Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Proteins ; 88(9): 1133-1142, 2020 09.
Article in English | MEDLINE | ID: mdl-32067260

ABSTRACT

The nondiscriminating aspartyl-tRNA synthetase (ND-AspRS), found in many archaea and bacteria, covalently attaches aspartic acid to tRNAAsp and tRNAAsn generating a correctly charged Asp-tRNAAsp and an erroneous Asp-tRNAAsn . This relaxed tRNA specificity is governed by interactions between the tRNA and the enzyme. In an effort to assess the contributions of the anticodon-binding domain to tRNA specificity, we constructed two chimeric enzymes, Chimera-D and Chimera-N, by replacing the native anticodon-binding domain in the Helicobacter pylori ND-AspRS with that of a discriminating AspRS (Chimera-D) and an asparaginyl-tRNA synthetase (AsnRS, Chimera-N), both from Escherichia coli. Both chimeric enzymes showed similar secondary structure compared to wild-type (WT) ND-AspRS and maintained the ability to form dimeric complexes in solution. Although less catalytically active than WT, Chimera-D was more discriminating as it aspartylated tRNAAsp over tRNAAsn with a specificity ratio of 7.0 compared to 2.9 for the WT enzyme. In contrast, Chimera-N exhibited low catalytic activity toward tRNAAsp and was unable to aspartylate tRNAAsn . The observed catalytic activities for the two chimeras correlate with their heterologous toxicity when expressed in E. coli. Molecular dynamics simulations show a reduced hydrogen bond network at the interface between the anticodon-binding domain and the catalytic domain in Chimera-N compared to Chimera-D or WT, explaining its lower stability and catalytic activity.


Subject(s)
Anticodon , Aspartate-tRNA Ligase/metabolism , Escherichia coli/enzymology , Helicobacter pylori/enzymology , RNA, Transfer, Amino Acyl/metabolism , RNA, Transfer, Asn/metabolism , RNA, Transfer, Asp/metabolism , Amino Acid Sequence , Aspartate-tRNA Ligase/chemistry , Aspartate-tRNA Ligase/genetics , Binding Sites , Biocatalysis , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Helicobacter pylori/genetics , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Transfer, Amino Acyl/chemistry , RNA, Transfer, Amino Acyl/genetics , RNA, Transfer, Asn/chemistry , RNA, Transfer, Asp/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
2.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 2): 62-69, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28177315

ABSTRACT

The N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) plays a crucial role in the recognition of both tRNAAsp and tRNAAsn. Here, the first X-ray crystal structure of the N-terminal domain of this enzyme (ND-AspRS1-104) from the human-pathogenic bacterium Helicobacter pylori is reported at 2.0 Šresolution. The apo form of H. pylori ND-AspRS1-104 shares high structural similarity with the N-terminal anticodon-binding domains of the discriminating aspartyl-tRNA synthetase (D-AspRS) from Escherichia coli and ND-AspRS from Pseudomonas aeruginosa, allowing recognition elements to be proposed for tRNAAsp and tRNAAsn. It is proposed that a long loop (Arg77-Lys90) in this H. pylori domain influences its relaxed tRNA specificity, such that it is classified as nondiscriminating. A structural comparison between D-AspRS from E. coli and ND-AspRS from P. aeruginosa suggests that turns E and F (78GAGL81 and 83NPKL86) in H. pylori ND-AspRS play a crucial role in anticodon recognition. Accordingly, the conserved Pro84 in turn F facilitates the recognition of the anticodons of tRNAAsp (34GUC36) and tRNAAsn (34GUU36). The absence of the amide H atom allows both C and U bases to be accommodated in the tRNA-recognition site.


Subject(s)
Anticodon/chemistry , Aspartate-tRNA Ligase/chemistry , Bacterial Proteins/chemistry , Helicobacter pylori/chemistry , RNA, Transfer, Asn/chemistry , RNA, Transfer, Asp/chemistry , Amino Acid Sequence , Anticodon/metabolism , Apoproteins/chemistry , Apoproteins/genetics , Apoproteins/metabolism , Aspartate-tRNA Ligase/genetics , Aspartate-tRNA Ligase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression , Helicobacter pylori/enzymology , Models, Molecular , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , RNA, Transfer, Asn/genetics , RNA, Transfer, Asn/metabolism , RNA, Transfer, Asp/genetics , RNA, Transfer, Asp/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Structural Homology, Protein
3.
J Mol Biol ; 428(3): 618-630, 2016 Feb 13.
Article in English | MEDLINE | ID: mdl-26804570

