Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.272
Filter
1.
Methods Mol Biol ; 2808: 71-88, 2024.
Article in English | MEDLINE | ID: mdl-38743363

ABSTRACT

Copy-back defective interfering RNAs are major contaminants of viral stock preparations of morbilliviruses and other negative strand RNA viruses. They are hybrid molecules of positive sense antigenome and negative sense genome. They possess perfectly complementary ends allowing the formation of extremely stable double-stranded RNA panhandle structures. The presence of the 3'-terminal promoter allows replication of these molecules by the viral polymerase. They thereby negatively interfere with replication of standard genomes. In addition, the double-stranded RNA stem structures are highly immunostimulatory and activate antiviral cell-intrinsic innate immune responses. Thus, copy-back defective interfering RNAs severely affect the virulence and pathogenesis of morbillivirus stocks. We describe two biochemical methods to analyze copy-back defective interfering RNAs in virus-infected samples, or purified viral RNA. First, we present our Northern blotting protocol that allows accurate size determination of defective interfering RNA molecules and estimation of the relative contamination level of virus preparations. Second, we describe a PCR approach to amplify defective interfering RNAs specifically, which allows detailed sequence analysis.


Subject(s)
Morbillivirus , RNA, Viral , RNA, Viral/genetics , Morbillivirus/genetics , Animals , Blotting, Northern , Virus Replication/genetics , Polymerase Chain Reaction/methods , RNA, Small Interfering/genetics , Genome, Viral , RNA, Double-Stranded/genetics , Humans
2.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791257

ABSTRACT

In this study, we report the complexities and challenges associated with achieving robust RNA interference (RNAi)-mediated gene knockdown in the mosquitoes Aedes aegypti and Aedes albopictus, a pivotal approach for genetic analysis and vector control. Despite RNAi's potential for species-specific gene targeting, our independent efforts to establish oral delivery of RNAi for identifying genes critical for mosquito development and fitness encountered significant challenges, failing to reproduce previously reported potent RNAi effects. We independently evaluated a range of RNAi-inducing molecules (siRNAs, shRNAs, and dsRNAs) and administration methods (oral delivery, immersion, and microinjection) in three different laboratories. We also tested various mosquito strains and utilized microorganisms for RNA delivery. Our results reveal a pronounced inconsistency in RNAi efficacy, characterized by minimal effects on larval survival and gene expression levels in most instances despite strong published effects for the tested targets. One or multiple factors, including RNase activity in the gut, the cellular internalization and processing of RNA molecules, and the systemic dissemination of the RNAi signal, could be involved in this variability, all of which are barely understood in mosquitoes. The challenges identified in this study highlight the necessity for additional research into the underlying mechanisms of mosquito RNAi to develop more robust RNAi-based methodologies. Our findings emphasize the intricacies of RNAi application in mosquitoes, which present a substantial barrier to its utilization in genetic control strategies.


Subject(s)
Aedes , RNA Interference , Animals , Aedes/genetics , RNA, Small Interfering/genetics , Mosquito Vectors/genetics , Larva/genetics , RNA, Double-Stranded/genetics , Gene Silencing , Gene Knockdown Techniques/methods
3.
J Agric Food Chem ; 72(19): 10936-10943, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691835

ABSTRACT

RNAi plays a crucial role in insect gene function research and pest control field. Nonetheless, the variable efficiency of RNAi across diverse insects and off-target effects also limited its further application. In this study, we cloned six essential housekeeping genes from Solenopsis invicta and conducted RNAi experiments by orally administering dsRNA. Then, we found that mixing with liposomes significantly enhanced the RNAi efficiency by targeting for SiV-ATPaseE. Additionally, we observed a certain lethal effect of this dsRNA on queens by our established RNAi system. Furthermore, no strict sequence-related off-target effects were detected. Finally, the RNAi effect of large-scale bacteria expressing dsRNA was successfully confirmed for controlling S. invicta. In summary, this study established an RNAi system for S. invicta and provided a research template for the future development of nucleic acid drugs based on RNAi.


