Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.793
Filter
1.
Mol Biol Rep ; 51(1): 707, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824255

ABSTRACT

BACKGROUND: Non-coding RNAs (ncRNAs) have a crucial impact on diverse cellular processes, influencing the progression of breast cancer (BC). The objective of this study was to identify novel ncRNAs in BC with potential effects on patient survival and disease progression. METHODS: We utilized the cancer genome atlas data to identify ncRNAs associated with BC pathogenesis. We explored the association between these ncRNA expressions and survival rates. A risk model was developed using candidate ncRNA expression and beta coefficients obtained from a multivariate Cox regression analysis. Co-expression networks were constructed to determine potential relationships between these ncRNAs and molecular pathways. For validation, we employed BC samples and the RT-qPCR method. RESULTS: Our findings revealed a noteworthy increase in the expression of AC093850.2 and CHCHD2P9 in BC, which was correlated with a poor prognosis. In contrast, ADAMTS9-AS1 and ZNF204P displayed significant downregulation and were associated with a favorable prognosis. The risk model, incorporating these four ncRNAs, robustly predicted patient survival. The co-expression network showed an effective association between levels of AC093850.2, CHCHD2P9, ADAMTS9-AS1, and ZNF204P and genes involved in pathways like metastasis, angiogenesis, metabolism, and DNA repair. The RT-qPCR results verified notable alterations in the expression of CHCHD2P9 and ZNF204P in BC samples. Pan-cancer analyses revealed alterations in the expression of these two ncRNAs across various cancer types. CONCLUSION: This study presents a groundbreaking discovery, highlighting the substantial dysregulation of CHCHD2P9 and ZNF204P in BC and other cancers, with implications for patient survival.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Female , Prognosis , Gene Expression Regulation, Neoplastic/genetics , Biomarkers, Tumor/genetics , Middle Aged , RNA, Untranslated/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Regulatory Networks , Gene Expression Profiling/methods , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Wiley Interdiscip Rev RNA ; 15(3): e1847, 2024.
Article in English | MEDLINE | ID: mdl-38702948

ABSTRACT

The mammalian genome encodes thousands of non-coding RNAs (ncRNAs), ranging in size from about 20 nucleotides (microRNAs or miRNAs) to kilobases (long non-coding RNAs or lncRNAs). ncRNAs contribute to a layer of gene regulation that could explain the evolution of massive phenotypic complexity even as the number of protein-coding genes remains unaltered. We propose that low conservation, poor expression, and highly restricted spatiotemporal expression patterns-conventionally considered ncRNAs may affect behavior through direct, rapid, and often sustained regulation of gene expression at the transcriptional, post-transcriptional, or translational levels. Besides these direct roles, their effect during neurodevelopment may manifest as behavioral changes later in the organism's life, especially when exposed to environmental cues like stress and seasonal changes. The lncRNAs affect behavior through diverse mechanisms like sponging of miRNAs, recruitment of chromatin modifiers, and regulation of alternative splicing. We highlight the need for synthesis between rigorously designed behavioral paradigms in model organisms and the wide diversity of behaviors documented by ethologists through field studies on organisms exquisitely adapted to their environmental niche. Comparative genomics and the latest advancements in transcriptomics provide an unprecedented scope for merging field and lab studies on model and non-model organisms to shed light on the role of ncRNAs in driving the behavioral responses of individuals and groups. We touch upon the technical challenges and contentious issues that must be resolved to fully understand the role of ncRNAs in regulating complex behavioral traits. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Subject(s)
RNA, Untranslated , Animals , RNA, Untranslated/metabolism , RNA, Untranslated/genetics , Humans , Behavior, Animal , Gene Expression Regulation
3.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791187

ABSTRACT

Non-coding RNAs (ncRNAs) represent a broad family of molecules that regulate gene expression, including microRNAs, long non-coding RNAs and circular RNAs, amongst others. Dysregulated expression of ncRNAs alters gene expression, which is implicated in the pathogenesis of several malignancies and inflammatory diseases. Gastric cancer is the fifth most frequently diagnosed cancer and the fourth most common cause of cancer-related death. Studies have found that altered expression of ncRNAs may contribute to tumourigenesis through regulating proliferation, apoptosis, drug resistance and metastasis. This review describes the potential use of ncRNAs as diagnostic and prognostic biomarkers. Moreover, we discuss the involvement of ncRNAs in the pathogenesis of gastric cancer, including their interactions with the members of major signalling pathways.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , RNA, Untranslated , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/etiology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Prognosis , Signal Transduction , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism
4.
Methods Mol Biol ; 2726: 255-284, 2024.
Article in English | MEDLINE | ID: mdl-38780735

ABSTRACT

Effective homology search for non-coding RNAs is frequently not possible via sequence similarity alone. Current methods leverage evolutionary information like structure conservation or covariance scores to identify homologs in organisms that are phylogenetically more distant. In this chapter, we introduce the theoretical background of evolutionary structure conservation and covariance score, and we show hands-on how current methods in the field are applied on example datasets.