ABSTRACT

Synthesis of asparaginyl-tRNA (Asn-tRNA(Asn)) in bacteria can be formed either by directly ligating Asn to tRNA(Asn) using an asparaginyl-tRNA synthetase (AsnRS) or by synthesizing Asn on the tRNA. In the latter two-step indirect pathway, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) attaches Asp to tRNA(Asn) and the amidotransferase GatCAB transamidates the Asp to Asn on the tRNA. GatCAB can be similarly used for Gln-tRNA(Gln) formation. Most bacteria are predicted to use only one route for Asn-tRNA(Asn) formation. Given that Bacillus halodurans and Bacillus subtilis encode AsnRS for Asn-tRNA(Asn) formation and Asn synthetases to synthesize Asn and GatCAB for Gln-tRNA(Gln) synthesis, their AspRS enzymes were thought to be specific for tRNA(Asp). However, we demonstrate that the AspRSs are non-discriminating and can be used with GatCAB to synthesize Asn. The results explain why B. subtilis with its Asn synthetase genes knocked out is still an Asn prototroph. Our phylogenetic analysis suggests that this may be common among Firmicutes and 30% of all bacteria. In addition, the phylogeny revealed that discrimination toward tRNA(Asp) by AspRS has evolved independently multiple times. The retention of the indirect pathway in B. subtilis and B. halodurans likely reflects the ancient link between Asn biosynthesis and its use in translation that enabled Asn to be added to the genetic code.


Subject(s)
Asparagine/metabolism , Aspartate-tRNA Ligase/metabolism , Bacillus/enzymology , RNA, Transfer, Amino Acyl/metabolism , RNA, Transfer, Asn/metabolism , Bacillus/metabolism , Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , Substrate Specificity
4.
Proc Natl Acad Sci U S A ; 112(2): 382-7, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25548166

ABSTRACT

Many prokaryotes lack a tRNA synthetase to attach asparagine to its cognate tRNA(Asn), and instead synthesize asparagine from tRNA(Asn)-bound aspartate. This conversion involves two enzymes: a nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) that forms Asp-tRNA(Asn), and a heterotrimeric amidotransferase GatCAB that amidates Asp-tRNA(Asn) to form Asn-tRNA(Asn) for use in protein synthesis. ND-AspRS, GatCAB, and tRNA(Asn) may assemble in an ∼400-kDa complex, known as the Asn-transamidosome, which couples the two steps of asparagine biosynthesis in space and time to yield Asn-tRNA(Asn). We report the 3.7-Šresolution crystal structure of the Pseudomonas aeruginosa Asn-transamidosome, which represents the most common machinery for asparagine biosynthesis in bacteria. We show that, in contrast to a previously described archaeal-type transamidosome, a bacteria-specific GAD domain of ND-AspRS provokes a principally new architecture of the complex. Both tRNA(Asn) molecules in the transamidosome simultaneously serve as substrates and scaffolds for the complex assembly. This architecture rationalizes an elevated dynamic and a greater turnover of ND-AspRS within bacterial-type transamidosomes, and possibly may explain a different evolutionary pathway of GatCAB in organisms with bacterial-type vs. archaeal-type Asn-transamidosomes. Importantly, because the two-step pathway for Asn-tRNA(Asn) formation evolutionarily preceded the direct attachment of Asn to tRNA(Asn), our structure also may reflect the mechanism by which asparagine was initially added to the genetic code.


Subject(s)
Asparagine/biosynthesis , Pseudomonas aeruginosa/metabolism , RNA, Transfer, Asn/metabolism , Amino Acid Sequence , Aspartate-tRNA Ligase/chemistry , Aspartate-tRNA Ligase/genetics , Aspartate-tRNA Ligase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Evolution, Molecular , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Conformation , Protein Structure, Tertiary , Pseudomonas aeruginosa/genetics , RNA, Transfer, Asn/genetics , Sequence Homology, Amino Acid , Thermus thermophilus/genetics , Thermus thermophilus/metabolism , Transfer RNA Aminoacylation/genetics
5.
J Biol Chem ; 288(51): 36361-71, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24196969

ABSTRACT

Genome sequencing revealed an extreme AT-rich genome and a profusion of asparagine repeats associated with low complexity regions (LCRs) in proteins of the malarial parasite Plasmodium falciparum. Despite their abundance, the function of these LCRs remains unclear. Because they occur in almost all families of plasmodial proteins, the occurrence of LCRs cannot be associated with any specific metabolic pathway; yet their accumulation must have given selective advantages to the parasite. Translation of these asparagine-rich LCRs demands extraordinarily high amounts of asparaginylated tRNA(Asn). However, unlike other organisms, Plasmodium codon bias is not correlated to tRNA gene copy number. Here, we studied tRNA(Asn) accumulation as well as the catalytic capacities of the asparaginyl-tRNA synthetase of the parasite in vitro. We observed that asparaginylation in this parasite can be considered standard, which is expected to limit the availability of asparaginylated tRNA(Asn) in the cell and, in turn, slow down the ribosomal translation rate when decoding asparagine repeats. This observation strengthens our earlier hypothesis considering that asparagine rich sequences act as "tRNA sponges" and help cotranslational folding of parasite proteins. However, it also raises many questions about the mechanistic aspects of the synthesis of asparagine repeats and about their implications in the global control of protein expression throughout Plasmodium life cycle.