Subject(s)
Ants , Insect Proteins , RNA Interference , Animals , Insect Proteins/genetics , Insect Proteins/metabolism , Ants/genetics , Insect Control/methods , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Pest Control, Biological/methods , Female , Fire Ants
4.
J Agric Food Chem ; 72(20): 11381-11391, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728113

ABSTRACT

RNA interference (RNAi)-based biopesticides offer an attractive avenue for pest control. Previous studies revealed high RNAi sensitivity in Holotrichia parallela larvae, showcasing its potential for grub control. In this study, we aimed to develop an environmentally friendly RNAi method for H. parallela larvae. The double-stranded RNA (dsRNA) of the V-ATPase-a gene (HpVAA) was loaded onto layered double hydroxide (LDH). The dsRNA/LDH nanocomplex exhibited increased environmental stability, and we investigated the absorption rate and permeability of dsRNA-nanoparticle complexes and explored the RNAi controlling effect. Silencing the HpVAA gene was found to darken the epidermis of H. parallela larvae, with growth cessation or death or mortality, disrupting the epidermis and midgut structure. Quantitative reverse transcription-polymerase chain reaction and confocal microscopy confirmed the effective absorption of the dsRNA/LDH nanocomplex by peanut plants, with distribution in roots, stems, and leaves. Nanomaterial-mediated RNAi silenced the target genes, leading to the death of pests. Therefore, these findings indicate the successful application of the nanomaterial-mediated RNAi system for underground pests, thus establishing a theoretical foundation for developing a green, safe, and efficient pest control strategy.


Subject(s)
Larva , RNA Interference , RNA, Double-Stranded , Animals , Larva/growth & development , Larva/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Hydroxides/chemistry , Hydroxides/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Arachis/genetics , Arachis/chemistry , Arachis/growth & development , Arachis/metabolism , Pest Control, Biological , Coleoptera/genetics , Coleoptera/growth & development , Green Chemistry Technology , Biological Control Agents/chemistry , Biological Control Agents/metabolism , Nanoparticles/chemistry
5.
Sci Signal ; 17(837): eadi9844, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771918

ABSTRACT

Oligoadenylate synthetase 3 (OAS3) and ribonuclease L (RNase L) are components of a pathway that combats viral infection in mammals. Upon detection of viral double-stranded RNA (dsRNA), OAS3 synthesizes 2'-5'-oligo(A), which activates the RNase domain of RNase L by promoting the homodimerization and oligomerization of RNase L monomers. Activated RNase L rapidly degrades all cellular mRNAs, shutting off several cellular processes. We sought to understand the molecular mechanisms underlying the rapid activation of RNase L in response to viral infection. Through superresolution microscopy and live-cell imaging, we showed that OAS3 and RNase L concentrated into higher-order cytoplasmic complexes known as dsRNA-induced foci (dRIF) in response to dsRNA or infection with dengue virus, Zika virus, or West Nile virus. The concentration of OAS3 and RNase L at dRIF corresponded with the activation of RNase L-mediated RNA decay. We showed that dimerized/oligomerized RNase L concentrated in a liquid-like shell surrounding a core OAS3-dRIF structure and dynamically exchanged with the cytosol. These data establish that the condensation of dsRNA, OAS3, and RNase L into dRIF is a molecular switch that promotes the rapid activation of RNase L upon detection of dsRNA in mammalian cells.


Subject(s)
2',5'-Oligoadenylate Synthetase , Endoribonucleases , RNA, Double-Stranded , Zika Virus , Endoribonucleases/metabolism , Endoribonucleases/genetics , Endoribonucleases/chemistry , Humans , 2',5'-Oligoadenylate Synthetase/metabolism , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/chemistry , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , Zika Virus/metabolism , Animals , Dengue Virus/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , RNA Stability , West Nile virus/metabolism , West Nile virus/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/virology , Enzyme Activation , HeLa Cells , HEK293 Cells
6.
J Agric Food Chem ; 72(22): 12508-12515, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788129