Subject(s)
Computational Biology , Evolution, Molecular , Computational Biology/methods , Phylogeny , Algorithms , RNA, Untranslated/genetics , Conserved Sequence , Humans , Animals , Software , Sequence Alignment/methods
5.
Plant Physiol Biochem ; 211: 108718, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733939

ABSTRACT

Plant secondary metabolites (PSMs) are a large class of structurally diverse molecules, mainly consisting of terpenoids, phenolic compounds, and nitrogen-containing compounds, which play active roles in plant development and stress responses. The biosynthetic processes of PSMs are governed by a sophisticated regulatory network at multiple levels. Noncoding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) may serve as post-transcriptional regulators for plant secondary metabolism through acting on genes encoding either transcription factors or participating enzymes in relevant metabolic pathways. High-throughput sequencing technologies have facilitated the large-scale identifications of ncRNAs potentially involved in plant secondary metabolism in model plant species as well as certain species with enriched production of specific types of PSMs. Moreover, a series of miRNA-target modules have been functionally characterized to be responsible for regulating PSM biosynthesis and accumulation in plants under abiotic or biotic stresses. In this review, we will provide an overview of current findings on the ncRNA-mediated regulation of plant secondary metabolism with special attention to its participation in plant stress responses, and discuss possible issues to be addressed in future fundamental research and breeding practice.


Subject(s)
Plants , RNA, Plant , RNA, Untranslated , Secondary Metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Secondary Metabolism/genetics , Plants/metabolism , Plants/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
6.
Cell Death Dis ; 15(5): 357, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778030

ABSTRACT

As a newly identified regulated cell death, ferroptosis is a metabolically driven process that relies on iron and is associated with polyunsaturated fatty acyl peroxidation, elevated levels of reactive oxygen species (ROS), and mitochondrial damage. This distinct regulated cell death is dysregulated in various cancers; activating ferroptosis in malignant cells increases cancer immunotherapy and chemoradiotherapy responses across different malignancies. Over the last decade, accumulating research has provided evidence of cross-talk between non-coding RNAs (ncRNAs) and competing endogenous RNA (ceRNA) networks and highlighted their significance in developing and progressing malignancies. Aside from pharmaceutical agents to regulate ferroptosis, recent studies have shed light on the potential of restoring dysregulated ferroptosis-related ceRNA networks in cancer treatment. The present study provides a comprehensive and up-to-date review of the ferroptosis significance, ferroptosis pathways, the role of ferroptosis in cancer immunotherapy and chemoradiotherapy, ceRNA biogenesis, and ferroptosis-regulating ceRNA networks in different cancers. The provided insights can offer the authorship with state-of-the-art findings and future perspectives regarding the ferroptosis and ferroptosis-related ceRNA networks and their implication in the treatment and determining the prognosis of affected patients.


Subject(s)
Ferroptosis , Neoplasms , Ferroptosis/genetics , Humans , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Animals , Reactive Oxygen Species/metabolism , Gene Regulatory Networks , Gene Expression Regulation, Neoplastic , RNA, Competitive Endogenous
7.
Life Sci ; 348: 122717, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38744419

ABSTRACT

The loss or dysfunction of pancreatic ß-cells, which are responsible for insulin secretion, constitutes the foundation of all forms of diabetes, a widely prevalent disease worldwide. The replacement of damaged ß-cells with regenerated or transplanted cells derived from stem cells is a promising therapeutic strategy. However, inducing the differentiation of stem cells into fully functional glucose-responsive ß-cells in vitro has proven to be challenging. Noncoding RNAs (ncRNAs) have emerged as critical regulatory factors governing the differentiation, identity, and function of ß-cells. Furthermore, engineered hydrogel systems, biomaterials, and organ-like structures possess engineering characteristics that can provide a three-dimensional (3D) microenvironment that supports stem cell differentiation. This review summarizes the roles and contributions of ncRNAs in maintaining the differentiation, identity, and function of ß-cells. And it focuses on regulating the levels of ncRNAs in stem cells to activate ß-cell genetic programs for generating alternative ß-cells and discusses how to manipulate ncRNA expression by combining hydrogel systems and other tissue engineering materials. Elucidating the patterns of ncRNA-mediated regulation in ß-cell biology and utilizing this knowledge to control stem cell differentiation may offer promising therapeutic strategies for generating functional insulin-producing cells in diabetes cell replacement therapy and tissue engineering.


