Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
1.
Int J Mol Sci ; 23(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35409407

ABSTRACT

The Saccharomyces cerevisiae Trm11 and Trm112 complex (Trm11-Trm112) methylates the 2-amino group of guanosine at position 10 in tRNA and forms N2-methylguanosine. To determine the elements required in tRNA for methylation by Trm11-Trm112, we prepared 60 tRNA transcript variants and tested them for methylation by Trm11-Trm112. The results show that the precursor tRNA is not a substrate for Trm11-Trm112. Furthermore, the CCA terminus is essential for methylation by Trm11-Trm112, and Trm11-Trm112 also only methylates tRNAs with a regular-size variable region. In addition, the G10-C25 base pair is required for methylation by Trm11-Trm112. The data also demonstrated that Trm11-Trm112 recognizes the anticodon-loop and that U38 in tRNAAla acts negatively in terms of methylation. Likewise, the U32-A38 base pair in tRNACys negatively affects methylation. The only exception in our in vitro study was tRNAValAAC1. Our experiments showed that the tRNAValAAC1 transcript was slowly methylated by Trm11-Trm112. However, position 10 in this tRNA was reported to be unmodified G. We purified tRNAValAAC1 from wild-type and trm11 gene deletion strains and confirmed that a portion of tRNAValAAC1 is methylated by Trm11-Trm112 in S. cerevisiae. Thus, our study explains the m2G10 modification pattern of all S. cerevisiae class I tRNAs and elucidates the Trm11-Trm112 binding sites.


Subject(s)
Methyltransferases , Saccharomyces cerevisiae Proteins , Guanine/metabolism , Methylation , Methyltransferases/metabolism , Nucleic Acid Conformation , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Transfer, Val/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
2.
Nucleic Acids Res ; 49(22): 13045-13061, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34871455

ABSTRACT

Dnmt2, a member of the DNA methyltransferase superfamily, catalyzes the formation of 5-methylcytosine at position 38 in the anticodon loop of tRNAs. Dnmt2 regulates many cellular biological processes, especially the production of tRNA-derived fragments and intergenerational transmission of paternal metabolic disorders to offspring. Moreover, Dnmt2 is closely related to human cancers. The tRNA substrates of mammalian Dnmt2s are mainly detected using bisulfite sequencing; however, we lack supporting biochemical data concerning their substrate specificity or recognition mechanism. Here, we deciphered the tRNA substrates of human DNMT2 (hDNMT2) as tRNAAsp(GUC), tRNAGly(GCC) and tRNAVal(AAC). Intriguingly, for tRNAAsp(GUC) and tRNAGly(GCC), G34 is the discriminator element; whereas for tRNAVal(AAC), the inosine modification at position 34 (I34), which is formed by the ADAT2/3 complex, is the prerequisite for hDNMT2 recognition. We showed that the C32U33(G/I)34N35 (C/U)36A37C38 motif in the anticodon loop, U11:A24 in the D stem, and the correct size of the variable loop are required for Dnmt2 recognition of substrate tRNAs. Furthermore, mammalian Dnmt2s possess a conserved tRNA recognition mechanism.


Subject(s)
5-Methylcytosine/metabolism , Anticodon/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , RNA, Transfer/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Animals , Anticodon/genetics , Base Sequence , DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA (Cytosine-5-)-Methyltransferases/genetics , HEK293 Cells , HeLa Cells , Humans , Inosine/metabolism , Mice , Models, Molecular , NIH 3T3 Cells , Nucleic Acid Conformation , Protein Binding , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer, Asp/chemistry , RNA, Transfer, Asp/genetics , RNA, Transfer, Asp/metabolism , RNA, Transfer, Gly/chemistry , RNA, Transfer, Gly/genetics , RNA, Transfer, Gly/metabolism , RNA, Transfer, Val/chemistry , RNA, Transfer, Val/genetics , RNA, Transfer, Val/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Substrate Specificity
3.
RNA ; 27(11): 1330-1338, 2021 11.
Article in English | MEDLINE | ID: mdl-34315814

ABSTRACT

During protein synthesis on ribosome, tRNA recognizes its cognate codon of mRNA through base-pairing with the anticodon. The 5'-end nucleotide of the anticodon is capable of wobble base-pairing, offering a molecular basis for codon degeneracy. The wobble nucleotide is often targeted for post-transcriptional modification, which affects the specificity and fidelity of the decoding process. Flipping-out of a wobble nucleotide in the anticodon loop has been proposed to be necessary for modifying enzymes to access the target nucleotide, which has been captured in selective structures of protein-bound complexes. Meanwhile, all other structures of free or ribosome-bound tRNA display anticodon bases arranged in stacked conformation. We report the X-ray crystal structure of unbound tRNAVal1 to a 2.04 Å resolution showing two different conformational states of wobble uridine in the anticodon loop, one stacked on the neighboring base and the other swiveled out toward solvent. In addition, the structure reveals a rare magnesium ion coordination to the nitrogen atom of a nucleobase, which has been sampled very rarely among known structures of nucleic acids.