Subject(s)
Plasmodium falciparum/metabolism , RNA, Transfer, Asn/metabolism , Transfer RNA Aminoacylation , Amino Acid Sequence , Amino Acyl-tRNA Synthetases/metabolism , Asparagine/chemistry , Asparagine/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Humans , Kinetics , Molecular Sequence Data , Plasmodium falciparum/enzymology , Protozoan Proteins/biosynthesis , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Pyrococcus abyssi/enzymology , RNA, Transfer, Asn/biosynthesis , Repetitive Sequences, Amino Acid
6.
Proc Natl Acad Sci U S A ; 110(31): 12756-61, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23858450

ABSTRACT

T-box riboswitches control transcription of downstream genes through the tRNA-binding formation of terminator or antiterminator structures. Previously reported T-boxes were described as single-specificity riboswitches that can bind specific tRNA anticodons through codon-anticodon interactions with the nucleotide triplet of their specifier loop (SL). However, the possibility that T-boxes might exhibit specificity beyond a single tRNA had been overlooked. In Clostridium acetobutylicum, the T-box that regulates the operon for the essential tRNA-dependent transamidation pathway harbors a SL with two potential overlapping codon positions for tRNA(Asn) and tRNA(Glu). To test its specificity, we performed extensive mutagenic, biochemical, and chemical probing analyses. Surprisingly, both tRNAs can efficiently bind the SL in vitro and in vivo. The dual specificity of the T-box is allowed by a single base shift on the SL from one overlapping codon to the next. This feature allows the riboswitch to sense two tRNAs and balance the biosynthesis of two amino acids. Detailed genomic comparisons support our observations and suggest that "flexible" T-box riboswitches are widespread among bacteria, and, moreover, their specificity is dictated by the metabolic interconnection of the pathways under control. Taken together, our results support the notion of a genome-dependent codon ambiguity of the SLs. Furthermore, the existence of two overlapping codons imposes a unique example of tRNA-dependent regulation at the transcriptional level.


Subject(s)
Anticodon/metabolism , Clostridium acetobutylicum/metabolism , RNA, Bacterial/metabolism , RNA, Transfer, Asn/metabolism , RNA, Transfer, Glu/metabolism , Riboswitch/physiology , Anticodon/chemistry , Anticodon/genetics , Asparagine/biosynthesis , Asparagine/genetics , Clostridium acetobutylicum/chemistry , Clostridium acetobutylicum/genetics , Glutamic Acid/biosynthesis , Glutamic Acid/genetics , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Transfer, Asn/chemistry , RNA, Transfer, Asn/genetics , RNA, Transfer, Glu/chemistry , RNA, Transfer, Glu/genetics
7.
Nucleic Acids Res ; 40(11): 4965-76, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22362756

ABSTRACT

Helicobacter pylori catalyzes Asn-tRNA(Asn) formation by use of the indirect pathway that involves charging of Asp onto tRNA(Asn) by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS), followed by conversion of the mischarged Asp into Asn by the GatCAB amidotransferase. We show that the partners of asparaginylation assemble into a dynamic Asn-transamidosome, which uses a different strategy than the Gln-transamidosome to prevent the release of the mischarged aminoacyl-tRNA intermediate. The complex is described by gel-filtration, dynamic light scattering and kinetic measurements. Two strategies for asparaginylation are shown: (i) tRNA(Asn) binds GatCAB first, allowing aminoacylation and immediate transamidation once ND-AspRS joins the complex; (ii) tRNA(Asn) is bound by ND-AspRS which releases the Asp-tRNA(Asn) product much slower than the cognate Asp-tRNA(Asp); this kinetic peculiarity allows GatCAB to bind and transamidate Asp-tRNA(Asn) before its release by the ND-AspRS. These results are discussed in the context of the interrelation between the Asn and Gln-transamidosomes which use the same GatCAB in H. pylori, and shed light on a kinetic mechanism that ensures faithful codon reassignment for Asn.


Subject(s)
Aspartate-tRNA Ligase/metabolism , Helicobacter pylori/enzymology , Nitrogenous Group Transferases/metabolism , RNA, Transfer, Asn/metabolism , Transfer RNA Aminoacylation , Asparagine/metabolism , Aspartic Acid/metabolism , Genetic Code , Kinetics , RNA, Transfer, Asp/metabolism
8.
EMBO J ; 29(18): 3118-29, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20717102

ABSTRACT

Four out of the 22 aminoacyl-tRNAs (aa-tRNAs) are systematically or alternatively synthesized by an indirect, two-step route requiring an initial mischarging of the tRNA followed by tRNA-dependent conversion of the non-cognate amino acid. During tRNA-dependent asparagine formation, tRNA(Asn) promotes assembly of a ribonucleoprotein particle called transamidosome that allows channelling of the aa-tRNA from non-discriminating aspartyl-tRNA synthetase active site to the GatCAB amidotransferase site. The crystal structure of the Thermus thermophilus transamidosome determined at 3 A resolution reveals a particle formed by two GatCABs, two dimeric ND-AspRSs and four tRNAs(Asn) molecules. In the complex, only two tRNAs are bound in a functional state, whereas the two other ones act as an RNA scaffold enabling release of the asparaginyl-tRNA(Asn) without dissociation of the complex. We propose that the crystal structure represents a transient state of the transamidation reaction. The transamidosome constitutes a transfer-ribonucleoprotein particle in which tRNAs serve the function of both substrate and structural foundation for a large molecular machine.


