Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.943
Filter
1.
Wiley Interdiscip Rev RNA ; 15(3): e1847, 2024.
Article in English | MEDLINE | ID: mdl-38702948

ABSTRACT

The mammalian genome encodes thousands of non-coding RNAs (ncRNAs), ranging in size from about 20 nucleotides (microRNAs or miRNAs) to kilobases (long non-coding RNAs or lncRNAs). ncRNAs contribute to a layer of gene regulation that could explain the evolution of massive phenotypic complexity even as the number of protein-coding genes remains unaltered. We propose that low conservation, poor expression, and highly restricted spatiotemporal expression patterns-conventionally considered ncRNAs may affect behavior through direct, rapid, and often sustained regulation of gene expression at the transcriptional, post-transcriptional, or translational levels. Besides these direct roles, their effect during neurodevelopment may manifest as behavioral changes later in the organism's life, especially when exposed to environmental cues like stress and seasonal changes. The lncRNAs affect behavior through diverse mechanisms like sponging of miRNAs, recruitment of chromatin modifiers, and regulation of alternative splicing. We highlight the need for synthesis between rigorously designed behavioral paradigms in model organisms and the wide diversity of behaviors documented by ethologists through field studies on organisms exquisitely adapted to their environmental niche. Comparative genomics and the latest advancements in transcriptomics provide an unprecedented scope for merging field and lab studies on model and non-model organisms to shed light on the role of ncRNAs in driving the behavioral responses of individuals and groups. We touch upon the technical challenges and contentious issues that must be resolved to fully understand the role of ncRNAs in regulating complex behavioral traits. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Subject(s)
RNA, Untranslated , Animals , RNA, Untranslated/metabolism , RNA, Untranslated/genetics , Humans , Behavior, Animal , Gene Expression Regulation
2.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791187

ABSTRACT

Non-coding RNAs (ncRNAs) represent a broad family of molecules that regulate gene expression, including microRNAs, long non-coding RNAs and circular RNAs, amongst others. Dysregulated expression of ncRNAs alters gene expression, which is implicated in the pathogenesis of several malignancies and inflammatory diseases. Gastric cancer is the fifth most frequently diagnosed cancer and the fourth most common cause of cancer-related death. Studies have found that altered expression of ncRNAs may contribute to tumourigenesis through regulating proliferation, apoptosis, drug resistance and metastasis. This review describes the potential use of ncRNAs as diagnostic and prognostic biomarkers. Moreover, we discuss the involvement of ncRNAs in the pathogenesis of gastric cancer, including their interactions with the members of major signalling pathways.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , RNA, Untranslated , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/etiology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Prognosis , Signal Transduction , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism
3.
Plant Physiol Biochem ; 211: 108718, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733939

ABSTRACT

Plant secondary metabolites (PSMs) are a large class of structurally diverse molecules, mainly consisting of terpenoids, phenolic compounds, and nitrogen-containing compounds, which play active roles in plant development and stress responses. The biosynthetic processes of PSMs are governed by a sophisticated regulatory network at multiple levels. Noncoding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) may serve as post-transcriptional regulators for plant secondary metabolism through acting on genes encoding either transcription factors or participating enzymes in relevant metabolic pathways. High-throughput sequencing technologies have facilitated the large-scale identifications of ncRNAs potentially involved in plant secondary metabolism in model plant species as well as certain species with enriched production of specific types of PSMs. Moreover, a series of miRNA-target modules have been functionally characterized to be responsible for regulating PSM biosynthesis and accumulation in plants under abiotic or biotic stresses. In this review, we will provide an overview of current findings on the ncRNA-mediated regulation of plant secondary metabolism with special attention to its participation in plant stress responses, and discuss possible issues to be addressed in future fundamental research and breeding practice.


Subject(s)
Plants , RNA, Plant , RNA, Untranslated , Secondary Metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Secondary Metabolism/genetics , Plants/metabolism , Plants/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
4.
Cell Biochem Funct ; 42(4): e3995, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751103

ABSTRACT

In recent years, seminal studies have been devoted to unraveling the puzzling mysteries associated with the cancer preventive/inhibitory role of melatonin. Our current knowledge of the translational mechanisms and the detailed structural insights have highlighted the characteristically exclusive role of melatonin in the inhibition of carcinogenesis and metastatic dissemination. This mini-review outlines recent discoveries related to mechanistic role of melatonin in prevention of carcinogenesis and metastasis. Moreover, another exciting facet of this mini-review is related to phenomenal breakthroughs linked with regulation of noncoding RNAs by melatonin in wide variety of cancers.