Subject(s)
Anticodon/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , RNA, Transfer, Val/metabolism , Ribosomes/metabolism , Anticodon/chemistry , Anticodon/genetics , Base Pairing , Escherichia coli/genetics , Escherichia coli/metabolism , Metals/metabolism , Models, Molecular , Nucleic Acid Conformation , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Transfer, Val/chemistry , RNA, Transfer, Val/genetics , Ribosomes/genetics
4.
RNA ; 27(1): 27-39, 2021 01.
Article in English | MEDLINE | ID: mdl-33008837

ABSTRACT

Viruses commonly use specifically folded RNA elements that interact with both host and viral proteins to perform functions important for diverse viral processes. Examples are found at the 3' termini of certain positive-sense ssRNA virus genomes where they partially mimic tRNAs, including being aminoacylated by host cell enzymes. Valine-accepting tRNA-like structures (TLSVal) are an example that share some clear homology with canonical tRNAs but have several important structural differences. Although many examples of TLSVal have been identified, we lacked a full understanding of their structural diversity and phylogenetic distribution. To address this, we undertook an in-depth bioinformatic and biochemical investigation of these RNAs, guided by recent high-resolution structures of a TLSVal We cataloged many new examples in plant-infecting viruses but also in unrelated insect-specific viruses. Using biochemical and structural approaches, we verified the secondary structure of representative TLSVal substrates and tested their ability to be valylated, confirming previous observations of structural heterogeneity within this class. In a few cases, large stem-loop structures are inserted within variable regions located in an area of the TLS distal to known host cell factor binding sites. In addition, we identified one virus whose TLS has switched its anticodon away from valine, causing a loss of valylation activity; the implications of this remain unclear. These results refine our understanding of the structural and functional mechanistic details of tRNA mimicry and how this may be used in viral infection.


Subject(s)
Genetic Variation , Insect Viruses/genetics , Phylogeny , Plant Viruses/genetics , RNA, Transfer, Val/chemistry , RNA, Viral/chemistry , Anticodon/chemistry , Anticodon/metabolism , Base Sequence , Binding Sites , Computational Biology , Insect Viruses/classification , Insect Viruses/metabolism , Models, Molecular , Molecular Mimicry , Plant Viruses/classification , Plant Viruses/metabolism , RNA Folding , RNA, Transfer, Val/genetics , RNA, Transfer, Val/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Sequence Homology, Nucleic Acid , Valine/metabolism
5.
Nucleic Acids Res ; 48(7): e41, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32083657

ABSTRACT

RNAs are post-transcriptionally modified by dedicated writer or eraser enzymes that add or remove specific modifications, respectively. Mass spectrometry (MS) of RNA is a useful tool to study the modification state of an oligonucleotide (ON) in a sensitive manner. Here, we developed an ion-pairing reagent free chromatography for positive ion detection of ONs by low- and high-resolution MS, which does not interfere with other types of small compound analyses done on the same instrument. We apply ON-MS to determine the ONs from an RNase T1 digest of in vitro transcribed tRNA, which are purified after ribozyme-fusion transcription by automated size exclusion chromatography. The thus produced tRNAValAAC is substrate of the human tRNA ADAT2/3 enzyme and we confirm the deamination of adenosine to inosine and the formation of tRNAValIACin vitro by ON-MS. Furthermore, low resolution ON-MS is used to monitor the demethylation of ONs containing 1-methyladenosine by bacterial AlkB in vitro. The power of high-resolution ON-MS is demonstrated by the detection and mapping of modified ONs from native total tRNA digested with RNase T1. Overall, we present an oligonucleotide MS method which is broadly applicable to monitor in vitro RNA (de-)modification processes and native RNA.