Subject(s)
Asparagine/biosynthesis , RNA, Transfer, Asn/metabolism , Ribonucleoproteins/chemistry , Crystallization , Nitrogenous Group Transferases/metabolism , Protein Conformation , Ribonucleoproteins/isolation & purification , Ribonucleoproteins/metabolism , Thermus thermophilus/metabolism , Transfer RNA Aminoacylation
9.
BMC Microbiol ; 10: 196, 2010 Jul 22.
Article in English | MEDLINE | ID: mdl-20649968

ABSTRACT

BACKGROUND: Lysyl-tRNA synthetase (LysRS) is unique within the aminoacyl-tRNA synthetase family in that both class I (LysRS1) and class II (LysRS2) enzymes exist. LysRS1 enzymes are found in Archaebacteria and some eubacteria while all other organisms have LysRS2 enzymes. All sequenced strains of Bacillus cereus (except AH820) and Bacillus thuringiensis however encode both a class I and a class II LysRS. The lysK gene (encoding LysRS1) of B. cereus strain 14579 has an associated T box element, the first reported instance of potential T box control of LysRS expression. RESULTS: A global study of 891 completely sequenced bacterial genomes identified T box elements associated with control of LysRS expression in only four bacterial species: B. cereus, B. thuringiensis, Symbiobacterium thermophilum and Clostridium beijerinckii. Here we investigate the T box element found in the regulatory region of the lysK gene in B. cereus strain 14579. We show that this T box element is functional, responding in a canonical manner to an increased level of uncharged tRNALys but, unusually, also responding to an increased level of uncharged tRNAAsn. We also show that B. subtilis strains with T box regulated expression of the endogenous lysS or the heterologous lysK genes are viable. CONCLUSIONS: The T box element controlling lysK (encoding LysRS1) expression in B. cereus strain 14579 is functional, but unusually responds to depletion of charged tRNALys and tRNAAsn. This may have the advantage of making LysRS1 expression responsive to a wider range of nutritional stresses. The viability of B. subtilis strains with a single LysRS1 or LysRS2, whose expression is controlled by this T box element, makes the rarity of the occurrence of such control of LysRS expression puzzling.


Subject(s)
Bacillus cereus/enzymology , Bacterial Proteins/genetics , Gene Expression Regulation, Enzymologic , Lysine-tRNA Ligase/genetics , RNA, Transfer, Asn/metabolism , Regulatory Elements, Transcriptional , Amino Acid Sequence , Bacillus cereus/chemistry , Bacillus cereus/genetics , Bacillus cereus/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/metabolism , Molecular Sequence Data , RNA, Transfer, Amino Acyl/metabolism , Sequence Alignment
10.
RNA ; 16(2): 267-73, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20007329

ABSTRACT

During its assembly, human HIV-1 selectively packages the tRNA(Lys) isoacceptors, including tRNA(Lys3), the primer for the reverse transcriptase. However, other low molecular weight RNA species are also seen in the virus. We profiled the tRNAs packaged into HIV-1 using microarray analysis and validated our results by two-dimensional gel electrophoresis and RT-PCR. In addition to tRNA(Lys) isoacceptors, tRNA(Asn) and the rare isoacceptor of tRNA(Ile) are also selectively packaged. In Gag viral-like particles missing the GagPol protein, overall tRNA incorporation is reduced by >80%. This reduction is significantly greater than can be accounted for by the reduction in tRNA(Lys) isoacceptors, tRNA(Asn) and tRNA(Ile), suggesting that incorporation of other tRNAs may also require the GagPol protein. These results demonstrate selective incorporation of non-lysyl tRNAs into HIV-1 and highlight the application of microarrays as a novel method to study tRNA incorporation into viruses.


Subject(s)
HIV-1/genetics , HIV-1/physiology , RNA, Transfer, Amino Acid-Specific/genetics , RNA, Transfer, Amino Acid-Specific/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Base Sequence , Cell Line , DNA Probes/genetics , Electrophoresis, Gel, Two-Dimensional , Humans , Oligonucleotide Array Sequence Analysis/methods , RNA, Transfer, Asn/genetics , RNA, Transfer, Asn/metabolism , RNA, Transfer, Ile/genetics , RNA, Transfer, Ile/metabolism , RNA, Transfer, Lys/genetics , RNA, Transfer, Lys/metabolism , Virus Assembly/genetics , Virus Assembly/physiology
11.
Mol Biol Evol ; 25(11): 2369-89, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18775898