Subject(s)
Carcinogenesis , Melatonin , Neoplasm Metastasis , Neoplasms , RNA, Untranslated , Melatonin/metabolism , Humans , Carcinogenesis/metabolism , RNA, Untranslated/metabolism , Neoplasms/pathology , Neoplasms/metabolism , Animals
5.
Cell Death Dis ; 15(5): 357, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778030

ABSTRACT

As a newly identified regulated cell death, ferroptosis is a metabolically driven process that relies on iron and is associated with polyunsaturated fatty acyl peroxidation, elevated levels of reactive oxygen species (ROS), and mitochondrial damage. This distinct regulated cell death is dysregulated in various cancers; activating ferroptosis in malignant cells increases cancer immunotherapy and chemoradiotherapy responses across different malignancies. Over the last decade, accumulating research has provided evidence of cross-talk between non-coding RNAs (ncRNAs) and competing endogenous RNA (ceRNA) networks and highlighted their significance in developing and progressing malignancies. Aside from pharmaceutical agents to regulate ferroptosis, recent studies have shed light on the potential of restoring dysregulated ferroptosis-related ceRNA networks in cancer treatment. The present study provides a comprehensive and up-to-date review of the ferroptosis significance, ferroptosis pathways, the role of ferroptosis in cancer immunotherapy and chemoradiotherapy, ceRNA biogenesis, and ferroptosis-regulating ceRNA networks in different cancers. The provided insights can offer the authorship with state-of-the-art findings and future perspectives regarding the ferroptosis and ferroptosis-related ceRNA networks and their implication in the treatment and determining the prognosis of affected patients.


Subject(s)
Ferroptosis , Neoplasms , Ferroptosis/genetics , Humans , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Animals , Reactive Oxygen Species/metabolism , Gene Regulatory Networks , Gene Expression Regulation, Neoplastic , RNA, Competitive Endogenous
6.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38717338

ABSTRACT

Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.


Subject(s)
DNA Helicases , Multifunctional Enzymes , RNA Helicases , RNA, Untranslated , Humans , Cell Nucleolus/metabolism , Cell Nucleolus/genetics , DNA Damage , DNA Helicases/metabolism , DNA Helicases/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Protein Aggregates , Proteostasis , R-Loop Structures/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
7.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692564

ABSTRACT

Small non-coding 6S RNA mimics DNA promoters and binds to the σ70 holoenzyme of bacterial RNA polymerase (RNAP) to suppress transcription of various genes mainly during the stationary phase of cell growth or starvation. This inhibition can be relieved upon synthesis of short product RNA (pRNA) performed by RNAP from the 6S RNA template. Here, we have shown that pRNA synthesis depends on specific contacts of 6S RNA with RNAP and interactions of the σ finger with the RNA template in the active site of RNAP, and is also modulated by the secondary channel factors. We have adapted a molecular beacon assay with fluorescently labeled σ70 to analyze 6S RNA release during pRNA synthesis. We found the kinetics of 6S RNA release to be oppositely affected by mutations in the σ finger and in the CRE pocket of core RNAP, similarly to the reported role of these regions in promoter-dependent transcription. Secondary channel factors, DksA and GreB, inhibit pRNA synthesis and 6S RNA release from RNAP, suggesting that they may contribute to the 6S RNA-mediated switch in transcription during stringent response. Our results demonstrate that pRNA synthesis depends on a similar set of contacts between RNAP and 6S RNA as in the case of promoter-dependent transcription initiation and reveal that both processes can be regulated by universal transcription factors acting on RNAP.


Subject(s)
DNA-Directed RNA Polymerases , Escherichia coli Proteins , RNA, Bacterial , Sigma Factor , Transcription, Genetic , DNA-Directed RNA Polymerases/metabolism , Sigma Factor/metabolism , Sigma Factor/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , Promoter Regions, Genetic , RNA, Untranslated/metabolism , RNA, Untranslated/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Protein Binding , Transcriptional Elongation Factors
8.
Viruses ; 16(5)2024 05 18.
Article in English | MEDLINE | ID: mdl-38793685