Subject(s)
Mass Spectrometry , Oligonucleotides/analysis , RNA Processing, Post-Transcriptional , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine Deaminase/metabolism , Chromatography, Gel , HEK293 Cells , HeLa Cells , Humans , Mixed Function Oxygenases/metabolism , Oligonucleotides/isolation & purification , RNA, Transfer/biosynthesis , RNA, Transfer/isolation & purification , RNA, Transfer, Val/chemistry , RNA, Transfer, Val/metabolism , RNA-Binding Proteins/metabolism , Ribonuclease T1/metabolism
6.
Cancer Lett ; 457: 60-73, 2019 08 10.
Article in English | MEDLINE | ID: mdl-31078732

ABSTRACT

tRNA-derived fragments offer a recently identified group of non-coding single-stranded RNAs that are often as abundant as microRNAs in cancer cells and play important roles in carcinogenesis. However, the biological functions of them in breast cancer are still unclear. Hence, we focused on investigating whether tiRNAs could play a key role in the progression of breast cancer. We have identified 5'-tiRNAVal with significantly low expression in breast cancer tissues. The down-regulation of serum 5'-tiRNAVal was positively correlated with stage progression and lymph node metastasis. Overexpression of 5'-tiRNAVal suppressed cells malignant activities. FZD3 was confirmed to be a direct target of 5'-tiRNAVal in breast cancer. In addition, FZD3, ß-Catenin, c-myc and cyclinD1 levels in 5'-tiRNAVal overexpressing cells were downregulated while APC was inversely upregulated. Moreover, 5'-tiRNAVal inhibited the FZD3-mediated Wnt/ß-Catenin signaling pathway in breast cancer cells. Finally, 5'-tiRNAVal levels differentiated breast cancer from healthy controls with a sensitivity of 90.0% and specificity of 62.7%. This is the first study to show that 5'-tiRNAVal as a new tumor-suppressor through inhibition of FZD3/Wnt/ß-Catenin signaling pathway, which could be as a potential diagnostic biomarker for breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Frizzled Receptors/metabolism , RNA, Transfer, Val/metabolism , Wnt Signaling Pathway , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Movement , Cell Proliferation , Cyclin D1/genetics , Cyclin D1/metabolism , Down-Regulation , Female , Frizzled Receptors/genetics , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , MCF-7 Cells , Middle Aged , Neoplasm Staging , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Transfer, Val/genetics , beta Catenin/genetics , beta Catenin/metabolism
7.
PLoS One ; 14(1): e0210143, 2019.
Article in English | MEDLINE | ID: mdl-30699208

ABSTRACT

Cystoseira is a common brown algal genus widely distributed throughout the Atlantic and Mediterranean regions whose taxonomical assignment of specimens is often hampered by intra- and interspecific morphological variability. In this study, three mitochondrial regions, namely cytochrome oxidase subunit 1 (COI), 23S rDNA (23S), and 23S-tRNAVal intergenic spacer (mt-spacer) were used to analyse the phylogenetic relationships of 22 Cystoseira taxa (n = 93 samples). A total of 135 sequences (48 from COI, 43 from 23S and 44 from mt-spacer) were newly generated and analysed together with Cystoseira sequences (9 COI, 31 23S and 35 mt-spacer) from other authors. Phylogenetic analysis of these three markers identified 3 well-resolved clades and also corroborated the polyphyletic nature of the genus. The resolution of Cystoseira taxa within the three clades improves significantly when the inclusion of specimens of related genera was minimized. COI and mt-spacer markers resolved the phylogeny of some of the Cystoseira taxa, such as the C. baccata, C. foeniculacea and C. usneoides. Furthermore, trends between phylogeny, embryonic development and available chemotaxonomic classifications were identified, showing that phylogenetic, chemical and morphological data should be taken into account to study the evolutionary relationships among the algae currently classified as Cystoseira. The resolution of Cystoseira macroalgae into three well supported clades achieved here is relevant for a more accurate isolation and identification of natural compounds and the implementation of conservation measures for target species.