ABSTRACT

Nanotechnology-based RNA interference (RNAi) offers a promising approach to pest control. However, current methods for producing RNAi nanopesticides are mainly implemented in a batch-to-batch manner, lacking consistent quality control. Herein, we present a microfluidic-based nanoplatform for RNA nanopesticide preparation using lipid nanoparticles (LNPs) as nanocarriers, taking advantage of the enhanced mass transfer and continuous processing capabilities of microfluidic technology. The dsRNA@LNPs were rapidly formed within seconds, which showed uniform size distribution, improved leaf wettability, and excellent dispersion properties. The delivery efficiency of dsRNA@LNPs was evaluated by targeting the chitin synthetase B (CHSB) gene ofSpodoptera exigua. The dsRNA@LNPs can effectively resist nuclease-rich midgut fluid degradation. Importantly, dsCHSB@LNPs exhibited increased mortality rates, significant reduction of larvae growth, and enhanced gene suppression efficiency. Therefore, a continuous nanoplatform for RNAi nanopesticide preparation is demonstrated by utilizing microfluidic technology, representing a new route to produce RNAi nanopesticides with enhanced quality control and might accelerate their practical applications.


Subject(s)
Larva , RNA Interference , RNA, Double-Stranded , Spodoptera , Animals , Spodoptera/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , Larva/growth & development , Larva/genetics , Nanoparticles/chemistry , Microfluidics/instrumentation , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Insect Control/methods
7.
Planta ; 259(6): 153, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744752

ABSTRACT

MAIN CONCLUSION: The study evaluates the potential of Spray-Induced Gene Silencing and Host-Induced Gene Silencing for sustainable crop protection against the broad-spectrum necrotrophic fungus Sclerotinia sclerotiorum. Sclerotinia sclerotiorum (Lib.) de Bary, an aggressive ascomycete fungus causes white rot or cottony rot on a broad range of crops including Brassica juncea. The lack of sustainable control measures has necessitated biotechnological interventions such as RNA interference (RNAi) for effective pathogen control. Here we adopted two RNAi-based strategies-Spray-Induced Gene Silencing (SIGS) and Host-Induced Gene Silencing (HIGS) to control S. sclerotiorum. SIGS was successful in controlling white rot on Nicotiana benthamiana and B. juncea by targeting SsPac1, a pH-responsive transcription factor and SsSmk1, a MAP kinase involved in fungal development and pathogenesis. Topical application of dsRNA targeting SsPac1 and SsSmk1 delayed infection initiation and progression on B. juncea. Further, altered hyphal morphology and reduced radial growth were also observed following dsRNA application. We also explored the impact of stable dsRNA expression in A. thaliana against S. sclerotiorum. In this report, we highlight the utility of RNAi as a biofungicide and a tool for preliminary functional genomics.


Subject(s)
Ascomycota , Nicotiana , Plant Diseases , RNA Interference , Ascomycota/physiology , Ascomycota/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Nicotiana/genetics , Nicotiana/microbiology , Mustard Plant/genetics , Mustard Plant/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Transcription Factors/genetics , Transcription Factors/metabolism , RNA, Double-Stranded/genetics
8.
Methods Mol Biol ; 2775: 91-106, 2024.
Article in English | MEDLINE | ID: mdl-38758313

ABSTRACT

RNA interference (RNAi) is a molecular biology technique for silencing specific eukaryotic genes without altering the DNA sequence in the genome. The silencing effect occurs because of decreased levels of mRNA that then result in decreased protein levels for the gene. The specificity of the silencing is dependent upon the presence of sequence-specific double-stranded RNA (dsRNA) that activates the cellular RNAi machinery. This chapter describes the process of silencing a specific target gene in Cryptococcus using a dual promoter vector. The plasmid, pIBB103, was designed with two convergent GAL7 promoters flanking a ura5 fragment that acts as a reporter for efficient RNAi. The target gene fragment is inserted between the promoters to be transcribed from both directions leading to the production of dsRNA in cells that activate the RNAi pathway.


Subject(s)
Cryptococcus , Promoter Regions, Genetic , RNA Interference , Cryptococcus/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Genetic Vectors/genetics , Plasmids/genetics , Gene Silencing
9.
Biotechnol J ; 19(5): e2400024, 2024 May.
Article in English | MEDLINE | ID: mdl-38797726