ABSTRACT

In recent years, the function of noncoding RNAs (ncRNAs) as regulatory molecules of cell physiology has begun to be better understood. Advances in viral molecular biology have shown that host ncRNAs, cellular factors, and virus-derived ncRNAs and their interplay are strongly disturbed during viral infections. Nevertheless, the folding of RNA virus genomes has also been identified as a critical factor in regulating canonical and non-canonical functions. Due to the influence of host ncRNAs and the structure of RNA viral genomes, complex molecular and cellular processes in infections are modulated. We propose three main categories to organize the current information about RNA-RNA interactions in some well-known human viruses. The first category shows examples of host ncRNAs associated with the immune response triggered in viral infections. Even though miRNAs introduce a standpoint, they are briefly presented to keep researchers moving forward in uncovering other RNAs. The second category outlines interactions between virus-host ncRNAs, while the third describes how the structure of the RNA viral genome serves as a scaffold for processing virus-derived RNAs. Our grouping may provide a comprehensive framework to classify ncRNA-host-cell interactions for emerging viruses and diseases. In this sense, we introduced them to organize DENV-host-cell interactions.


Subject(s)
Dengue Virus , Genome, Viral , RNA, Untranslated , RNA, Viral , Dengue Virus/genetics , Dengue Virus/physiology , Humans , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Host-Pathogen Interactions/genetics , Dengue/virology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals
9.
Pathol Res Pract ; 258: 155349, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772115

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. Emerging evidence suggests that inflammation plays a crucial role in the pathogenesis of PD, with the NLRP3 inflammasome implicated as a key mediator. Nfon-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have recently garnered attention for their regulatory roles in various biological processes, including inflammation. This review aims to provide a mechanistic insight into how ncRNAs function as regulators of inflammatory pathways in PD, with a specific focus on the NLRP3 inflammasome. We discuss the dysregulation of miRNAs and lncRNAs in PD pathogenesis and their impact on neuroinflammation through modulation of NLRP3 activation, cytokine production, and microglial activation. Additionally, we explore the crosstalk between ncRNAs, alpha-synuclein pathology, and mitochondrial dysfunction, further elucidating the intricate network underlying PD-associated inflammation. Understanding the mechanistic roles of ncRNAs in regulating inflammatory pathways may offer novel therapeutic targets for the treatment of PD and provide insights into the broader implications of ncRNA-mediated regulation in neuroinflammatory diseases.


Subject(s)
Parkinson Disease , RNA, Untranslated , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease/metabolism , Humans , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Inflammasomes/metabolism , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Inflammation/genetics , Inflammation/pathology , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
10.
Front Immunol ; 15: 1343364, 2024.
Article in English | MEDLINE | ID: mdl-38558799

ABSTRACT

Macrophage/microglia function as immune defense and homeostatic cells that originate from bone marrow progenitor cells. Macrophage/microglia activation is historically divided into proinflammatory M1 or anti-inflammatory M2 states based on intracellular dynamics and protein production. The polarization of macrophages/microglia involves a pivotal impact in modulating the development of inflammatory disorders, namely lung and traumatic brain injuries. Recent evidence indicates shared signaling pathways in lung and traumatic brain injuries, regulated through non-coding RNAs (ncRNAs) loaded into extracellular vesicles (EVs). This packaging protects ncRNAs from degradation. These vesicles are subcellular components released through a paracellular mechanism, constituting a group of nanoparticles that involve exosomes, microvesicles, and apoptotic bodies. EVs are characterized by a double-layered membrane and are abound with proteins, nucleic acids, and other bioactive compounds. ncRNAs are RNA molecules with functional roles, despite their absence of coding capacity. They actively participate in the regulation of mRNA expression and function through various mechanisms. Recent studies pointed out that selective packaging of ncRNAs into EVs plays a role in modulating distinct facets of macrophage/microglia polarization, under conditions of lung and traumatic brain injuries. This study will explore the latest findings regarding the role of EVs in the progression of lung and traumatic brain injuries, with a specific focus on the involvement of ncRNAs within these vesicles. The conclusion of this review will emphasize the clinical opportunities presented by EV-ncRNAs, underscoring their potential functions as both biomarkers and targets for therapeutic interventions.


Subject(s)
Brain Injuries, Traumatic , Extracellular Vesicles , Humans , Microglia/metabolism , Macrophages/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Brain Injuries, Traumatic/metabolism , Lung/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
11.
Sheng Li Xue Bao ; 76(2): 319-328, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658380

ABSTRACT

Liver cancer is a common tumor of digestive system. Hepatocellular carcinoma (HCC) is a common type of liver cancer, which has a high degree of malignancy and ranks among the top causes of cancer-related death in the world. Metabolic reprogramming is considered to be an important marker of carcinogenesis. Glucose metabolism is one of the main ways for cells to produce energy. Glycolysis, as the basic reaction of glucose metabolism, plays an important role in cell metabolism. Therefore, the regulation of glycolysis is of great significance to the proliferation and evolution of tumors. More and more non-coding RNAs (ncRNA) have been proved to play an important role in the regulation of tumor glycolysis. This article reviews the role of ncRNA in the regulation of HCC glycolysis and its related mechanisms. At the same time, the prospect of targeted therapy for HCC based on the related mechanisms of glycolysis regulation is put forward.


