Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.972
Filter
1.
Mol Biol Rep ; 51(1): 636, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727863

ABSTRACT

BACKGROUND: Osteoporosis (OP), characterized by compromised bone integrity and increased fracture risk, poses a significant health challenge. Circular RNAs (circRNAs) have emerged as crucial regulators in various pathophysiological processes, prompting investigation into their role in osteoporosis. This study aimed to elucidate the involvement of circCOX6A1 in OP progression and understand its underlying molecular mechanisms. The primary objective was to explore the impact of circCOX6A1 on bone marrow-derived mesenchymal stem cells (BMSCs) and its potential interactions with miR-512-3p and DYRK2. METHODS: GSE161361 microarray analysis was employed to assess circCOX6A1 expression in OP patients. We utilized in vitro and in vivo models, including BMSC cultures, osteogenic differentiation assays, and an OVX-induced mouse model of OP. Molecular techniques such as quantitative RT-PCR, western blotting, and functional assays like alizarin red staining (ARS) were employed to evaluate circCOX6A1 effects on BMSC proliferation, apoptosis, and osteogenic differentiation. The interaction between circCOX6A1, miR-512-3p, and DYRK2 was investigated through dual luciferase reporter assays, RNA immunoprecipitation, and RNA pull-down assays. RESULTS: CircCOX6A1 was found to be upregulated in osteoporosis patients, and its expression inversely correlated with osteogenic differentiation of BMSCs. CircCOX6A1 knockdown enhanced osteogenic differentiation, as evidenced by increased mineralized nodule formation and upregulation of osteogenic markers. In vivo, circCOX6A1 knockdown ameliorated osteoporosis progression in OVX mice. Mechanistically, circCOX6A1 acted as a sponge for miR-512-3p, subsequently regulating DYRK2 expression. CONCLUSION: This study provides compelling evidence for the role of circCOX6A1 in osteoporosis pathogenesis. CircCOX6A1 negatively regulates BMSC osteogenic differentiation through the miR-512-3p/DYRK2 axis, suggesting its potential as a therapeutic target for mitigating OP progression.


Subject(s)
Cell Differentiation , Dyrk Kinases , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Osteoporosis , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , RNA, Circular , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Osteogenesis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Cell Differentiation/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Humans , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Mice , Mesenchymal Stem Cells/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Female , Cell Proliferation/genetics , Disease Models, Animal , Apoptosis/genetics , Middle Aged
2.
Anal Cell Pathol (Amst) ; 2024: 8645534, 2024.
Article in English | MEDLINE | ID: mdl-38715919

ABSTRACT

Materials and Methods: Hsa_circ_0051908 expression was determined using RT-qPCR. HCC cell proliferation, apoptosis, invasion, and migration were assessed using CCK-8 assay, EdU staining, TUNEL staining, flow cytometry, and transwell assay. The molecular mechanism was analyzed using western blotting. In addition, the role of hsa_circ_0051908 in tumor growth was evaluated in vivo. Results: Hsa_circ_0051908 expression was increased in both HCC tissues and cell lines. The proliferation, migration, and invasion of HCC cells were significantly decreased after hsa_circ_0051908 knockdown, while cell apoptosis was notably increased. Furthermore, we found that hsa_circ_0051908 silencing downregulated vimentin and Snail and upregulated E-cadherin. In vivo, hsa_circ_0051908 silencing significantly inhibited the growth of the tumor. Conclusions: Our data provide evidence that hsa_circ_0051908 promotes HCC progression partially by mediating the epithelial-mesenchymal transition process, and it may be used for HCC treatment.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Cell Movement , Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA, Circular , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Epithelial-Mesenchymal Transition/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Apoptosis/genetics , Cell Movement/genetics , Animals , Neoplasm Invasiveness , Mice, Nude , Vimentin/metabolism , Vimentin/genetics , Male , Mice, Inbred BALB C , Cadherins/metabolism , Cadherins/genetics
3.
Pathol Res Pract ; 257: 155316, 2024 May.
Article in English | MEDLINE | ID: mdl-38692125

