small RNA DrsS and investigated its function under oxidative stress in D. radiodurans. IMPORTANCE: Deinococcus radiodurans possesses an idiosyncratic quality to survive under extreme ionizing radiation and, thus, has evolved with diverse mechanisms which promote the mending of intracellular damages caused by ionizing radiation. As sRNAs play a pivotal role in modulating gene expression to adapt to altered conditions and have been delineated to participate in almost all physiological processes, understanding the regulatory mechanism of sRNAs will unearth many pathways that lead to radioresistance in D. radiodurans. In that direction, DrsS has been identified to be a γ-radiation-induced sRNA, which is also induced by oxidative and genotoxic stresses. DrsS appeared to activate catalase under oxidative stress and detoxify intracellular ROS. This sRNA has also been shown to balance intracellular Mn(II) and Fe concentrations protecting intracellular proteins from carbonylation. This novel mechanism of DrsS identified in D. radiodurans adds substantially to our knowledge of how this bacterium exploits sRNA for its survival under stresses.


Subject(s)
Bacterial Proteins , Deinococcus , Gene Expression Regulation, Bacterial , RNA, Bacterial , Reactive Oxygen Species , Deinococcus/genetics , Deinococcus/radiation effects , Deinococcus/metabolism , Reactive Oxygen Species/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Radiation, Ionizing , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Oxidative Stress , Gamma Rays
17.
Nucleic Acids Res ; 52(9): 5152-5165, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38647067

ABSTRACT

Structured noncoding RNAs (ncRNAs) contribute to many important cellular processes involving chemical catalysis, molecular recognition and gene regulation. Few ncRNA classes are broadly distributed among organisms from all three domains of life, but the list of rarer classes that exhibit surprisingly diverse functions is growing. We previously developed a computational pipeline that enables the near-comprehensive identification of structured ncRNAs expressed from individual bacterial genomes. The regions between protein coding genes are first sorted based on length and the fraction of guanosine and cytidine nucleotides. Long, GC-rich intergenic regions are then examined for sequence and structural similarity to other bacterial genomes. Herein, we describe the implementation of this pipeline on 50 bacterial genomes from varied phyla. More than 4700 candidate intergenic regions with the desired characteristics were identified, which yielded 44 novel riboswitch candidates and numerous other putative ncRNA motifs. Although experimental validation studies have yet to be conducted, this rate of riboswitch candidate discovery is consistent with predictions that many hundreds of novel riboswitch classes remain to be discovered among the bacterial species whose genomes have already been sequenced. Thus, many thousands of additional novel ncRNA classes likely remain to be discovered in the bacterial domain of life.


Subject(s)
Genome, Bacterial , RNA, Bacterial , RNA, Untranslated , DNA, Intergenic/genetics , Genome, Bacterial/genetics , Genomics/methods , Riboswitch/genetics , RNA, Bacterial/genetics , RNA, Bacterial/chemistry , RNA, Untranslated/genetics , RNA, Untranslated/classification , RNA, Untranslated/chemistry
18.
Curr Opin Microbiol ; 79: 102467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569418

ABSTRACT

Bacterial cells have a unique challenge to organize their cytoplasm without the use of membrane-bound organelles. Biomolecular condensates (henceforth BMCs) are a class of nonmembrane-bound organelles, which, through the physical process of phase separation, can form liquid-like droplets with proteins/nucleic acids. BMCs have been broadly characterized in eukaryotic cells, and BMCs have been recently identified in bacteria, with the first and best studied example being bacterial ribonucleoprotein bodies (BR-bodies). BR-bodies contain the RNA decay machinery and show functional parallels to eukaryotic P-bodies (PBs) and stress granules (SGs). Due to the finding that mRNA decay machinery is compartmentalized in BR-bodies and in eukaryotic PBs/SGs, we will explore the functional similarities in the proteins, which are known to enrich in these structures based on recent proteomic studies. Interestingly, despite the use of different mRNA decay and post-transcriptional regulatory machinery, this analysis has revealed evolutionary convergence in the classes of enriched enzymes in these structures.


Subject(s)
Bacteria , RNA Stability , Bacteria/genetics , Bacteria/metabolism , Eukaryotic Cells/metabolism , Proteomics , Biomolecular Condensates/metabolism , Biomolecular Condensates/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , Evolution, Molecular
19.
PLoS Pathog ; 20(4): e1012147, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38620039

ABSTRACT

Post-transcriptional regulation by small RNAs and post-translational modifications (PTM) such as lysine acetylation play fundamental roles in physiological circuits, offering rapid responses to environmental signals with low energy consumption. Yet, the interplay between these regulatory systems remains underexplored. Here, we unveil the cross-talk between sRNAs and lysine acetylation in Streptococcus mutans, a primary cariogenic pathogen known for its potent acidogenic virulence. Through systematic overexpression of sRNAs in S. mutans, we identified sRNA SmsR1 as a critical player in modulating acidogenicity, a key cariogenic virulence feature in S. mutans. Furthermore, combined with the analysis of predicted target mRNA and transcriptome results, potential target genes were identified and experimentally verified. A direct interaction between SmsR1 and 5'-UTR region of pdhC gene was determined by in vitro binding assays. Importantly, we found that overexpression of SmsR1 reduced the expression of pdhC mRNA and increased the intracellular concentration of acetyl-CoA, resulting in global changes in protein acetylation levels. This was verified by acetyl-proteomics in S. mutans, along with an increase in acetylation level and decreased activity of LDH. Our study unravels a novel regulatory paradigm where sRNA bridges post-transcriptional regulation with post-translational modification, underscoring bacterial adeptness in fine-tuning responses to environmental stress.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Protein Processing, Post-Translational , Streptococcus mutans , Animals , Acetylation , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Dental Caries/microbiology , Dental Caries/metabolism , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , RNA, Small Untranslated/metabolism , RNA, Small Untranslated/genetics , Streptococcus mutans/metabolism , Streptococcus mutans/genetics , Streptococcus mutans/pathogenicity , Virulence , Female , Rats
20.
Anal Bioanal Chem ; 416(13): 3161-3171, 2024 May.
Article in English | MEDLINE | ID: mdl-38558309

ABSTRACT

Since RNA is an important biomarker of many infectious pathogens, RNA detection of pathogenic organisms is crucial for disease diagnosis and environmental and food safety. By simulating the base mismatch during DNA replication, this study presents a novel three-way junction structure-mediated reverse transcription-free exponential amplification reaction (3WJ-RTF-EXPAR) for the rapid and sensitive detection of pathogen RNA. The target RNA served as a switch to initiate the reaction by forming a three-way junction (3WJ) structure with the ex-trigger strand and the ex-primer strand. The generated trigger strand could be significantly amplified through EXPAR to open the stem-loop structure of the molecular beacon to emit fluorescence signal. The proofreading activity of Vent DNA polymerase, in combination with the unique structure of 2+1 bases at the 3'-end of the ex-primer strand, could enhance the role of target RNA as a reaction switch to reduce non-specific amplification and ensure excellent specificity to differentiate target pathogen from those causing similar symptoms. Furthermore, detection of target RNA showed a detection limit of 1.0×104 copies/mL, while the time consumption was only 20 min, outperforming qRT-LAMP and qRT-PCR, the most commonly used RNA detection methods in clinical practice. All those indicates the great application prospects of this method in clinical diagnostic.


Subject(s)
Limit of Detection , Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , RNA, Viral/genetics , RNA, Bacterial/analysis , RNA, Bacterial/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...