Subject(s)
Carcinoma, Hepatocellular , Glycolysis , Liver Neoplasms , RNA, Untranslated , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Gene Expression Regulation, Neoplastic , Animals
12.
Int J Biol Macromol ; 266(Pt 2): 131345, 2024 May.
Article in English | MEDLINE | ID: mdl-38574935

ABSTRACT

Cotton fiber holds immense importance as the primary raw material for the textile industry. Consequently, comprehending the regulatory mechanisms governing fiber development is pivotal for enhancing fiber quality. Our study aimed to construct a regulatory network of competing endogenous RNAs (ceRNAs) and assess the impact of non-coding RNAs on gene expression throughout fiber development. Through whole transcriptome data analysis, we identified differentially expressed genes (DEGs) regulated by non-coding RNA (ncRNA) that were predominantly enriched in phenylpropanoid biosynthesis and the fatty acid elongation pathway. This analysis involved two contrasting phenotypic materials (J02-508 and ZRI015) at five stages of fiber development. Additionally, we conducted a detailed analysis of genes involved in fatty acid elongation, including KCS, KCR, HACD, ECR, and ACOT, to unveil the factors contributing to the variation in fatty acid elongation between J02-508 and ZRI015. Through the integration of histochemical GUS staining, dual luciferase assay experiments, and correlation analysis of expression levels during fiber development stages for lncRNA MSTRG.44818.23 (MST23) and GhKCR2, we elucidated that MST23 positively regulates GhKCR2 expression in the fatty acid elongation pathway. This identification provides valuable insights into the molecular mechanisms underlying fiber development, emphasizing the intricate interplay between non-coding RNAs and protein-coding genes.


Subject(s)
Fatty Acids , Gene Expression Regulation, Plant , Gossypium , RNA, Untranslated , Cotton Fiber , Fatty Acids/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Gossypium/genetics , Gossypium/metabolism , Metabolic Networks and Pathways/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Transcriptome
13.
Obes Rev ; 25(6): e13740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38571458

ABSTRACT

Exosomes are extracellular vesicles, measuring 40-160 nm in diameter, that are released by many cell types and tissues, including adipose tissue. Exosomes are critical mediators of intercellular communication and their contents are complex and diverse. In recent years, accumulating evidence has proved that multiple adipose tissue-derived exosomal noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play pivotal roles in the pathogenesis of diverse metabolic diseases, such as obesity. In this narrative review, we focus on the adipose tissue-derived exosomal ncRNAs, especially exosomal miRNAs, and their dysregulation in multiple types of metabolic diseases. A deeper understanding of the role of adipose tissue-derived exosomal ncRNAs may help provide new diagnostic and treatment methods for metabolic diseases.


Subject(s)
Adipose Tissue , Exosomes , Metabolic Diseases , RNA, Untranslated , Humans , Exosomes/metabolism , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Adipose Tissue/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/physiology , Animals
14.
Biochem Pharmacol ; 224: 116218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643906

ABSTRACT

Non-coding RNAs (ncRNAs) are an assorted collection of transcripts that are not translated into proteins. Since their discovery, ncRNAs have gained prominence as crucial regulators of various biological functions across diverse cell types and tissues, and their abnormal functioning has been implicated in disease. Notably, extensive research has focused on the relationship between microRNAs (miRNAs) and human cancers, although other types of ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as significant contributors to human disease. In this review, we provide a comprehensive summary of our current knowledge regarding the roles of miRNAs, lncRNAs, and circRNAs in cancer and other major human diseases, particularly cancer, cardiovascular, neurological, and infectious diseases. Moreover, we discuss the potential utilization of ncRNAs as disease biomarkers and as targets for therapeutic interventions.