ABSTRACT

The development of RNA interference (RNAi) is crucial for studying plant gene function. Its use, is limited to a few plants with well-established transgenic techniques. Spray-induced gene silencing (SIGS) introduces exogenous double-stranded RNA (dsRNA) into plants by spraying, injection, or irrigation, triggering the RNAi pathway to instantly silence target genes. As is a transient RNAi technology that does not rely on transgenic methods, SIGS has significant potential for studying gene function in plants lacking advanced transgenic technology. In this study, to enhance their stability and delivery efficiency, siRNAs were used as structural motifs to construct RNA nanoparticles (NPs) of four shapes: triangle, square, pentagon, and hexagon. These NPs, when synthesized by Escherichia coli, showed that triangular and square shapes accumulated more efficiently than pentagon and hexagon shapes. Bioassays revealed that RNA squares had the highest RNAi efficiency, followed by RNA triangles, with GFP-dsRNA showing the lowest efficiency at 4 and 7 days post-spray. We further explored the use of RNA squares in inducing transient RNAi in plants that are difficult to transform genetically. The results indicated that Panax notoginseng-derived MYB2 (PnMYB2) and Camellia oleifera-derived GUT (CoGUT) were significantly suppressed in P. notoginseng and C. oleifera, respectively, following the application of PnMYB2- and CoGUT-specific RNA squares. These findings suggest that RNA squares are highly effective in SIGS and can be utilized for gene function research in plants.


Subject(s)
Plants, Genetically Modified , RNA Interference , Plants, Genetically Modified/genetics , RNA, Small Interfering/genetics , Nanoparticles/chemistry , RNA, Double-Stranded/genetics , Escherichia coli/genetics , Nicotiana/genetics
10.
Pestic Biochem Physiol ; 200: 105839, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582601

ABSTRACT

Lepidopteran insects are refractory to RNA interference (RNAi) response, especially to orally delivered double-stranded RNA (dsRNA). High nuclease activity in the midgut lumen is proposed as one of the major reasons for RNAi insensitivity. We identified three dsRNase genes highly expressed in the midgut of fall armyworm (FAW), Spodoptera frugiperda. The genomic region harboring those three dsRNase genes was deleted using the CRISPR-Cas9-mediated genome editing method. A homozygous line with deletion of three dsRNase genes was produced. dsRNA degradation by midgut lumen contents of mutant larvae was lower than in wild-type larvae. Feeding dsRNA targeting the inhibitor of apoptosis (IAP) gene increased knockdown of the target gene and mortality in mutants compared to wild-type larvae. These results suggest that dsRNases in the midgut contribute to RNAi inefficiency in FAW. Formulations that protect dsRNA from dsRNase degradation may improve RNAi efficiency in FAW and other lepidopteran insects.


Subject(s)
CRISPR-Cas Systems , RNA, Double-Stranded , Animals , RNA Interference , Spodoptera/genetics , Spodoptera/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Insecta/genetics , Larva/genetics , Larva/metabolism
11.
Sci Rep ; 14(1): 9655, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671016

ABSTRACT

The manufacturing of mRNA vaccines relies on cell-free based systems that are easily scalable and flexible compared with the traditional vaccine manufacturing processes. Typically, standard processes yield 2 to 5 g L-1 of mRNA, with recent process optimisations increasing yields to 12 g L-1. However, increasing yields can lead to an increase in the production of unwanted by-products, namely dsRNA. It is therefore imperative to reduce dsRNA to residual levels in order to avoid intensive purification steps, enabling cost-effective manufacturing processes. In this work, we exploit sequence modifications downstream of the T7 RNA polymerase promoter to increase mRNA yields whilst simultaneously minimising dsRNA. In particular, transcription performance was optimised by modifying the sequence downstream of the T7 promoter with additional AT-rich sequences. We have identified variants that were able to produce higher amounts of mRNA (up to 14 g L-1) in 45 min of reaction. These variants exhibited up to a 30% reduction in dsRNA byproduct levels compared to a wildtype T7 promoter, and have similar EGFP protein expression. The results show that optimising the non-coding regions can have an impact on mRNA production yields and quality, reducing overall manufacturing costs.


Subject(s)
DNA-Directed RNA Polymerases , Promoter Regions, Genetic , RNA, Messenger , RNA, Messenger/genetics , RNA, Messenger/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Bacteriophage T7/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , mRNA Vaccines
12.
Mol Cell ; 84(8): 1403-1405, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38640893

ABSTRACT

In a recent article in Cell, Zhou et al. investigate the origins, composition, and biological consequences of UV-induced stress granules. They find that UV-induced stress granules are triggered by the formation of RNA-protein crosslinks, uniquely contain DHX9 as a marker, form during mitosis independently of translation repression, and are enriched in intron-containing RNAs and splicing factors. Moreover, UV-induced granules contain double-stranded RNA (dsRNA) and trigger a dsRNA response. This work identifies a mechanism for resolving UV-damaged RNA and broadens the types of cytosolic "stress granules" that form.