ABSTRACT

A comparative genomic analysis of 35 cyanobacterial strains has revealed that the gene complement of aminoacyl-tRNA synthetases (AARSs) and routes for aminoacyl-tRNA synthesis may differ among the species of this phylum. Several genes encoding AARS paralogues were identified in some genomes. In-depth phylogenetic analysis was done for each of these proteins to gain insight into their evolutionary history. GluRS, HisRS, ArgRS, ThrRS, CysRS, and Glu-Q-RS showed evidence of a complex evolutionary course as indicated by a number of inconsistencies with our reference tree for cyanobacterial phylogeny. In addition to sequence data, support for evolutionary hypotheses involving horizontal gene transfer or gene duplication events was obtained from other observations including biased sequence conservation, the presence of indels (insertions or deletions), or vestigial traces of ancestral redundant genes. We present evidences for a novel protein domain with two putative transmembrane helices recruited independently by distinct AARS in particular cyanobacteria.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Bacterial Proteins/genetics , Cyanobacteria/genetics , Evolution, Molecular , Amino Acid Motifs , Amino Acyl-tRNA Synthetases/metabolism , Arginine-tRNA Ligase/genetics , Arginine-tRNA Ligase/metabolism , Aspartate-tRNA Ligase/genetics , Aspartate-tRNA Ligase/metabolism , Cyanobacteria/classification , Cyanobacteria/enzymology , Gene Duplication , Genetic Variation , Genome, Bacterial , Glutamate-tRNA Ligase/genetics , Glutamate-tRNA Ligase/metabolism , Histidine-tRNA Ligase/genetics , Histidine-tRNA Ligase/metabolism , Phylogeny , Protein Structure, Tertiary , RNA, Bacterial/metabolism , RNA, Transfer, Amino Acyl/genetics , RNA, Transfer, Amino Acyl/metabolism , RNA, Transfer, Asn/metabolism , RNA, Transfer, Gln/metabolism , Threonine-tRNA Ligase/genetics , Threonine-tRNA Ligase/metabolism
12.
Biochemistry ; 47(29): 7610-6, 2008 Jul 22.
Article in English | MEDLINE | ID: mdl-18627126

ABSTRACT

Elongation factor Tu (EF-Tu) binds and loads elongating aminoacyl-tRNAs (aa-tRNAs) onto the ribosome for protein biosynthesis. Many bacteria biosynthesize Gln-tRNA (Gln) and Asn-tRNA (Asn) by an indirect, two-step pathway that relies on the misacylated tRNAs Glu-tRNA (Gln) and Asp-tRNA (Asn) as intermediates. Previous thermodynamic and experimental analyses have demonstrated that Thermus thermophilus EF-Tu does not bind Asp-tRNA (Asn) and predicted a similar discriminatory response against Glu-tRNA (Gln) [Asahara, H., and Uhlenbeck, O. (2005) Biochemistry 46, 6194-6200; Roy, H., et al. (2007) Nucleic Acids Res. 35, 3420-3430]. By discriminating against these misacylated tRNAS, EF-Tu plays a direct role in preventing misincorporation of aspartate and glutamate into proteins at asparagine and glutamine codons. Here we report the characterization of two different mesophilic EF-Tu orthologs, one from Escherichia coli, a bacterium that does not utilize either Glu-tRNA (Gln) or Asp-tRNA (Asn), and the second from Helicobacter pylori, an organism in which both misacylated tRNAs are essential. Both EF-Tu orthologs discriminate against these misacylated tRNAs, confirming the prediction that Glu-tRNA (Gln), like Asp-tRNA (Asn), will not form a complex with EF-Tu. These results also demonstrate that the capacity of EF-Tu to discriminate against both of these aminoacyl-tRNAs is conserved even in bacteria like E. coli that do not generate either misacylated tRNA.


Subject(s)
Bacterial Proteins/metabolism , Peptide Elongation Factor Tu/metabolism , RNA, Transfer, Amino Acyl/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Hydrolysis , Kinetics , Peptide Elongation Factor Tu/chemistry , Peptide Elongation Factor Tu/genetics , RNA, Transfer, Amino Acyl/chemistry , RNA, Transfer, Amino Acyl/genetics , RNA, Transfer, Asn/chemistry , RNA, Transfer, Asn/metabolism
13.
J Mol Biol ; 377(3): 845-53, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18291416

ABSTRACT

Many prokaryotes form the amide aminoacyl-tRNAs glutaminyl-tRNA and asparaginyl-tRNA by tRNA-dependent amidation of the mischarged tRNA species, glutamyl-tRNA(Gln) or aspartyl-tRNA(Asn). Archaea employ two such amidotransferases, GatCAB and GatDE, while bacteria possess only one, GatCAB. The Methanothermobacter thermautotrophicus GatDE is slightly more efficient using Asn as an amide donor than Gln (k(cat)/K(M) of 5.4 s(-1)/mM and 1.2 s(-1)/mM, respectively). Unlike the bacterial GatCAB enzymes studied to date, the M. thermautotrophicus GatCAB uses Asn almost as well as Gln as an amide donor (k(cat)/K(M) of 5.7 s(-1)/mM and 16.7 s(-1)/mM, respectively). In contrast to the initial characterization of the M. thermautotrophicus GatCAB as being able to form Asn-tRNA(Asn) and Gln-tRNA(Gln), our data demonstrate that while the enzyme is able to transamidate Asp-tRNA(Asn) (k(cat)/K(M) of 125 s(-1)/mM) it is unable to transamidate M. thermautotrophicus Glu-tRNA(Gln). However, M. thermautotrophicus GatCAB is capable of transamidating Glu-tRNA(Gln) from H. pylori or B. subtilis, and M. thermautotrophicus Glu-tRNA(Asn). Thus, M. thermautotrophicus encodes two amidotransferases, each with its own activity, GatDE for Gln-tRNA and GatCAB for Asn-tRNA synthesis.