ABSTRACT

Non-small cell lung cancer (NSCLC), accounting for more than 80% of all cases, is the predominant form of lung cancer and the leading cause of cancer-related deaths worldwide. Significant progress has been made in diagnostic techniques, surgical interventions, chemotherapy protocols, and targeted therapies at the molecular level, leading to enhanced treatment outcomes in patients with NSCLC. Extensive evidence supports the use of circular RNAs (circRNAs), a specific category of naturally occurring non-coding small RNAs (ncRNAs), for the diagnosis, monitoring of treatment efficacy, and assessment of survival in NSCLC. CircRNAs have been identified to play significant roles in various aspects of cancer formation, either as tumor suppressors or tumor promoters, contributing to cancer development through several signaling pathways, including the phosphoinositide 3-kinases (PI3Ks) pathway. This pathway is well-established because of its regulatory role in essential cellular processes. CircRNAs regulate the PI3K/AKT pathway by targeting diverse cellular elements. This review aims to provide insight into the involvement of several circRNAs linked to the PI3K/AKT pathway in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Phosphatidylinositol 3-Kinases , RNA, Circular , Signal Transduction , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , RNA, Circular/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Signal Transduction/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression Regulation, Neoplastic
4.
BMC Genomics ; 25(1): 450, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714918

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are a novel kind of non-coding RNAs proved to play crucial roles in the development of multiple diabetic complications. However, their expression and function in diabetes mellitus (DM)-impaired salivary glands are unknown. RESULTS: By using microarray technology, 663 upregulated and 999 downregulated circRNAs companied with 813 upregulated and 525 downregulated mRNAs were identified in the parotid glands (PGs) of type2 DM mice under a 2-fold change and P < 0.05 cutoff criteria. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of upregulated mRNAs showed enrichments in immune system process and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Infiltration of inflammatory cells and increased inflammatory cytokines were observed in diabetic PGs. Seven differently expressed circRNAs validated by qRT-PCR were selected for coding-non-coding gene co-expression (CNC) and competing endogenous RNA (ceRNA) networks analysis. PPAR signaling pathway was primarily enriched through analysis of circRNA-mRNA networks. Moreover, the circRNA-miRNA-mRNA networks highlighted an enrichment in the regulation of actin cytoskeleton. CONCLUSION: The inflammatory response is elevated in diabetic PGs. The selected seven distinct circRNAs may attribute to the injury of diabetic PG by modulating inflammatory response through PPAR signaling pathway and actin cytoskeleton in diabetic PGs.


Subject(s)
Diabetes Mellitus, Type 2 , Gene Expression Profiling , Gene Regulatory Networks , Parotid Gland , RNA, Circular , Animals , RNA, Circular/genetics , Mice , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Parotid Gland/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Transcriptome , Gene Ontology , Male , Signal Transduction , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism
5.
Biol Direct ; 19(1): 36, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715141

ABSTRACT

Epidermal growth factor receptor (EGFR)-targeted therapy is an important treatment for RAS wild-type metastatic colorectal cancer (mCRC), but the resistance mechanism remains unclear. Here, the differential expression of circRNAs between Cetuximab sensitive and resistant cell lines was analyzed using whole-transcriptome sequencing. We identified that the expression of circHIF1A was significantly higher in LIM1215-R than in LIM1215. When treated with Cetuximab, downregulation of circHIF1A level weakened the proliferation and clonal formation ability of LIM1215-R, caused more cells to enter G0-G1 phase, and significantly reduced the basal respiration, ATP production, and maximal respiration, as well as the glycolytic capacity and glycolytic reserve. The response rate and prognosis of circHIF1A-positive patients were inferior to those of negative patients. Mechanistically, circHIF1A can upregulate the level of hypoxia-inducible factor 1 A (HIF1A) by competitively binding to miR-361-5p, inducing the overexpression of enzymes such as glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). In a xenograft model, inhibition of circHIF1A expression increased the sensitivity to Cetuximab treatment. In conclusion, circHIF1A can promote HIF1α-mediated glycometabolism alteration to induce Cetuximab resistance in CRC. It has the potential to become a screening indicator for the Cetuximab beneficial population in mCRC and a new therapeutic target for enhancing treatment efficacy.