Subject(s)
Stress Granules , Mitosis , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism
13.
Arch Virol ; 169(5): 105, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637359

ABSTRACT

In this study, we identified a novel double-strand RNA (dsRNA) mycovirus in Pyricularia oryzae, designated "Magnaporthe oryzae partitivirus 4" (MoPV4). The genome of MoPV4 consists of a dsRNA-1 segment encoding an RNA-dependent RNA polymerase (RdRP) and a dsRNA-2 segment encoding a capsid protein (CP). Phylogenetic analysis indicated that MoPV4 belongs to the genus Gammapartitivirus within family Partitiviridae. The particles of MoPV4 are isometric with a diameter of about 32.4 nm. Three-dimensional structure predictions indicated that the RdRP of MoPV4 forms a classical right-handed conformation, while the CP has a reclining-V shape.


Subject(s)
Ascomycota , Fungal Viruses , RNA Viruses , RNA, Viral/genetics , Phylogeny , RNA Viruses/genetics , Capsid Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , Genome, Viral , Fungal Viruses/genetics , RNA, Double-Stranded/genetics , Open Reading Frames
14.
Nucleic Acids Res ; 52(9): 5257-5272, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38634805

ABSTRACT

It has been proposed that coronavirus nsp15 mediates evasion of host cell double-stranded (ds) RNA sensors via its uracil-specific endoribonuclease activity. However, how nsp15 processes viral dsRNA, commonly considered as a genome replication intermediate, remains elusive. Previous research has mainly focused on short single-stranded RNA as substrates, and whether nsp15 prefers single-stranded or double-stranded RNA for cleavage is controversial. In the present work, we prepared numerous RNA substrates, including both long substrates mimicking the viral genome and short defined RNA, to clarify the substrate preference and cleavage pattern of SARS-CoV-2 nsp15. We demonstrated that SARS-CoV-2 nsp15 preferentially cleaved pyrimidine nucleotides located in less thermodynamically stable areas in dsRNA, such as AU-rich areas and mismatch-containing areas, in a nicking manner. Because coronavirus genomes generally have a high AU content, our work supported the mechanism that coronaviruses evade the antiviral response mediated by host cell dsRNA sensors by using nsp15 dsRNA nickase to directly cleave dsRNA intermediates formed during genome replication and transcription.


Subject(s)
RNA, Double-Stranded , RNA, Viral , SARS-CoV-2 , Viral Nonstructural Proteins , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/genetics , SARS-CoV-2/genetics , SARS-CoV-2/enzymology , RNA, Viral/metabolism , RNA, Viral/genetics , RNA, Viral/chemistry , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Humans , Endoribonucleases/metabolism , Endoribonucleases/genetics , Virus Replication/genetics , Substrate Specificity , Genome, Viral , COVID-19/virology
15.
Pestic Biochem Physiol ; 201: 105905, 2024 May.
Article in English | MEDLINE | ID: mdl-38685227

ABSTRACT

Recently, the first sprayable RNAi biopesticide, Ledprona, against the Colorado potato beetle, Leptinotarsa decemlineata, has been registered at the United States Environmental Protection Agency. Spider mites (Acari: Tetranychidae), a group of destructive agricultural and horticultural pests, are notorious for rapid development of insecticide/acaricide resistance. The management options, on the other hand, are extremely limited. RNAi-based biopesticides offer a promising control alternative to address this emerging issue. In this study, we i) developed an egg-soaking dsRNA delivery method; ii) evaluated the factors influencing RNAi efficiency, and finally iii) investigated the potential mode of entry of this newly developed egg-soaking RNAi method. In comparison to other dsRNA delivery methods, egg-soaking method was the most efficient, convenient/practical, and cost-effective method for delivering dsRNAs into spider mites. RNAi efficiency of this RNAi method was affected by target genes, dsRNA concentration, developmental stages, and mite species. In general, the hawthorn spider mite, Amphitetranychus viennensis, is more sensitive to RNAi than the two-spotted spider mite, Tetranychus urticae, and both of them have dose-dependent RNAi effect. For different life stages, egg and larvae are the most sensitive life stages to dsRNAs. For different target genes, there is no apparent association between the suppression level and the resultant phenotype. Finally, we demonstrated that this egg-soaking RNAi method acts as both stomach and contact toxicity. Our combined results demonstrate the effectiveness of a topically applied dsRNA delivery method, and the potential of a spray induced gene silencing (SIGS) method as a control alternative for spider mites.