Subject(s)
Methanobacterium/enzymology , Nitrogenous Group Transferases/metabolism , RNA, Transfer, Asn/metabolism , RNA, Transfer, Gln/metabolism , Asparagine/metabolism , Bacillus subtilis/enzymology , Glutamine/metabolism , Helicobacter pylori/enzymology
14.
Mol Cell ; 28(2): 228-39, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17964262

ABSTRACT

Asparagine, one of the 22 genetically encoded amino acids, can be synthesized by a tRNA-dependent mechanism. So far, this type of pathway was believed to proceed via two independent steps. A nondiscriminating aspartyl-tRNA synthetase (ND-DRS) first generates a mischarged aspartyl-tRNAAsn that dissociates from the enzyme and binds to a tRNA-dependent amidotransferase (AdT), which then converts the tRNA-bound aspartate into asparagine. We show herein that the ND-DRS, tRNAAsn, and AdT assemble into a specific ribonucleoprotein complex called transamidosome that remains stable during the overall catalytic process. Our results indicate that the tRNAAsn-mediated linkage between the ND-DRS and AdT enables channeling of the mischarged aspartyl-tRNAAsn intermediate between DRS and AdT active sites to prevent challenging of the genetic code integrity. We propose that formation of a ribonucleoprotein is a general feature for tRNA-dependent amino acid biosynthetic pathways that are remnants of earlier stages when amino acid synthesis and tRNA aminoacylation were coupled.


Subject(s)
Asparagine/biosynthesis , Aspartate-tRNA Ligase/metabolism , Nitrogenous Group Transferases/metabolism , Protein Biosynthesis , RNA, Transfer, Amino Acyl/metabolism , RNA, Transfer, Asn/metabolism , Ribonucleoproteins/metabolism , Thermus thermophilus/metabolism , Aspartate-tRNA Ligase/chemistry , Catalysis , Kinetics , Macromolecular Substances/metabolism , Models, Molecular , Molecular Weight , Nitrogenous Group Transferases/chemistry , Nucleic Acid Conformation , Protein Binding , Protein Conformation , RNA, Transfer, Amino Acyl/chemistry , RNA, Transfer, Asn/chemistry , Ribonucleoproteins/chemistry , Thermus thermophilus/enzymology , Thermus thermophilus/genetics
15.
Nucleic Acids Res ; 35(10): 3420-30, 2007.
Article in English | MEDLINE | ID: mdl-17478519

ABSTRACT

In most prokaryotes Asn-tRNA(Asn) and Gln-tRNA(Gln) are formed by amidation of aspartate and glutamate mischarged onto tRNA(Asn) and tRNA(Gln), respectively. Coexistence in the organism of mischarged Asp-tRNA(Asn) and Glu-tRNA(Gln) and the homologous Asn-tRNA(Asn) and Gln-tRNA(Gln) does not, however, lead to erroneous incorporation of Asp and Glu into proteins, since EF-Tu discriminates the misacylated tRNAs from the correctly charged ones. This property contrasts with the canonical function of EF-Tu, which is to non-specifically bind the homologous aa-tRNAs, as well as heterologous species formed in vitro by aminoacylation of non-cognate tRNAs. In Thermus thermophilus that forms the Asp-tRNA(Asn) intermediate by the indirect pathway of tRNA asparaginylation, EF-Tu must discriminate the mischarged aminoacyl-tRNAs (aa-tRNA). We show that two base pairs in the tRNA T-arm and a single residue in the amino acid binding pocket of EF-Tu promote discrimination of Asp-tRNA(Asn) from Asn-tRNA(Asn) and Asp-tRNA(Asp) by the protein. Our analysis suggests that these structural elements might also contribute to rejection of other mischarged aa-tRNAs formed in vivo that are not involved in peptide elongation. Additionally, these structural features might be involved in maintaining a delicate balance of weak and strong binding affinities between EF-Tu and the amino acid and tRNA moieties of other elongator aa-tRNAs.


Subject(s)
Codon , Peptide Elongation Factor Tu/chemistry , RNA, Transfer, Amino Acyl/chemistry , RNA, Transfer, Asn/chemistry , Transfer RNA Aminoacylation , Base Pairing , Escherichia coli Proteins/metabolism , Models, Molecular , Peptide Elongation Factor Tu/metabolism , Protein Binding , RNA, Transfer, Amino Acyl/metabolism , RNA, Transfer, Asn/metabolism , RNA, Transfer, Asp/chemistry , RNA, Transfer, Asp/metabolism , Thermus thermophilus/genetics
16.
J Enzyme Inhib Med Chem ; 22(1): 77-82, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17373551