Subject(s)
Cetuximab , Colorectal Neoplasms , Drug Resistance, Neoplasm , Hypoxia-Inducible Factor 1, alpha Subunit , Cetuximab/pharmacology , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor , Mice , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic , Mice, Nude , Antineoplastic Agents, Immunological/pharmacology , Glycolysis , Cell Proliferation/drug effects
6.
Anal Cell Pathol (Amst) ; 2024: 6724914, 2024.
Article in English | MEDLINE | ID: mdl-38803428

ABSTRACT

Premature rupture of membrane (PROM) refers to the rupture of membranes before the onset of labor which increases the risk of perinatal morbidity and mortality. Recently, circular RNAs (circRNAs) have emerged as promising regulators of diverse diseases. However, the circRNA expression profiles and potential circRNA-miRNA-mRNA regulatory mechanisms in PROM remain enigmatic. In this study, we displayed the expression profiles of circRNAs and mRNAs in plasma and fetal membranes of PROM and normal control (NC) groups based on circRNA microarray, the Gene Expression Omnibus database, and NCBI's Sequence Read Archive. A total of 1,459 differentially expressed circRNAs (DECs) in PROM were identified, with 406 upregulated and 1,053 downregulated. Then, we constructed the circRNA-miRNA-mRNA network in PROM, encompassing 22 circRNA-miRNA pairs and 128 miRNA-mRNA pairs. Based on the analysis of gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene set enrichment analysis (GSEA), DECs were implicated in immune-related pathways, with certain alterations persisting even postpartum. Notably, 11 host genes shared by DECs of fetal membrane tissue and prenatal plasma in PROM were significantly implicated in inflammatory processes and extracellular matrix regulation. Our results suggest that structurally stable circRNAs may predispose to PROM by mediating systemic immune imbalances, including peripheral leukocyte disorganization, local immune imbalance at the maternal-fetal interface, and local collagen disruption. This is the first time to decipher a landscape on circRNAs of PROM, reveals the pathogenic cause of PROM from the perspective of circRNA, and opens up a new direction for the diagnosis and treatment of PROM.


Subject(s)
Fetal Membranes, Premature Rupture , RNA, Circular , RNA, Messenger , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Pregnancy , Fetal Membranes, Premature Rupture/genetics , Female , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , Gene Regulatory Networks , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Ontology , Adult , Gene Expression Regulation , Transcriptome/genetics
7.
Sci Rep ; 14(1): 12181, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806577

ABSTRACT

Prostate cancer (PCa) ranks as the second most prevalent cancer among males globally. However, the exact mechanisms underlying its progression remain inadequately elucidated. The present study sought to investigate the role and underlying molecular mechanism of hsa_circ_0001671 (circ_0001671) in the pathogenic behavior of PCa cells. Guided by the ceRNA theory, miR-27b-3p was employed to identify circRNAs that could potentially regulate Bloom Syndrome Protein (BLM). A series of experimental approaches including bioinformatics, luciferase assays, Fluorescent In Situ Hybridization (FISH), RNA-pulldown, and RNA Immunoprecipitation (RIP) were utilized to validate the miRNA sponge function of circ_0001671. Divergent primer PCR, RNase R treatments, and Sanger sequencing were conducted for the identification of circ_0001671. Quantitative RT-PCR and Western blot analyses were performed to validate gene expression levels. Both in vitro and in vivo experiments were conducted to assess the functional role of circ_0001671 in PCa cells.It was observed that the expression levels of circ_0001671 and BLM were significantly elevated in PCa tissues and cell lines, whereas miR-27b-3p showed decreased expression. Circ_0001671 was found to promote cellular proliferation, migration, and invasion, while inhibiting apoptosis. In vivo assays confirmed that circ_0001671 facilitated tumor growth. Further mechanistic studies revealed that circ_0001671 acted as a competing endogenous RNA (ceRNA) for BLM by sponging miR-27b-3p. The oncogenic role of circ_0001671 in PCa was shown to be modulated through the miR-27b-3p/BLM axis. In conclusion, circ_0001671 exerts an oncogenic effect in prostate cancer through the regulation of BLM by sponging miR-27b-3p, thus suggesting a novel molecular target for the treatment of PCa.