Subject(s)
RNA Interference , RNA, Double-Stranded , Tetranychidae , Animals , Tetranychidae/genetics , Tetranychidae/drug effects , RNA, Double-Stranded/genetics , Ovum , Female
16.
Arch Virol ; 169(4): 75, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492088

ABSTRACT

Fusarium oxysporum is a widespread plant pathogen that causes fusarium wilt and fusarium root rot in many economically significant crops. Here, a novel dsRNA virus tentatively named "Fusarium oxysporum virus 1" (FoV1) was identified in F. oxysporum strain 3S-18. The genome of FoV1 is 2,944 nucleotides (nt) in length and contains two non-overlapping open reading frames (ORF1 and 2). The larger of these, ORF2, encodes an RNA-dependent RNA polymerase (RdRp) of 590 amino acids with a molecular mass of 67.52 kDa. ORF1 encodes a putative nucleocapsid protein consisting of 134 amino acids with a molecular mass of 34.25 kDa. The RdRp domain of FoV1 shares 60.00% to 84.24% sequence identity with non-segmented dsRNA viruses. Phylogenetic analysis further suggested that FoV1 is a new member of the proposed genus "Unirnavirus" accommodating unclassified monopartite dsRNA viruses.


Subject(s)
Fungal Viruses , Fusarium , RNA Viruses , Fusarium/genetics , Double Stranded RNA Viruses/genetics , Phylogeny , Genome, Viral , Fungal Viruses/genetics , RNA-Dependent RNA Polymerase/genetics , Open Reading Frames , Fungi , Amino Acids/genetics , RNA Viruses/genetics , RNA, Double-Stranded/genetics , RNA, Viral/genetics
17.
Arch Virol ; 169(4): 79, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519762

ABSTRACT

A novel double-strand RNA (dsRNA) mycovirus, named "Colletotrichum fioriniae alternavirus1" (CfAV1), was isolated from the strain CX7 of Colletotrichum fioriniae, the causal agent of walnut anthracnose. The complete genome of CfAV1 is composed of three dsRNA segments: dsRNA1 (3528 bp), dsRNA2 (2485 bp), and dsRNA3 (2481 bp). The RNA-dependent RNA polymerase (RdRp) is encoded by dsRNA1, while both dsRNA2 and dsRNA3 encode hypothetical proteins. Based on multiple sequence alignments and phylogenetic analysis, CfAV1 is identified as a new member of the family Alternaviridae. This is the first report of an alternavirus that infects the phytopathogenic fungus C. fioriniae.


Subject(s)
Colletotrichum , Fungal Viruses , RNA Viruses , Phylogeny , Genome, Viral , Colletotrichum/genetics , Sequence Alignment , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Open Reading Frames
18.
Cancer Res Commun ; 4(4): 986-1003, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38530197

ABSTRACT

Detection of viral double-stranded RNA (dsRNA) is an important component of innate immunity. However, many endogenous RNAs containing double-stranded regions can be misrecognized and activate innate immunity. The IFN-inducible ADAR1-p150 suppresses dsRNA sensing, an essential function for adenosine deaminase acting on RNA 1 (ADAR1) in many cancers, including breast. Although ADAR1-p150 has been well established in this role, the functions of the constitutively expressed ADAR1-p110 isoform are less understood. We used proximity labeling to identify putative ADAR1-p110-interacting proteins in breast cancer cell lines. Of the proteins identified, the RNA helicase DHX9 was of particular interest. Knockdown of DHX9 in ADAR1-dependent cell lines caused cell death and activation of the dsRNA sensor PKR. In ADAR1-independent cell lines, combined knockdown of DHX9 and ADAR1, but neither alone, caused activation of multiple dsRNA sensing pathways leading to a viral mimicry phenotype. Together, these results reveal an important role for DHX9 in suppressing dsRNA sensing by multiple pathways. SIGNIFICANCE: These findings implicate DHX9 as a suppressor of dsRNA sensing. In some cell lines, loss of DHX9 alone is sufficient to cause activation of dsRNA sensing pathways, while in other cell lines DHX9 functions redundantly with ADAR1 to suppress pathway activation.