Subject(s)
DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Phaeophyceae/classification , Phylogeny , Atlantic Ocean , DNA, Ribosomal/genetics , Mediterranean Region , Phaeophyceae/genetics , RNA, Transfer, Val/genetics , Sequence Analysis, DNA
8.
RNA ; 25(4): 431-452, 2019 04.
Article in English | MEDLINE | ID: mdl-30659060

ABSTRACT

Noncanonical translation, and particularly initiation on non-AUG codons, are frequently used by viral and cellular mRNAs during virus infection and disease. The Sindbis virus (SINV) subgenomic mRNA (sgRNA) constitutes a unique model system to analyze the translation of a capped viral mRNA without the participation of several initiation factors. Moreover, sgRNA can initiate translation even when the AUG initiation codon is replaced by other codons. Using SINV replicons, we examined the efficacy of different codons in place of AUG to direct the synthesis of the SINV capsid protein. The substitution of AUG by CUG was particularly efficient in promoting the incorporation of leucine or methionine in similar percentages at the amino terminus of the capsid protein. Additionally, valine could initiate translation when the AUG is replaced by GUG. The ability of sgRNA to initiate translation on non-AUG codons was dependent on the integrity of a downstream stable hairpin (DSH) structure located in the coding region. The structural requirements of this hairpin to signal the initiation site on the sgRNA were examined in detail. Of interest, a virus bearing CUG in place of AUG in the sgRNA was able to infect cells and synthesize significant amounts of capsid protein. This virus infects the human haploid cell line HAP1 and the double knockout variant that lacks eIF2A and eIF2D. Collectively, these findings indicate that leucine-tRNA or valine-tRNA can participate in the initiation of translation of sgRNA by a mechanism dependent on the DSH. This mechanism does not involve the action of eIF2, eIF2A, or eIF2D.


Subject(s)
Codon, Initiator/genetics , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Viral/genetics , Signal Transduction/genetics , Sindbis Virus/genetics , Capsid Proteins/biosynthesis , Capsid Proteins/genetics , Cell Line, Tumor , Codon, Initiator/metabolism , Eukaryotic Initiation Factor-2/deficiency , Eukaryotic Initiation Factor-2/genetics , Fibroblasts/metabolism , Fibroblasts/virology , Gene Expression Regulation , Haploidy , Host-Pathogen Interactions/genetics , Humans , Inverted Repeat Sequences , Leucine/genetics , Leucine/metabolism , Methionine/genetics , Methionine/metabolism , Nucleic Acid Conformation , RNA, Messenger/metabolism , RNA, Transfer, Leu/genetics , RNA, Transfer, Leu/metabolism , RNA, Transfer, Val/genetics , RNA, Transfer, Val/metabolism , RNA, Viral/metabolism , Replicon , Sindbis Virus/metabolism , Valine/genetics , Valine/metabolism
9.
Biochemistry ; 57(39): 5641-5647, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30199619

ABSTRACT

Inosine at the "wobble" position (I34) is one of the few essential posttranscriptional modifications in tRNAs (tRNAs). It results from the deamination of adenosine and occurs in bacteria on tRNAArgACG and in eukarya on six or seven additional tRNA substrates. Because inosine is structurally a guanosine analogue, reverse transcriptases recognize it as a guanosine. Most methods used to examine the presence of inosine rely on this phenomenon and detect the modified base as a change in the DNA sequence that results from the reverse transcription reaction. These methods, however, cannot always be applied to tRNAs because reverse transcription can be compromised by the presence of other posttranscriptional modifications. Here we present SL-ID (splinted ligation-based inosine detection), a reverse transcription-free method for detecting inosine based on an I34-dependent specific cleavage of tRNAs by endonuclease V, followed by a splinted ligation and polyacrylamide gel electrophoresis analysis. We show that the method can detect I34 on different tRNA substrates and can be applied to total RNA derived from different species, cell types, and tissues. Here we apply the method to solve previous controversies regarding the modification status of mammalian tRNAArgACG.


Subject(s)
Deoxyribonuclease IV (Phage T4-Induced)/chemistry , Electrophoresis, Polyacrylamide Gel/methods , Inosine/analysis , Oligodeoxyribonucleotides/chemistry , RNA, Transfer, Arg/chemistry , RNA, Transfer, Val/chemistry , Animals , Base Sequence , HEK293 Cells , HeLa Cells , Humans , Inosine/genetics , Mice , Nucleic Acid Hybridization , Oligodeoxyribonucleotides/genetics , RNA, Transfer, Arg/genetics , RNA, Transfer, Val/genetics
10.
Article in English | MEDLINE | ID: mdl-29594068