ABSTRACT

Asparaginyl-tRNA formation in Pseudomonas aeruginosa PAO1 involves a nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) which forms Asp-tRNA(Asp) and Asp-tRNA(Asn), and a tRNA-dependent amidotransferase which transamidates the latter into Asn-tRNA(Asn). We report here that the inhibition of this ND-AspRS by L-aspartol adenylate (Asp-ol-AMP), a stable analog of the natural reaction intermediate L-aspartyl adenylate, is biphasic because the aspartylation of the two tRNA substrates of ND-AspRS, tRNA(Asp) and tRNA(Asn), are inhibited with different Ki values (41 microM and 215 microM, respectively). These results reveal that the two tRNA substrates of ND-AspRS interact differently with its active site. Yeast tRNA(Asp) transcripts with some identity elements replaced by those of tRNA(Asn) have their aspartylation inhibited with Ki values different from that for the wild-type transcript. Therefore, aminoacyl adenylate analogs, which are competitive inhibitors of their cognate aminoacyl-tRNA synthetase, can be used to probe rapidly the role of various structural elements in positioning the tRNA acceptor end in the active site.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Aspartate-tRNA Ligase/antagonists & inhibitors , Aspartic Acid/analogs & derivatives , Enzyme Inhibitors/pharmacology , RNA, Transfer, Asn/metabolism , RNA, Transfer, Asp/metabolism , Adenosine Monophosphate/pharmacology , Aspartic Acid/pharmacology , Base Sequence , Binding Sites , DNA Primers , Nucleic Acid Conformation , RNA, Transfer, Asn/chemistry , RNA, Transfer, Asp/chemistry
17.
Nucleic Acids Res ; 34(21): 6083-94, 2006.
Article in English | MEDLINE | ID: mdl-17074748

ABSTRACT

In many prokaryotes and in organelles asparagine and glutamine are formed by a tRNA-dependent amidotransferase (AdT) that catalyzes amidation of aspartate and glutamate, respectively, mischarged on tRNAAsn and tRNAGln. These pathways supply the deficiency of the organism in asparaginyl- and glutaminyl-tRNA synthtetases and provide the translational machinery with Asn-tRNAAsn and Gln-tRNAGln. So far, nothing is known about the structural elements that confer to tRNA the role of a specific cofactor in the formation of the cognate amino acid. We show herein, using aspartylated tRNAAsn and tRNAAsp variants, that amidation of Asp acylating tRNAAsn is promoted by the base pair U1-A72 whereas the G1-C72 pair and presence of the supernumerary nucleotide U20A in the D-loop of tRNAAsp prevent amidation. We predict, based on comparison of tRNAGln and tRNAGlu sequence alignments from bacteria using the AdT-dependent pathway to form Gln-tRNAGln, that the same combination of nucleotides also rules specific tRNA-dependent formation of Gln. In contrast, we show that the tRNA-dependent conversion of Asp into Asn by archaeal AdT is mainly mediated by nucleotides G46 and U47 of the variable region. In the light of these results we propose that bacterial and archaeal AdTs use kingdom-specific signals to catalyze the tRNA-dependent formations of Asn and Gln.


Subject(s)
Asparagine/biosynthesis , Neisseria meningitidis/enzymology , Nitrogenous Group Transferases/metabolism , RNA, Bacterial/chemistry , RNA, Transfer/chemistry , Adenine/chemistry , Base Sequence , Kinetics , Nitrogenous Group Transferases/chemistry , RNA, Archaeal/chemistry , RNA, Archaeal/metabolism , RNA, Bacterial/metabolism , RNA, Transfer/metabolism , RNA, Transfer, Asn/chemistry , RNA, Transfer, Asn/metabolism , RNA, Transfer, Asp/chemistry , RNA, Transfer, Asp/metabolism , RNA, Transfer, Gln/chemistry , RNA, Transfer, Gln/metabolism , RNA, Transfer, Glu/chemistry , RNA, Transfer, Glu/metabolism , Sequence Alignment , Species Specificity , Substrate Specificity , Uridine/chemistry
18.
J Mol Biol ; 360(2): 329-42, 2006 Jul 07.
Article in English | MEDLINE | ID: mdl-16753178

ABSTRACT

Asparaginyl-tRNA synthetase (AsnRS) is a member of the class-II aminoacyl-tRNA synthetases, and is responsible for catalyzing the specific aminoacylation of tRNA(Asn) with asparagine. Here, the crystal structure of AsnRS from Pyrococcus horikoshii, complexed with asparaginyl-adenylate (Asn-AMP), was determined at 1.45 A resolution, and those of free AsnRS and AsnRS complexed with an Asn-AMP analog (Asn-SA) were solved at 1.98 and 1.80 A resolutions, respectively. All of the crystal structures have many solvent molecules, which form a network of hydrogen-bonding interactions that surrounds the entire AsnRS molecule. In the AsnRS/Asn-AMP complex (or the AsnRS/Asn-SA), one side of the bound Asn-AMP (or Asn-SA) is completely covered by the solvent molecules, which complement the binding site. In particular, two of these water molecules were found to interact directly with the asparagine amide and carbonyl groups, respectively, and to contribute to the formation of a pocket highly complementary to the asparagine side-chain. Thus, these two water molecules appear to play a key role in the strict recognition of asparagine and the discrimination against aspartic acid by the AsnRS. This water-assisted asparagine recognition by the AsnRS strikingly contrasts with the fact that the aspartic acid recognition by the closely related aspartyl-tRNA synthetase is achieved exclusively through extensive interactions with protein amino acid residues. Furthermore, based on a docking model of AsnRS and tRNA, a single arginine residue (Arg83) in the AsnRS was postulated to be involved in the recognition of the third position of the tRNA(Asn) anticodon (U36). We performed a mutational analysis of this particular arginine residue, and confirmed its significance in the tRNA recognition.