Subject(s)
Adenosine Deaminase , Breast Neoplasms , DEAD-box RNA Helicases , Neoplasm Proteins , RNA-Binding Proteins , Female , Humans , Breast Neoplasms/genetics , Cell Line , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Immunity, Innate , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA, Double-Stranded/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cell Line, Tumor
19.
Biomed Pharmacother ; 173: 116450, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503239

ABSTRACT

Cisplatin not only targets DNA but also RNA. However, it is largely unknown whether platinated RNA (Pt-RNA) causes apoptosis and thus contributes to the cytotoxic effects of cisplatin. Consequently, cellular RNA was isolated from HepG2 and LS180 cells, exposed to cisplatin, and the resulting Pt-RNA (20 ng Pt/µg RNA) was transfected into these cancer cell lines or used to treat an apoptosis reporter Caenorhabditis elegans (C. elegans) strain (MD701, expressing CED-1::GFP). Cellular and molecular effects of Pt-RNA were evaluated by luminogenic caspase 3/7 assays, PCR array analysis, and fluorescence microscopy-based quantification of apoptosis in C. elegans gonads. Assuming RNA cross-linking (pseudo double-stranded RNA), the contribution of the Toll-like receptor 3 (TLR3, a sensor of double-stranded RNA) to apoptosis induction in cancer cell lines was investigated by pharmacological TLR3 inhibition and overexpression. In contrast to controls, Pt-RNA significantly enhanced apoptosis in C. elegans (2-fold) and in the cancer cell lines (2-fold to 4-fold). TLR3 overexpression significantly enhanced the pro-apoptotic effects of Pt-RNA in HepG2 cells. TLR3 inhibition reduced the pro-apoptotic effects of Pt-RNA and cisplatin, but not of paclitaxel (off-target control). Gene expression analysis showed that Pt-RNA (but not RNA) significantly enhanced the mRNA levels of nuclear factor kappa B subunit 2 and interleukin-8 in HepG2 cells, suggesting that Pt-RNA is a damage-associated molecular pattern that additionally causes pro-inflammatory responses. Together, this data suggests that not only DNA but also cellular RNA is a functionally relevant target of cisplatin, leading to pro-apoptotic and immunogenic effects.


Subject(s)
Cisplatin , Neoplasms , Animals , Cisplatin/pharmacology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/pharmacology , Apoptosis , Cell Line, Tumor , DNA , Neoplasms/drug therapy , Neoplasms/genetics
20.
RNA ; 30(5): 500-511, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38531645

ABSTRACT

Innate immunity must be tightly regulated to enable sensitive pathogen detection while averting autoimmunity triggered by pathogen-like host molecules. A hallmark of viral infection, double-stranded RNAs (dsRNAs) are also abundantly encoded in mammalian genomes, necessitating surveillance mechanisms to distinguish "self" from "nonself." ADAR1, an RNA editing enzyme, has emerged as an essential safeguard against dsRNA-induced autoimmunity. By converting adenosines to inosines (A-to-I) in long dsRNAs, ADAR1 covalently marks endogenous dsRNAs, thereby blocking the activation of the cytoplasmic dsRNA sensor MDA5. Moreover, beyond its editing function, ADAR1 binding to dsRNA impedes the activation of innate immune sensors PKR and ZBP1. Recent landmark studies underscore the utility of silencing ADAR1 for cancer immunotherapy, by exploiting the ADAR1-dependence developed by certain tumors to unleash an antitumor immune response. In this perspective, we summarize the genetic and mechanistic evidence for ADAR1's multipronged role in suppressing dsRNA-mediated autoimmunity and explore the evolving roles of ADAR1 as an immuno-oncology target.


Subject(s)
Adenosine Deaminase , RNA Editing , Animals , Adenosine Deaminase/metabolism , Immunity, Innate/genetics , Interferon-Induced Helicase, IFIH1/genetics , Mammals/genetics , RNA, Double-Stranded/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...