Subject(s)
Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , MicroRNAs , Prostatic Neoplasms , RNA, Circular , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Male , RNA, Circular/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Animals , Mice , Cell Movement/genetics , Mice, Nude , Apoptosis/genetics
8.
RNA Biol ; 21(1): 1-13, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38797889

ABSTRACT

Although circular RNAs (circRNAs) play important roles in regulating gene expression, the understanding of circRNAs in livestock animals is scarce due to the significant challenge to characterize them from a biological sample. In this study, we assessed the outcomes of bovine circRNA identification using six enrichment approaches with the combination of ribosomal RNAs removal (Ribo); linear RNAs degradation (R); linear RNAs and RNAs with structured 3' ends degradation (RTP); ribosomal RNAs coupled with linear RNAs elimination (Ribo-R); ribosomal RNA, linear RNAs and RNAs with poly (A) tailing elimination (Ribo-RP); and ribosomal RNA, linear RNAs and RNAs with structured 3' ends elimination (Ribo-RTP), respectively. RNA-sequencing analysis revealed that different approaches led to varied ratio of uniquely mapped reads, false-positive rate of identifying circRNAs, and the number of circRNAs per million clean reads (Padj <0.05). Out of 2,285 and 2,939 highly confident circRNAs identified in liver and rumen tissues, respectively, 308 and 260 were commonly identified from five methods, with Ribo-RTP method identified the highest number of circRNAs. Besides, 507 of 4,051 identified bovine highly confident circRNAs had shared splicing sites with human circRNAs. The findings from this work provide optimized methods to identify bovine circRNAs from cattle tissues for downstream research of their biological roles in cattle.


Subject(s)
RNA, Circular , Cattle , RNA, Circular/genetics , Animals , RNA, Ribosomal/genetics , Sequence Analysis, RNA/methods , Liver/metabolism , Rumen/metabolism , Computational Biology/methods , Gene Expression Profiling/methods , Humans
9.
BMC Genomics ; 25(1): 527, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807085

ABSTRACT

Circular RNAs (circRNA) are a class of non-coding RNA, forming a single-stranded covalently closed loop structure generated via back-splicing. Advancements in sequencing methods and technologies in conjunction with algorithmic developments of bioinformatics tools have enabled researchers to characterise the origin and function of circRNAs, with practical applications as a biomarker of diseases becoming increasingly relevant. Computational methods developed for circRNA analysis are predicated on detecting the chimeric back-splice junction of circRNAs whilst mitigating false-positive sequencing artefacts. In this review, we discuss in detail the computational strategies developed for circRNA identification, highlighting a selection of tool strengths, weaknesses and assumptions. In addition to circRNA identification tools, we describe methods for characterising the role of circRNAs within the competing endogenous RNA (ceRNA) network, their interactions with RNA-binding proteins, and publicly available databases for rich circRNA annotation.


Subject(s)
Computational Biology , RNA, Circular , RNA, Circular/genetics , Computational Biology/methods , Humans , Sequence Analysis, RNA/methods , RNA/genetics , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
10.
BMC Med Genomics ; 17(1): 133, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760670

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disease with increasing prevalence. Effective diagnostic markers and therapeutic methods are still lacking. Exploring key molecular markers and mechanisms for PD can help with early diagnosis and treatment improvement. METHODS: Three datasets GSE174052, GSE77668, and GSE168496 were obtained from the GEO database to search differentially expressed circRNA (DECs), miRNAs (DEMis), and mRNAs (DEMs). GO and KEGG enrichment analyses, and protein-protein interaction (PPI) network construction were implemented to explore possible actions of DEMs. Hub genes were selected to establish circRNA-related competing endogenous RNA (ceRNA) networks. RESULTS: There were 1005 downregulated DECs, 21 upregulated and 21 downregulated DEMis, and 266 upregulated and 234 downregulated DEMs identified. The DEMs were significantly enriched in various PD-associated functions and pathways such as extracellular matrix organization, dopamine synthesis, PI3K-Akt, and calcium signaling pathways. Twenty-one hub genes were screened out, and a PD-related ceRNA regulatory network was constructed containing 31 circRNAs, one miRNA (miR-371a-3p), and one hub gene (KCNJ6). CONCLUSION: We identified PD-related molecular markers and ceRNA regulatory networks, providing new directions for PD diagnosis and treatment.