Subject(s)
Asparagine/metabolism , Aspartate-tRNA Ligase/metabolism , Pyrococcus horikoshii/enzymology , RNA, Transfer, Amino Acyl/metabolism , Water/pharmacology , Adenosine Monophosphate/metabolism , Amino Acid Sequence , Aminoacylation , Asparagine/chemistry , Aspartate-tRNA Ligase/chemistry , Binding Sites/genetics , Crystallography, X-Ray , Escherichia coli/enzymology , Models, Molecular , Molecular Sequence Data , Protein Conformation , RNA, Transfer, Amino Acyl/chemistry , RNA, Transfer, Asn/metabolism , Sequence Alignment , Substrate Specificity/drug effects , Thermus thermophilus/enzymology , Water/chemistry
19.
J Bacteriol ; 188(1): 269-74, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16352843

ABSTRACT

In many organisms, the formation of asparaginyl-tRNA is not done by direct aminoacylation of tRNA(Asn) but by specific tRNA-dependent transamidation of aspartyl-tRNA(Asn). This transamidation pathway involves a nondiscriminating aspartyl-tRNA synthetase (AspRS) that charges both tRNA(Asp) and tRNA(Asn) with aspartic acid. Recently, it has been shown for the first time in an organism (Pseudomonas aeruginosa PAO1) that the transamidation pathway is the only route of synthesis of Asn-tRNA(Asn) but does not participate in Gln-tRNA(Gln) formation. P. aeruginosa PAO1 has a nondiscriminating AspRS. We report here the identification of two residues in the anticodon recognition domain (H31 and G83) which are implicated in the recognition of tRNA(Asn). Sequence comparisons of putative discriminating and nondiscriminating AspRSs (based on the presence or absence of the AdT operon and of AsnRS) revealed that bacterial nondiscriminating AspRSs possess a histidine at position 31 and usually a glycine at position 83, whereas discriminating AspRSs possess a leucine at position 31 and a residue other than a glycine at position 83. Mutagenesis of these residues of P. aeruginosa AspRS from histidine to leucine and from glycine to lysine increased the specificity of tRNA(Asp) charging over that of tRNA(Asn) by 3.5-fold and 4.2-fold, respectively. Thus, we show these residues to be determinants of the relaxed specificity of this nondiscriminating AspRS. Using available crystallographic data, we found that the H31 residue could interact with the central bases of the anticodons of the tRNA(Asp) and tRNA(Asn). Therefore, these two determinants of specificity of P. aeruginosa AspRS could be important for all bacterial AspRSs.


Subject(s)
Aspartate-tRNA Ligase/chemistry , Aspartate-tRNA Ligase/metabolism , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa/enzymology , RNA, Transfer, Asn/metabolism , Amino Acid Sequence , Amino Acid Substitution , Anticodon , Aspartate-tRNA Ligase/genetics , Base Sequence , Models, Molecular , Molecular Sequence Data , Pseudomonas aeruginosa/genetics , Sequence Alignment , Substrate Specificity
20.
J Biol Chem ; 280(21): 20638-41, 2005 May 27.
Article in English | MEDLINE | ID: mdl-15781458

ABSTRACT

Most prokaryotes require Asp-tRNA(Asn) for the synthesis of Asn-tRNA(Asn). This misacylated tRNA species is synthesized by a non-discriminating aspartyl-tRNA synthetase (AspRS) that acylates both tRNA(Asp) and tRNA(Asn) with aspartate. In contrast, a discriminating AspRS forms only Asp-tRNA(Asp). Here we show that a conserved proline (position 77) in the L1 loop of the non-discriminating Deinococcus radiodurans AspRS2 is required for tRNA(Asn) recognition in vivo. Escherichia coli trpA34 was transformed with DNA from a library of D. radiodurans aspS2 genes with a randomized codon 77 and then subjected to in vivo selection for Asp-tRNA(Asn) formation by growth in minimal medium. Only proline codons were found at position 77 in the aspS2 genes isolated from 21 of the resulting viable colonies. However, when the aspS temperature-sensitive E. coli strain CS89 was transformed with the same DNA library and then screened for Asp-tRNA(Asp) formation in vivo by growth at the non-permissive temperature, codons for seven other amino acids besides proline were identified at position 77 in the isolates examined. Thus, replacement of proline 77 by cysteine, isoleucine, leucine, lysine, phenylalanine, serine, or valine resulted in mutant D. radiodurans AspRS2 enzymes still capable of forming Asp-tRNA(Asp) but unable to recognize tRNA(Asn). This strongly suggests that proline 77 is responsible for the non-discriminatory tRNA recognition properties of this enzyme.


Subject(s)
Aspartate-tRNA Ligase/chemistry , Aspartate-tRNA Ligase/metabolism , Conserved Sequence , Proline/chemistry , RNA, Transfer, Asn/metabolism , Acylation , Amino Acid Sequence , Anticodon , Aspartate-tRNA Ligase/genetics , Aspartic Acid/metabolism , Binding Sites , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Deinococcus/enzymology , Escherichia coli/genetics , Gene Expression , Molecular Sequence Data , Mutagenesis , Protein Conformation , Recombinant Proteins , Sequence Alignment , Structure-Activity Relationship , Substrate Specificity , Transformation, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...