ABSTRACT

We recently identified and described a putative prophage on the genomic island FhaGI-1 located within the genome of Francisella hispaniensis AS02-814 (F. tularensis subsp. novicida-like 3523). In this study, we constructed two variants of a Francisella phage integration vector, called pFIV1-Val and pFIV2-Val (Francisella Integration Vector-tRNAVal-specific), using the attL/R-sites and the site-specific integrase (FN3523_1033) of FhaGI-1, a chloramphenicol resistance cassette and a sacB gene for counter selection of transformants against the vector backbone. We inserted the respective sites and genes into vector pUC57-Kana to allow for propagation in Escherichia coli. The constructs generated a circular episomal form in E. coli which could be used to transform Francisella spp. where FIV-Val stably integrated site specifically into the tRNAVal gene of the genome, whereas pUC57-Kana is lost due to counter selection. Functionality of the new vector was demonstrated by the successfully complementation of a Francisella mutant strain. The vectors were stable in vitro and during host-cell infection without selective pressure. Thus, the vectors can be applied as a further genetic tool in Francisella research, expanding the present genetic tools by an integrative element. This new element is suitable to perform long-term experiments with different Francisella species.


Subject(s)
Bacteriophages/genetics , Francisella/genetics , Genetic Vectors , Genomic Islands , Plasmids , Transformation, Bacterial , Chloramphenicol Resistance/genetics , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Francisella/growth & development , Francisella/virology , Francisella tularensis/genetics , Humans , Integrases/genetics , Mutation , RNA, Transfer, Val/genetics , Recombination, Genetic , U937 Cells
11.
Food Chem ; 239: 369-376, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28873581

ABSTRACT

Food authenticity is an issue of major concern for food authorities, as mislabeling represents one of the major commercial frauds. In this study, a novel PCR-RFLP protocol was developed as a tool to authenticate four shrimp products of commercial importance belonging to the family, Penaeidae, viz. Litopenaeus vannamei, Penaeus monodon, P. semisulcatus and Fenneropenaeus indicus. PCR amplification was performed targeting 16S rRNA/tRNAval region having an amplicon size of 530bp using the specific primers for shrimps, 16S-Cru4/16S-Cru3. Subsequent restriction analysis with a single restriction enzyme, Tsp5091, yielded distinct RFLP pattern for each species of shrimps having fragment sizes below 150bp. The unique RFLP patterns were also obtained in processed shrimp products without any degradation or alteration in the major fragments. The method was also validated with commercial shrimp products. Thus, the developed protocol can be performed within 8h using a single enzyme to authenticate four shrimp products of commercial significance.


Subject(s)
Penaeidae , Animals , India , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S , RNA, Transfer, Val
12.
BMJ Case Rep ; 20172017 Sep 11.
Article in English | MEDLINE | ID: mdl-28893805

ABSTRACT

We describe the case of a 40-year-old-man with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, with cardiomyopathy and severe heart failure. He had a mitochondrial transfer RNA (tRNA) mutation (m.1616A>G) of the (tRNA-Val) gene, and it was not found in MELAS syndrome ever before. The presence of this newly observed tRNA-Val mutation (m.1616A>G) may induce multiple respiratory chain enzyme deficiencies and contribute to MELAS syndrome symptoms that are associated with mitochondrial DNA (mtDNA) mutations. We report that the pathognomonic symptom in MELAS syndrome caused by this newly observed mtDNA mutation may be rapid progression of cardiomyopathy and severe heart failure.


Subject(s)
Cardiomyopathies/complications , DNA, Mitochondrial/genetics , Heart Failure/complications , MELAS Syndrome/genetics , Mitochondrial Diseases/enzymology , Mutation , RNA, Transfer, Val/genetics , Adult , Asian People/genetics , Cardiomyopathies/genetics , Diagnosis, Differential , Disease Progression , Fatal Outcome , Heart Failure/genetics , Humans , MELAS Syndrome/diagnosis , MELAS Syndrome/pathology , Male , Mitochondrial Diseases/genetics
13.
Oncogene ; 36(47): 6640-6648, 2017 11 23.
Article in English | MEDLINE | ID: mdl-28783176

ABSTRACT

Two proteins comprising the ZEB family of zinc finger transcription factors, ZEB1 and ZEB2, execute EMT programs in embryonic development and cancer. By studying regulation of their expression, we describe a novel mechanism that limits ZEB2 protein synthesis. A protein motif located at the border of the SMAD-binding domain of ZEB2 protein induces ribosomal pausing and compromises protein synthesis. The function of this protein motif is dependent on stretches of rare codons, Leu(UUA)-Gly(GGU)-Val(GUA). Incorporation of these triplets in the homologous region of ZEB1 does not affect protein translation. Our data suggest that rare codons have a regulatory role only if they are present within appropriate protein structures. We speculate that pools of transfer RNA available for protein translation impact on the configuration of epithelial mesenchymal transition pathways in tumor cells.