Subject(s)
Biomarkers , Computational Biology , Disease Progression , Gene Regulatory Networks , Parkinson Disease , Parkinson Disease/genetics , Humans , Computational Biology/methods , Biomarkers/metabolism , MicroRNAs/genetics , Protein Interaction Maps , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , RNA, Circular/genetics
11.
Genesis ; 62(3): e23599, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764323

ABSTRACT

BACKGROUND: Increasing evidence suggests that circular RNA (circRNA) plays a regulatory role in the progression of renal cell carcinoma (RCC). However, the precise function and underlying mechanism of circSCNN1A in RCC progression still remain unclear. METHODS: The expression levels of circSCNN1A, microRNA-590-5p (miR-590-5p), claudin 8 (CLDN8), cyclin D1, matrix metalloprotein 2 (MMP2), MMP9, E-cadherin, N-cadherin and vimentin were detected by a quantitative real-time polymerase chain reaction and Western blotting analysis. Immunohistochemistry assay was performed to analyze the positive expression rate of CLDN8. Cell proliferation was investigated by cell colony formation, 5-Ethynyl-2'-deoxyuridine and DNA content quantitation assays. Cell migration and invasion were assessed by wound-healing and transwell invasion assays. Interactions among circSCNN1A, miR-590-5p and CLDN8 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft mouse model assay was conducted to verify the effect of circSCNN1A on tumor formation in vivo. RESULTS: CircSCNN1A and CLDN8 expression were significantly downregulated, while miR-590-5p was upregulated in both RCC tissues and cells. CircSCNN1A overexpression inhibited RCC cell proliferation, migration and invasion, accompanied by decreases of cyclin D1, MMP2, MMP9, N-cadherin and vimentin expression and an increase of E-cadherin expression. CircSCNN1A acted as a miR-590-5p sponge and regulated RCC cell processes by binding to miR-590-5p. CLDN8, a target gene of miR-590-5p, was involved in the regulation of the biological behaviors of RCC cells by miR-590-5p. In addition, circSCNN1A induced CLDN8 production by interacting with miR-590-5p. Further, circSCNN1A suppressed tumor formation in vivo. CONCLUSION: CircSCNN1A inhibited RCC cell proliferation, migration and invasion by regulating the miR-590-5p/CLDN8 pathway.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Claudins , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , MicroRNAs , Neoplasm Invasiveness , RNA, Circular , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Animals , Cell Movement/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Mice , Cell Line, Tumor , RNA, Circular/genetics , RNA, Circular/metabolism , Claudins/genetics , Claudins/metabolism , Mice, Nude , Female , Male
12.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1421-1430, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783806

ABSTRACT

The development and clinical application of nucleic acid drugs has been a trendy field. One of the notable examples is mRNA vaccines, which have been used in the fighting against SARS-CoV-2. With short development cycles and mature preparation processes, mRNA vaccines demonstrate advantages in the global supply and in response to virus mutations. Circular RNAs (circRNAs) are a group of nucleic acid molecules with more stable structure, longer half-life, and weaker immunogenicity than mRNAs. Studies have proven that circRNAs can efficiently express protein products, indicating their potential in drug development. Despite extensive studies on the biogenesis and biological functions of circRNAs, there is limited research on developing nucleic acid drugs based on circRNAs. This article provides an overview of circRNAs, including their basic information, synthesis routes, and mechanisms, and discusses the future development directions of this field, hoping to provide inspiration for the research and development of drugs based on circRNAs.


Subject(s)
RNA, Circular , RNA, Circular/genetics , Humans , RNA/genetics , SARS-CoV-2/genetics , Drug Development , COVID-19 , Nucleic Acids , COVID-19 Drug Treatment , RNA, Messenger/genetics
13.
Arch Dermatol Res ; 316(6): 208, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787443