Subject(s)
Cell Differentiation , Insulin-Secreting Cells , RNA, Untranslated , Tissue Engineering , Insulin-Secreting Cells/metabolism , Tissue Engineering/methods , Humans , RNA, Untranslated/genetics , Animals , Cell Differentiation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Diabetes Mellitus/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/therapy , Hydrogels
8.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38717338

ABSTRACT

Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.


Subject(s)
DNA Helicases , Multifunctional Enzymes , RNA Helicases , RNA, Untranslated , Humans , Cell Nucleolus/metabolism , Cell Nucleolus/genetics , DNA Damage , DNA Helicases/metabolism , DNA Helicases/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Protein Aggregates , Proteostasis , R-Loop Structures/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
9.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(4): 430-434, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38813641

ABSTRACT

Hyperoxia-induced acute lung injury (HALI) is an important complication of clinical oxygen therapy, which is mainly characterized by acute respiratory distress syndrome (ARDS) in adults and broncho-pulmonary dysplasia (BPD) in infants. HALI seriously affects the prognosis and quality of life of patients, so it has received more and more attention. However, the pathogenesis of HALI is complex and unclear, and there is no clear treatment method at present. Non-coding RNA (ncRNA) is an important type of functional RNA transcriptome. Due to the lack of effective open reading frame, ncRNA does not have the function of coding proteins. However, ncRNA can still regulate gene expression at multiple levels and affect the occurrence and development of many diseases. In recent years, a large number of in vitro and in vivo studies have shown that ncRNA is involved in the pathogenesis of HALI and is of great significance. This article reviews the expression and significance of ncRNA in HALI, in order to provide new diagnosis and treatment ideas for the prevention and treatment of HALI.


Subject(s)
Acute Lung Injury , Hyperoxia , RNA, Untranslated , Humans , Hyperoxia/complications , Acute Lung Injury/etiology , Acute Lung Injury/genetics , Acute Lung Injury/therapy , RNA, Untranslated/genetics , Animals
10.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692564

ABSTRACT

Small non-coding 6S RNA mimics DNA promoters and binds to the σ70 holoenzyme of bacterial RNA polymerase (RNAP) to suppress transcription of various genes mainly during the stationary phase of cell growth or starvation. This inhibition can be relieved upon synthesis of short product RNA (pRNA) performed by RNAP from the 6S RNA template. Here, we have shown that pRNA synthesis depends on specific contacts of 6S RNA with RNAP and interactions of the σ finger with the RNA template in the active site of RNAP, and is also modulated by the secondary channel factors. We have adapted a molecular beacon assay with fluorescently labeled σ70 to analyze 6S RNA release during pRNA synthesis. We found the kinetics of 6S RNA release to be oppositely affected by mutations in the σ finger and in the CRE pocket of core RNAP, similarly to the reported role of these regions in promoter-dependent transcription. Secondary channel factors, DksA and GreB, inhibit pRNA synthesis and 6S RNA release from RNAP, suggesting that they may contribute to the 6S RNA-mediated switch in transcription during stringent response. Our results demonstrate that pRNA synthesis depends on a similar set of contacts between RNAP and 6S RNA as in the case of promoter-dependent transcription initiation and reveal that both processes can be regulated by universal transcription factors acting on RNAP.


Subject(s)
DNA-Directed RNA Polymerases , Escherichia coli Proteins , RNA, Bacterial , Sigma Factor , Transcription, Genetic , DNA-Directed RNA Polymerases/metabolism , Sigma Factor/metabolism , Sigma Factor/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , Promoter Regions, Genetic , RNA, Untranslated/metabolism , RNA, Untranslated/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Protein Binding , Transcriptional Elongation Factors
11.
BMC Genomics ; 25(1): 531, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816689