Subject(s)
Codon/genetics , Neoplasms/metabolism , Protein Biosynthesis/genetics , RNA, Transfer, Gly/metabolism , RNA, Transfer, Leu/metabolism , RNA, Transfer, Val/metabolism , Zinc Finger E-box Binding Homeobox 2/metabolism , Amino Acid Motifs/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Glycine/genetics , Humans , Leucine/genetics , Signal Transduction , Valine/genetics , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
14.
Biochemistry ; 56(31): 4029-4038, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28703578

ABSTRACT

Transfer RNAs (tRNAs) are among the most heavily modified RNA species. Posttranscriptional tRNA modifications (ptRMs) play fundamental roles in modulating tRNA structure and function and are being increasingly linked to human physiology and disease. Detection of ptRMs is often challenging, expensive, and laborious. Restriction fragment length polymorphism (RFLP) analyses study the patterns of DNA cleavage after restriction enzyme treatment and have been used for the qualitative detection of modified bases on mRNAs. It is known that some ptRMs induce specific and reproducible base "mutations" when tRNAs are reverse transcribed. For example, inosine, which derives from the deamination of adenosine, is detected as a guanosine when an inosine-containing tRNA is reverse transcribed, amplified via polymerase chain reaction (PCR), and sequenced. ptRM-dependent base changes on reverse transcription PCR amplicons generated as a consequence of the reverse transcription reaction might create or abolish endonuclease restriction sites. The suitability of RFLP for the detection and/or quantification of ptRMs has not been studied thus far. Here we show that different ptRMs can be detected at specific sites of different tRNA types by RFLP. For the examples studied, we show that this approach can reliably estimate the modification status of the sample, a feature that can be useful in the study of the regulatory role of tRNA modifications in gene expression.


Subject(s)
Adenosine Deaminase/metabolism , Models, Biological , Polymorphism, Restriction Fragment Length , RNA Processing, Post-Transcriptional , RNA, Transfer, Ala/metabolism , RNA, Transfer, Thr/metabolism , Adenosine/metabolism , Adenosine Deaminase/chemistry , Adenosine Deaminase/genetics , Amplified Fragment Length Polymorphism Analysis , Base Pairing , Computational Biology , Deamination , Expert Systems , HeLa Cells , Humans , Hydrogen-Ion Concentration , Inosine/metabolism , RNA Interference , RNA, Small Interfering/metabolism , RNA, Transfer, Ala/antagonists & inhibitors , RNA, Transfer, Thr/antagonists & inhibitors , RNA, Transfer, Val/antagonists & inhibitors , RNA, Transfer, Val/metabolism , Reverse Transcription , Substrate Specificity
15.
Mol Phylogenet Evol ; 114: 415-425, 2017 09.
Article in English | MEDLINE | ID: mdl-28606445

ABSTRACT

The number of species recognized in section Asperae of the flowering plant genus Hydrangea differs widely between subsequent revisions. This variation is largely centered around the H. aspera species complex, with numbers of recognized species varying from one to nearly a dozen. Despite indications of molecular variation in this complex, no sequence-based species delimitation methods have been employed to evaluate the primarily morphology-based species boundaries. In the present study, a multi-locus coalescent-based approach to species delimitation is employed in order to identify separate evolutionary lines within H. sect. Asperae, using four chloroplast and four nuclear molecular markers. Eight lineages were recovered within the focal group, of which five correspond with named morphotypes. The other three lineages illustrate types of conflict between molecular species delimitation and traditional morphology-based taxonomy. One molecular lineage comprises two named morphotypes, which possibly diverged recently enough to not have developed sufficient molecular divergence. A second conflict is found in H. strigosa. This morphotype is recovered as a separate lineage when occurring in geographic isolation, but when occurring in sympatry with two other morphotypes (H. aspera and H. robusta), the coalescent species delimitation lumps these taxa into a single putative species.