ABSTRACT

BACKGROUND: Psoriasis is a chronic inflammation-associated skin disorder, and interleukin-22 (IL-22) is involved in psoriasis pathogenesis by boosting the proliferation and migration of keratinocytes. Mounting evidence has shown that circRNAs might play an important role in several aspects of psoriasis. This study is designed to explore the role and mechanism of circ_0056856 in regulating the phenotypes of IL-22-induced keratinocytes (HaCaT cells). METHODS: Circ_0056856, microRNA-197-3p (miR-197-3p), Cyclin-dependent kinase 1 (CDK1), and Wilms tumor 1-associated protein (WTAP) levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, proliferation, migration, and invasion were analyzed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), Wound scratch, and Transwell assays. After being predicted by Circinteractome or TargetScan, binding between miR-197-3p and circ_0056856 or CDK1 was verified by a dual-luciferase reporter assay. CDK1 and WTAP protein levels were determined using Western blot. Interaction between WTAP and circ_0056856 was assessed using methylated RNA immunoprecipitation (MeRIP) assay. RESULTS: Increased circ_0056856, CDK1, and WTAP were observed in psoriasis patients and IL-22-treated HaCaT cells. Moreover, circ_0056856 knockdown might repress IL-22-induced HaCaT cell proliferation, migration, and invasion in vitro. In mechanism, circ_0056856 might function as a sponge of miR-197-3p to modulate CDK1 expression, and WTAP improved circ_0056856 expression via m6A methylation. CONCLUSION: WTAP-guided m6A modified circ_0056856 facilitates IL-22-stimulated HaCaT cell damage through the miR-197-3p/CDK1 axis, which could provide novel insights into psoriasis treatment.


Subject(s)
CDC2 Protein Kinase , Cell Movement , Cell Proliferation , Interleukin-22 , Interleukins , Keratinocytes , MicroRNAs , Psoriasis , RNA, Circular , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Keratinocytes/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Interleukins/metabolism , Interleukins/genetics , Psoriasis/pathology , Psoriasis/genetics , Psoriasis/metabolism , Cell Movement/genetics , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , HaCaT Cells , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Signal Transduction
14.
Biochem Biophys Res Commun ; 715: 149937, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38701688

ABSTRACT

Localization of RNAs at specific subcellular locations regulating various local cellular events has gained much attention recently. Like most other classes of RNAs, the function of newly discovered circular RNAs (circRNAs) is predominantly determined by their association with different cellular factors in the cell. CircRNAs function as transcriptional and posttranscriptional regulators of gene expression by interacting with transcription factors, splicing regulators, RNA-binding proteins, and microRNAs or by translating into functional polypeptides. Hence, studying their subcellular localization to assess their function is essential. The discovery of more than a million circRNA and increasing evidence of their involvement in development and diseases require a thorough analysis of their subcellular localization linking to their biological functions. Here, we summarize current knowledge of circRNA localization in cells and extracellular vesicles, factors regulating their subcellular localization, and the implications of circRNA localization on their cellular functions. Given the discovery of many circRNAs in all life forms and their implications in pathophysiology, we discuss the challenges in studying circRNA localization and the opportunities for unlocking the mystery of circRNA functions.


Subject(s)
RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Animals , RNA/metabolism , RNA/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Gene Expression Regulation , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
15.
Cancer Biol Ther ; 25(1): 2343450, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38742566

ABSTRACT

The potential function and mechanism of circRNAs in regulating malignant performances of Osteosarcoma (OS) cells have not been well investigated. The expression level of CircLMO7, miR-21-5p and ARHGAP24 were detected by RT-qPCR. The relationship between miR-21-5p and circ-LMO7, as well as between miR-21-5p and ARHGAP24, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), transwell and flow cytometry assays, respectively. ARHGAP24 protein level was measured using western blotting. In present study, we choose to investigate the role and mechanism of circ-LOM7 on OS cell proliferation, migration and invasion. circ-LOM7 was found to be down-regulated in OS tissues and cell lines. Enforced expression of circ-LOM7 suppressed the growth, invasion, and migration of OS cells. In contrast, decreasing circ-LMO7 expression had opposite effects. Furthermore, miR-21-5p was predicted to be sponged by circ-LMO7, and had an opposite role of circ-LMO7 in OS. Moreover, ARHGAP24 served as miR-21-5p's downstream target. Mechanistically, circ-LMO7 was packed in exosomes and acted as a cancer-suppresser on OS by sponging miR-21-5p and upregulating the expression of ARHGAP24. The exosomal circ-LMO7 expression was significantly decreased in OS cell exosomes, and co-culture experiments showed that exosomal circ-LMO7 suppressed the proliferation ability of OS cells. Circ-LMO7 exerts as a tumor suppressor in OS, and the circ-LMO7/miR-21-5P/ARHGAP24 axis is involved in OS progression.