ABSTRACT

Non-coding RNAs (ncRNAs) are recognized as pivotal players in the regulation of essential physiological processes such as nutrient homeostasis, development, and stress responses in plants. Common methods for predicting ncRNAs are susceptible to significant effects of experimental conditions and computational methods, resulting in the need for significant investment of time and resources. Therefore, we constructed an ncRNA predictor(MFPINC), to predict potential ncRNA in plants which is based on the PINC tool proposed by our previous studies. Specifically, sequence features were carefully refined using variance thresholding and F-test methods, while deep features were extracted and feature fusion were performed by applying the GRU model. The comprehensive evaluation of multiple standard datasets shows that MFPINC not only achieves more comprehensive and accurate identification of gene sequences, but also significantly improves the expressive and generalization performance of the model, and MFPINC significantly outperforms the existing competing methods in ncRNA identification. In addition, it is worth mentioning that our tool can also be found on Github ( https://github.com/Zhenj-Nie/MFPINC ) the data and source code can also be downloaded for free.


Subject(s)
Computational Biology , RNA, Plant , RNA, Untranslated , RNA, Untranslated/genetics , RNA, Plant/genetics , Computational Biology/methods , Software , Plants/genetics , Algorithms , Sequence Analysis, RNA/methods
12.
Biomed Pharmacother ; 175: 116652, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692061

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (aHSCT) is utilized as a potential curative treatment for various hematologic malignancies. However, graft-versus-host disease (GVHD) post-aHSCT is a severe complication that significantly impacts patients' quality of life and overall survival, becoming a major cause of non-relapse mortality. In recent years, the association between epigenetics and GVHD has garnered increasing attention. Epigenetics focuses on studying mechanisms that affect gene expression without altering DNA sequences, primarily including DNA methylation, histone modifications, non-coding RNAs (ncRNAs) regulation, and RNA modifications. This review summarizes the role of epigenetic regulation in the pathogenesis of GVHD, with a focus on DNA methylation, histone modifications, ncRNA, RNA modifications and their involvement and applications in the occurrence and development of GVHD. It also highlights advancements in relevant diagnostic markers and drugs, aiming to provide new insights for the clinical diagnosis and treatment of GVHD.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Graft vs Host Disease/genetics , Humans , DNA Methylation/genetics , Hematopoietic Stem Cell Transplantation/adverse effects , Animals , RNA, Untranslated/genetics , Histones/metabolism
13.
Front Immunol ; 15: 1400744, 2024.
Article in English | MEDLINE | ID: mdl-38799446

ABSTRACT

Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths in the world. The development and progression of HCC are closely correlated with the abnormal regulation of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Important biological pathways in cancer biology, such as cell proliferation, death, and metastasis, are impacted by these ncRNAs, which modulate gene expression. The abnormal expression of non-coding RNAs in HCC raises the possibility that they could be applied as new biomarkers for diagnosis, prognosis, and treatment targets. Furthermore, by controlling the expression of cancer-related genes, miRNAs can function as either tumor suppressors or oncogenes. On the other hand, lncRNAs play a role in the advancement of cancer by interacting with other molecules within the cell, which, in turn, affects processes such as chromatin remodeling, transcription, and post-transcriptional processes. The importance of ncRNA-driven regulatory systems in HCC is being highlighted by current research, which sheds light on tumor behavior and therapy response. This research highlights the great potential of ncRNAs to improve patient outcomes in this difficult disease landscape by augmenting the present methods of HCC care through the use of precision medicine approaches.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/diagnosis , Prognosis , Biomarkers, Tumor/genetics , RNA, Untranslated/genetics , RNA, Long Noncoding/genetics , Animals , MicroRNAs/genetics
14.
Pathol Res Pract ; 258: 155329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692083

ABSTRACT

Fibrosarcoma is a challenging cancer originating from fibrous tissues, marked by aggressive growth and limited treatment options. The discovery of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small interfering RNAs (siRNAs), has opened new pathways for understanding and treating this malignancy. These ncRNAs play crucial roles in gene regulation, cellular processes, and the tumor microenvironment. This review aims to explore the impact of ncRNAs on fibrosarcoma's pathogenesis, progression, and resistance to treatment, focusing on their mechanistic roles and therapeutic potential. A comprehensive review of literature from databases like PubMed and Google Scholar was conducted, focusing on the dysregulation of ncRNAs in fibrosarcoma, their contribution to tumor growth, metastasis, drug resistance, and their cellular pathway interactions. NcRNAs significantly influence fibrosarcoma, affecting cell proliferation, apoptosis, invasion, and angiogenesis. Their function as oncogenes or tumor suppressors makes them promising biomarkers and therapeutic targets. Understanding their interaction with the tumor microenvironment is essential for developing more effective treatments for fibrosarcoma. Targeting ncRNAs emerges as a promising strategy for fibrosarcoma therapy, offering hope to overcome the shortcomings of existing treatments. Further investigation is needed to clarify specific ncRNAs' roles in fibrosarcoma and to develop ncRNA-based therapies, highlighting the significance of ncRNAs in improving patient outcomes in this challenging cancer.