Subject(s)
Hydrangea/classification , Bayes Theorem , Chloroplasts/classification , Chloroplasts/genetics , DNA, Plant/chemistry , DNA, Plant/isolation & purification , DNA, Plant/metabolism , Hydrangea/anatomy & histology , Hydrangea/genetics , Microscopy, Electron, Scanning , Phylogeny , Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Quinone Reductases/classification , Quinone Reductases/genetics , RNA, Transfer, Val/classification , RNA, Transfer, Val/genetics
16.
RNA Biol ; 14(10): 1364-1373, 2017 10 03.
Article in English | MEDLINE | ID: mdl-27892771

ABSTRACT

Posttranscriptional processing of RNA molecules is a common strategy to enlarge the structural and functional repertoire of RNomes observed in all 3 domains of life. Fragmentation of RNA molecules of basically all functional classes has been reported to yield smaller non-protein coding RNAs (ncRNAs) that typically possess different roles compared with their parental transcripts. Here we show that a valine tRNA-derived fragment (Val-tRF) that is produced under certain stress conditions in the halophilic archaeon Haloferax volcanii is capable of binding to the small ribosomal subunit. As a consequence of Val-tRF binding mRNA is displaced from the initiation complex which results in global translation attenuation in vivo and in vitro. The fact that the archaeal Val-tRF also inhibits eukaryal as well as bacterial protein biosynthesis implies a functionally conserved mode of action. While tRFs and tRNA halves have been amply identified in recent RNA-seq project, Val-tRF described herein represents one of the first functionally characterized tRNA processing products to date.


Subject(s)
Haloferax volcanii/genetics , RNA, Messenger/metabolism , RNA, Transfer, Val/metabolism , Ribosomes/metabolism , Gene Expression Regulation, Archaeal , Haloferax volcanii/chemistry , Haloferax volcanii/metabolism , Models, Molecular , Protein Biosynthesis , RNA, Archaeal/metabolism , RNA, Messenger/chemistry , RNA, Transfer, Val/chemistry , Ribosomes/chemistry , Stress, Physiological
17.
Sci Rep ; 6: 20850, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26865164

ABSTRACT

Ischemic injuries will lead to necrotic tissue damage, and post-ischemia angiogenesis plays critical roles in blood flow restoration and tissue recovery. Recently, several types of small RNAs have been reported to be involved in this process. In this study, we first generated a rat brain ischemic model to investigate the involvement of new types of small RNAs in ischemia. We utilized deep sequencing and bioinformatics analyses to demonstrate that the level of small RNA fragments derived from tRNAs strikingly increased in the ischemic rat brain. Among these sequences, tRNA(Val)- and tRNA(Gly)-derived small RNAs account for the most abundant segments. The up-regulation of tRNA(Val)- and tRNA(Gly)-derived fragments was verified through northern blot and quantitative PCR analyses. The levels of these two fragments also increased in a mouse hindlimb ischemia model and cellular hypoxia model. Importantly, up-regulation of the tRNA(Val)- and tRNA(Gly)-derived fragments in endothelial cells inhibited cell proliferation, migration and tube formation. Furthermore, we showed that these small RNAs are generated by angiogenin cleavage. Our results indicate that tRNA-derived fragments are involved in tissue ischemia, and we demonstrate for the first time that tRNA(Val)- and tRNA(Gly)-derived fragments inhibit angiogenesis by modulating the function of endothelial cells.


Subject(s)
Brain Ischemia/genetics , Neovascularization, Physiologic/genetics , RNA, Small Untranslated/genetics , RNA, Transfer, Gly/genetics , RNA, Transfer, Val/genetics , Animals , Brain/blood supply , Brain/metabolism , Brain/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cell Hypoxia , Cell Movement , Cell Proliferation , Computational Biology , Gene Expression Regulation , Hindlimb/blood supply , Hindlimb/pathology , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Proteolysis , RNA Cleavage , RNA, Small Untranslated/metabolism , RNA, Transfer, Gly/metabolism , RNA, Transfer, Val/metabolism , Rats , Rats, Sprague-Dawley , Ribonuclease, Pancreatic/genetics , Ribonuclease, Pancreatic/metabolism , Signal Transduction
18.
Article in English | MEDLINE | ID: mdl-25097009