Subject(s)
Disease Progression , Exosomes , GTPase-Activating Proteins , MicroRNAs , Osteosarcoma , RNA, Circular , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Exosomes/metabolism , Exosomes/genetics , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Cell Proliferation , Mice , Animals , Cell Line, Tumor , Cell Movement/genetics , Apoptosis/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Male , Female
16.
Clin Respir J ; 18(5): e13771, 2024 May.
Article in English | MEDLINE | ID: mdl-38747117

ABSTRACT

BACKGROUND: Hypertension is a main contributing factor of cardiovascular diseases; deregulated circular RNAs are involved in the pathogenesis of pulmonary arterial hypertension (PAH). Herein, we evaluated the function and mechanism of circST6GAL1 in PAH process. METHODS: Human pulmonary artery smooth muscle cells (HPASMCs) were cultured in hypoxic environment for functional analysis. The cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, and flow cytometry assays were used to investigate cell proliferation, migration, and apoptosis. qRT-PCR and Western blotting analyses were used for level measurement of genes and proteins. The binding between miR-509-5p and circST6GAL1 or multiple C2 and transmembrane domain containing 2 (MCTP2) was analyzed by dual-luciferase reporter, RNA immunoprecipitation, and pull-down assays. The monocrotaline (MCT)-induced PAH mouse models were established for in vivo assay. RESULTS: CircST6GAL1 was highly expressed in PAH patients and hypoxia-induced HPASMCs. Functionally, circST6GAL1 deficiency reversed hypoxia-induced proliferation and migration, as well as apoptosis arrest in HPASMCs. Mechanistically, circST6GAL1 directly targeted miR-509-5p, and MCTP2 was a target of miR-509-5p. Rescue assays showed that the regulatory effects of circST6GAL1 deficiency on hypoxia-induced HPASMCs were abolished. Moreover, forced expression of miR-509-5p suppressed HPASMC proliferation and migration and induced cell apoptosis under hypoxia stimulation, while these effects were abolished by MCTP2 overexpression. Moreover, circST6GAL1 silencing improved MCT-induced pulmonary vascular remodeling and PAH. CONCLUSION: CircST6GAL1 deficiency reversed hypoxia-induced proliferation and migration, as well as apoptosis arrest in HPASMCs, and alleviated pulmonary vascular remodeling in MCT-induced PAH mouse models through the miR-509-5p/MCTP2 axis, indicating a potential therapeutic target for PAH.


Subject(s)
Apoptosis , Cell Proliferation , MicroRNAs , Pulmonary Arterial Hypertension , RNA, Circular , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Disease Models, Animal , Myocytes, Smooth Muscle/metabolism , Male , Cell Movement/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Cells, Cultured , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology
17.
Funct Integr Genomics ; 24(3): 102, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760573

ABSTRACT

Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.


Subject(s)
Biomarkers , Exosomes , Heart Failure , RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Heart Failure/genetics , Heart Failure/metabolism , Biomarkers/metabolism , Exosomes/metabolism , Exosomes/genetics , Animals , MicroRNAs/genetics , MicroRNAs/metabolism
18.
Commun Biol ; 7(1): 583, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755265

ABSTRACT

Tumor-associated macrophages of the M2 phenotype promote cancer initiation and progression. Importantly, M2 macrophage-derived exosomes play key roles in the malignancy of cancer cells. Here, we report that circTMCO3 is upregulated in ovarian cancer patients, and its high expression indicates poor survival. M2-derived exosomes promote proliferation, migration, and invasion in ovarian cancer, but these effects are abolished by knockdown of circTMCO3. Furthermore, circTMCO3 functions as a competing endogenous RNA for miR-515-5p to reduce its abundance, thus upregulating ITGA8 in ovarian cancer. miR-515-5p inhibits ovarian cancer malignancy via directly downregulating ITGA8. The decreased oncogenic activity of circTMCO3-silencing exosomes is reversed by miR-515-5p knockdown or ITGA8 overexpression. Exosomal circTMCO3 promotes ovarian cancer progression in nude mice. Thus, M2 macrophage-derived exosomes promote malignancy by delivering circTMCO3 and targeting the miR-515-5p/ITGA8 axis in ovarian cancer. Our findings not only provide mechanistic insights into ovarian cancer progression, but also suggest potential therapeutic targets.