Subject(s)
Fibrosarcoma , RNA, Untranslated , Humans , Fibrosarcoma/genetics , Fibrosarcoma/pathology , RNA, Untranslated/genetics , Gene Expression Regulation, Neoplastic , Oncogenes/genetics , Tumor Microenvironment/genetics , Genes, Tumor Suppressor/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals
15.
Pathol Res Pract ; 258: 155335, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723327

ABSTRACT

Ovarian cancer (OC) presents significant challenges, characterized by limited treatment options and therapy resistance often attributed to dysregulation of the HER2 signaling pathway. Non-coding RNAs (ncRNAs) have emerged as key players in regulating gene expression in OC. This comprehensive review underscores the pivotal role of ncRNAs in modulating HER2 signaling, with a specific focus on their mechanisms, impact on chemoresistance, and prognostic/diagnostic implications. MicroRNAs, long non-coding RNAs, and circular RNAs have been identified as essential regulators in the modulation of the HER2 pathway. By directly targeting key components of the HER2 axis, these ncRNAs influence its activation and downstream signaling cascades. Dysregulated ncRNAs have been closely associated with chemoresistance, leading to treatment failures and disease progression in OC. Furthermore, distinct expression profiles of ncRNAs hold promise as reliable prognostic and diagnostic markers, facilitating personalized treatment strategies and enhancing disease outcome assessments. A comprehensive understanding of how ncRNAs intricately modulate HER2 signaling is imperative for the development of targeted therapies and the improvement of patient outcomes. The integration of ncRNA profiles into clinical practice has the potential to enhance prognostic and diagnostic accuracy in the management of ovarian cancer. Further research efforts are essential to validate the clinical utility of ncRNAs and elucidate their precise roles in the regulation of HER2 signaling. In conclusion, ncRNAs play a crucial role in governing HER2 signaling in ovarian cancer, impacting chemoresistance and providing valuable prognostic and diagnostic insights. The exploration of ncRNA-mediated HER2 modulation offers promising avenues for the development of personalized treatment approaches, ultimately advancing patient care and outcomes in OC.


Subject(s)
Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms , RNA, Untranslated , Receptor, ErbB-2 , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Female , RNA, Untranslated/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Gene Expression Regulation, Neoplastic/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Signal Transduction/genetics , Prognosis
16.
Pathol Res Pract ; 258: 155303, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728793

ABSTRACT

Hepatocellular carcinoma (HCC) is among the primary reasons for fatalities caused by cancer globally, highlighting the need for comprehensive knowledge of its molecular aetiology to develop successful treatment approaches. The PI3K/Akt system is essential in the course of HCC, rendering it an intriguing candidate for treatment. Non-coding RNAs (ncRNAs), such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are important mediators of the PI3K/Akt network in HCC. The article delves into the complex regulatory functions of ncRNAs in influencing the PI3K/Akt system in HCC. The study explores how lncRNAs, miRNAs, and circRNAs impact the expression as well as the function of the PI3K/Akt network, either supporting or preventing HCC growth. Additionally, treatment strategies focusing on ncRNAs in HCC are examined, such as antisense oligonucleotide-based methods, RNA interference, and small molecule inhibitor technologies. Emphasizing the necessity of ensuring safety and effectiveness in clinical settings, limitations, and future approaches in using ncRNAs as therapies for HCC are underlined. The present study offers useful insights into the complex regulation system of ncRNAs and the PI3K/Akt cascade in HCC, suggesting possible opportunities for developing innovative treatment approaches to address this lethal tumor.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , RNA, Untranslated , Signal Transduction , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction/genetics , RNA, Untranslated/genetics , Gene Expression Regulation, Neoplastic/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
17.
Molecules ; 29(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38792263

ABSTRACT

Oral cancer (OC) is among the most common malignancies in the world. Despite advances in therapy, the worst-case scenario for OC remains metastasis, with a 50% survival rate. Therefore, it is critical to comprehend the pathophysiology of the condition and to create diagnostic and treatment plans for OC. The development of high-throughput genome sequencing has revealed that over 90% of the human genome encodes non-coding transcripts, or transcripts that do not code for any proteins. This paper describes the function of these different kinds of non-coding RNAs (ncRNAs) in OC as well as their intriguing therapeutic potential. The onset and development of OC, as well as treatment resistance, are linked to dysregulated ncRNA expression. These ncRNAs' potentially significant roles in diagnosis and prognosis have been suggested by their differing expression in blood or saliva. We have outlined every promising feature of ncRNAs in the treatment of OC in this study.