ABSTRACT

Diagnosis of hypertrophic cardiomyopathy (HCM) involved the screening for the candidate pathogenic mitochondrial DNA (mtDNA) mutations. However, a poor genotype to phenotype correction is common. Neutral polymorphisms in mt-tRNA gene are recognized as a potential cause for HCM. Thus, assigning the pathogenicity for mt-tRNA mutation is important for both clinical and genetic scientists when confronted with a disease exhibiting the clinical and biochemical features of mitochondrial dysfunction. In this report, we reassess the role of mt-tRNA(Val) 1628C > T mutation in HCM expression. We first carried out a systematic search in the published database, finding out the genotype and phenotype corrections for this mutation. Moreover, we perform a phylogenetic approach to see whether this mutation is conserved or not. Most strikingly, the 1628C > T mutation is not conserved and a slight change of entropy is observed between the wild type and the mutant carrying the 1628C > T mutation. Our data indicate that the 1628C > T transition should not be regarded as a mutation associated with HCM.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Mutation, Missense , RNA, Transfer, Val/genetics , Animals , Base Sequence , Conserved Sequence , Evolution, Molecular , Humans , Molecular Sequence Data , Sequence Alignment
19.
Int J Med Microbiol ; 305(8): 874-80, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26358917

ABSTRACT

Recently, we identified a putative prophage on a genomic island (GI) within the genome sequence of Francisella hispaniensis isolate AS0-814 (Francisella tularensis subsp. novicida-like 3523) by the analysis of the CRISPR-Cas systems of Francisella. Various spacer DNAs within the CRISPR region of different F. tularensis subsp. novicida strains were found to be homologous to the putative prophage (Schunder et al., 2013, Int. J. Med. Microbiol. 303:51-60). Now we identified the GI (FhaGI-1) as a mobile element which is able to form a circular episomal structure. The circular episomal form of FhaGI-1 is generated by F. hispaniensis, and the excision of the island is an integrase-dependent and site-specific process. Furthermore, we could demonstrate that the excision of the island is also possible in other bacterial species (Escherichia coli). In addition, we could show that a genetically generated small variant of the island is also functional and, after its electroporation into strain F. tularensis subsp. holarctica LVS, the GI was stable and site-specifically integrated into the genome of the transformants. The integrase is sufficient for the integration and excision of the small variant into and from the DNA backbone, respectively. Thus, the element may be suitable to be used as a genetic tool in F. tularensis research. Furthermore, we identified the tRNA(Val) gene of Francisella as an integration site for GIs. Genomic island FphGI-1 was identified in Francisella philomiragia ATCC 25016. We were not able to detect the episomal form of this GI, probably due to a mutated attR site. However, we could demonstrate that integrative GIs are present in Francisella and that they may allow horizontal gene transfer between different Francisella species.


Subject(s)
Francisella/genetics , Genomic Islands , Plasmids , Escherichia coli/genetics , Integrases/genetics , Integrases/metabolism , Interspersed Repetitive Sequences , Prophages/genetics , RNA, Transfer, Val/genetics , Recombination, Genetic
20.
Nucleic Acids Res ; 43(6): 3332-43, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25753665

ABSTRACT

Stabilization of the ribosomal complexes plays an important role in translational control. Mechanisms of ribosome stabilization have been studied in detail for initiation and elongation of eukaryotic translation, but almost nothing is known about stabilization of eukaryotic termination ribosomal complexes. Here, we present one of the mechanisms of fine-tuning of the translation termination process in eukaryotes. We show that certain deacylated tRNAs, remaining in the E site of the ribosome at the end of the elongation cycle, increase the stability of the termination and posttermination complexes. Moreover, only the part of eRF1 recognizing the stop codon is stabilized in the A site of the ribosome, and the stabilization is not dependent on the hydrolysis of peptidyl-tRNA. The determinants, defining this property of the tRNA, reside in the acceptor stem. It was demonstrated by site-directed mutagenesis of tRNA(Val) and construction of a mini-helix structure identical to the acceptor stem of tRNA. The mechanism of this stabilization is different from the fixation of the unrotated state of the ribosome by CCA end of tRNA or by cycloheximide in the E site. Our data allow to reveal the possible functions of the isodecoder tRNAs in eukaryotes.


Subject(s)
Peptide Chain Termination, Translational , RNA, Transfer/metabolism , Ribosomes/metabolism , Acylation , Animals , Codon, Terminator , Humans , Models, Molecular , Mutagenesis, Site-Directed , Nucleic Acid Conformation , Peptide Termination Factors/chemistry , Peptide Termination Factors/genetics , Peptide Termination Factors/metabolism , Protein Stability , RNA Stability , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer, Val/chemistry , RNA, Transfer, Val/genetics , RNA, Transfer, Val/metabolism , Rabbits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...