Subject(s)
Exosomes , Mice, Nude , MicroRNAs , Ovarian Neoplasms , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Humans , Exosomes/metabolism , Exosomes/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Macrophages/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Cell Proliferation , Integrin alpha Chains/genetics , Integrin alpha Chains/metabolism , Cell Movement
19.
Mol Cancer ; 23(1): 102, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755678

ABSTRACT

Peptides and proteins encoded by noncanonical open reading frames (ORFs) of circRNAs have recently been recognized to play important roles in disease progression, but the biological functions and mechanisms of these peptides and proteins are largely unknown. Here, we identified a potential coding circular RNA, circTRIM1, that was upregulated in doxorubicin-resistant TNBC cells by intersecting transcriptome and translatome RNA-seq data, and its expression was correlated with clinicopathological characteristics and poor prognosis in patients with TNBC. CircTRIM1 possesses a functional IRES element along with an 810 nt ORF that can be translated into a novel endogenously expressed protein termed TRIM1-269aa. Functionally, we demonstrated that TRIM1-269aa, which is involved in the biological functions of circTRIM1, promoted chemoresistance and metastasis in TNBC cells both in vitro and in vivo. In addition, we found that TRIM1-269aa can be packaged into exosomes and transmitted between TNBC cells. Mechanistically, TRIM1-269aa enhanced the interaction between MARCKS and calmodulin, thus promoting the calmodulin-dependent translocation of MARCKS, which further initiated the activation of the PI3K/AKT/mTOR pathway. Overall, circTRIM1, which encodes TRIM1-269aa, promoted TNBC chemoresistance and metastasis by enhancing MARCKS translocation and PI3K/AKT/mTOR activation. Our investigation has yielded novel insights into the roles of protein-coding circRNAs and supported circTRIM1/TRIM1-269aa as a novel promising prognostic and therapeutic target for patients with TNBC.


Subject(s)
Drug Resistance, Neoplasm , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , RNA, Circular , TOR Serine-Threonine Kinases , Triple Negative Breast Neoplasms , Humans , RNA, Circular/genetics , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Drug Resistance, Neoplasm/genetics , Animals , Female , Mice , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Signal Transduction , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Prognosis
20.
Cancer Immunol Immunother ; 73(7): 130, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748254

ABSTRACT

Immune surveillance and chemotherapy sensitivity play critical functions in the tumorigenesis of breast cancer (BC). Emerging findings have indicated that circular RNA (circRNA) and N6-methyladenosine (m6A) both participate in the BC tumorigenesis. Here, present study aimed to investigate the roles of m6A-modified circATAD2 on BC and explore better understanding for BC precision therapeutic. Results reported that m6A-modifid circRNA (m6A-circRNA) microarray revealed the m6A-circRNA landscape in BC. M6A-modifid circATAD2 upregulated in BC samples and was closely correlated to poor prognosis. Functionally, circATAD2 promoted the immune evasion of BC cells and reduced the CD8+ T cells' killing effect. Mechanistically, MeRIP-seq unveiled the m6A modification in the 3'-UTR of PD-L1 mRNA, which was bound by circATAD2 and recognized by m6A reader IGF2BP3 to enhance PD-L1 mRNA stability and expression. In summary, these findings revealed the circATAD2/m6A/IGF2BP3/PD-L1 axis in BC immune surveillance, suggesting the potential that circATAD2 as a potential target for PD-L1-mediated BC.


Subject(s)
B7-H1 Antigen , Breast Neoplasms , CD8-Positive T-Lymphocytes , Immunologic Surveillance , RNA, Circular , RNA-Binding Proteins , Humans , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Female , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , RNA, Circular/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Gene Expression Regulation, Neoplastic , Mice , Prognosis , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...