Subject(s)
Gene Expression Regulation, Neoplastic , Mouth Neoplasms , RNA, Untranslated , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/therapy , RNA, Untranslated/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis
18.
CNS Neurosci Ther ; 30(5): e14763, 2024 May.
Article in English | MEDLINE | ID: mdl-38790149

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a degenerative neurological condition marked by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta. The precise etiology of PD remains unclear, but emerging evidence suggests a significant role for disrupted autophagy-a crucial cellular process for maintaining protein and organelle integrity. METHODS: This review focuses on the role of non-coding RNAs (ncRNAs) in modulating autophagy in PD. We conducted a comprehensive review of recent studies to explore how ncRNAs influence autophagy and contribute to PD pathophysiology. Special attention was given to the examination of ncRNAs' regulatory impacts in various PD models and patient samples. RESULTS: Findings reveal that ncRNAs are pivotal in regulating key processes associated with PD progression, including autophagy, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. Dysregulation of specific ncRNAs appears to be closely linked to these pathogenic processes. CONCLUSION: ncRNAs hold significant therapeutic potential for addressing autophagy-related mechanisms in PD. The review highlights innovative therapeutic strategies targeting autophagy-related ncRNAs and discusses the challenges and prospective directions for developing ncRNA-based therapies in clinical practice. The insights from this study underline the importance of ncRNAs in the molecular landscape of PD and their potential in novel treatment approaches.


Subject(s)
Autophagy , Parkinson Disease , RNA, Untranslated , Humans , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease/metabolism , Autophagy/physiology , Autophagy/genetics , RNA, Untranslated/genetics , Animals
19.
Genes (Basel) ; 15(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38790190

ABSTRACT

Sarcopenia, defined as the age-associated loss of muscle mass and increased fragility with age, is increasing worldwide. The condition often precedes the development of Alzheimer's disease, thereby decreasing the levels of mobility and physical activity in those affected. Indeed, the loss of muscle mass has, in some studies, been associated with an increased risk of Alzheimer's disease and other dementias. However, a detailed understanding of the interplay between both conditions is not available and needs to be thoroughly addressed. In the following review, we focus on several genes, specifically APOE, BDNF, ACE, FTO, and FNDC5, that have been associated with both conditions. We also discuss the epigenetic regulation of each of these genes along with non-coding RNAs (ncRNAs) that may have a role in the development of both the sarcopenic and Alzheimer's disease phenotypes. Finally, we assert that the application of systems biology will unravel the relationship between sarcopenia and Alzheimer's disease and believe that the prevention of muscle loss in older age will reduce the incidence of debilitating cognitive decline.


Subject(s)
Alzheimer Disease , Epigenesis, Genetic , Sarcopenia , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Sarcopenia/genetics , Sarcopenia/pathology , Risk Factors , Apolipoproteins E/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Brain-Derived Neurotrophic Factor/genetics , Fibronectins/genetics , Fibronectins/metabolism , RNA, Untranslated/genetics
20.
Technol Cancer Res Treat ; 23: 15330338241250317, 2024.
Article in English | MEDLINE | ID: mdl-38780251

ABSTRACT

Epigenetic machinery is a cornerstone in normal cell development, orchestrating tissue-specific gene expression in mammalian cells. Aberrations in this intricate landscape drive substantial changes in gene function, emerging as a linchpin in cancer etiology and progression. While cancer was conventionally perceived as solely a genetic disorder, its contemporary definition encompasses genetic alterations intertwined with disruptive epigenetic abnormalities. This review explores the profound impact of DNA methylation, histone modifications, and noncoding RNAs on fundamental cellular processes. When these pivotal epigenetic mechanisms undergo disruption, they intricately guide the acquisition of the 6 hallmark characteristics of cancer within seemingly normal cells. Leveraging the latest advancements in decoding these epigenetic intricacies holds immense promise, heralding a new era in developing targeted and more efficacious treatment modalities against cancers driven by aberrant epigenetic modifications.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/pathology , Histones/metabolism , Histones/genetics , Animals , Histone Code , RNA, Untranslated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...