Subject(s)
Neoplasms , RNA, Untranslated , Humans , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Neoplasms/drug therapy , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Nervous System Diseases/therapy
15.
Free Radic Biol Med ; 218: 105-119, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565400

ABSTRACT

Beyond their crucial role in energy production, mitochondria harbor a distinct genome subject to epigenetic regulation akin to that of nuclear DNA. This paper delves into the nascent but rapidly evolving fields of mitoepigenetics and mitoepigenomics, exploring the sophisticated regulatory mechanisms governing mitochondrial DNA (mtDNA). These mechanisms encompass mtDNA methylation, the influence of non-coding RNAs (ncRNAs), and post-translational modifications of mitochondrial proteins. Together, these epigenetic modifications meticulously coordinate mitochondrial gene transcription, replication, and metabolism, thereby calibrating mitochondrial function in response to the dynamic interplay of intracellular needs and environmental stimuli. Notably, the dysregulation of mitoepigenetic pathways is increasingly implicated in mitochondrial dysfunction and a spectrum of human pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and cardiovascular conditions. This comprehensive review synthesizes the current state of knowledge, emphasizing recent breakthroughs and innovations in the field. It discusses the potential of high-resolution mitochondrial epigenome mapping, the diagnostic and prognostic utility of blood or tissue mtDNA epigenetic markers, and the promising horizon of mitochondrial epigenetic drugs. Furthermore, it explores the transformative potential of mitoepigenetics and mitoepigenomics in precision medicine. Exploiting a theragnostic approach to maintaining mitochondrial allostasis, this paper underscores the pivotal role of mitochondrial epigenetics in charting new frontiers in medical science.


Subject(s)
DNA Methylation , DNA, Mitochondrial , Epigenesis, Genetic , Mitochondria , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Protein Processing, Post-Translational/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology
16.
Int J Mol Sci ; 25(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38674135

ABSTRACT

Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-ß (TGF-ß) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.


Subject(s)
Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , RNA, Untranslated , Signal Transduction , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals
17.
Biochem Pharmacol ; 222: 116107, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38438051

ABSTRACT

Cancer is a comprehensive classification encompassing more than 100 forms of malignancies that manifest in diverse tissues within the human body. Recent studies have provided evidence that aberrant epigenetic modifications are pivotal indicators of cancer. Epigenetics encapsulates DNA methyltransferases as a crucial class of modifiers. DNMTs, including DNMT3A, assume central roles in DNA methylation processes that orchestrate normal biological functions, such as gene transcription, predominantly in mammals. Typically, deviations in DNMT3A function engender distortions in factors that drive tumor growth and progression, thereby exacerbating the malignant phenotype of tumors. Consequently, such abnormalities pose significant challenges in cancer therapy because they impede treatment efficacy. Non-coding RNAs (ncRNAs) represent a group of RNA molecules that cannot encode functional proteins. Recent investigation attests to the crucial significance of regulatory ncRNAs in epigenetic regulation. Notably, recent reports have illuminated the complex interplay between ncRNA expression and epigenetic regulatory machinery, including DNMT3A, particularly in cancer. Recent findings have demonstrated that miRNAs, namely miR-770-5p, miR-101, and miR-145 exhibit the capability to target DNMT3A directly, and their aberration is implicated in diverse cellular abnormalities that predispose to cancer development. This review aims to articulate the interplay between DNMT3A and the ncRNAs, focusing on its impact on the development and progression of cancer, cancer therapy resistance, cancer stem cells, and prognosis. Importantly, the emergence of such reports that suggest a connection between DNMT3A and ncRNAs in several cancers indicates that this connecting axis offers a valuable target with significant therapeutic potential that might be exploited for cancer management.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Animals , Humans , DNA Methylation , Epigenesis, Genetic , Mammals/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
18.
Pathol Res Pract ; 256: 155224, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452584

ABSTRACT

Sepsis, a potentially fatal illness caused by an improper host response to infection, remains a serious problem in the world of healthcare. In recent years, the role of ncRNA has emerged as a pivotal aspect in the intricate landscape of cellular regulation. The exploration of ncRNA-mediated regulatory networks reveals their profound influence on key molecular pathways orchestrating pyroptotic responses during septic conditions. Through a comprehensive analysis of current literature, we navigate the diverse classes of ncRNAs, including miRNAs, lncRNAs, and circRNAs, elucidating their roles as both facilitators and inhibitors in the modulation of pyroptotic processes. Furthermore, we highlight the potential diagnostic and therapeutic implications of targeting these ncRNAs in the context of sepsis, aiming to cover the method for novel and effective strategies to mitigate the devastating consequences of septic pathogenesis. As we unravel the complexities of this regulatory axis, a deeper understanding of the intricate crosstalk between ncRNAs and pyroptosis emerges, offering promising avenues for advancing our approach to sepsis intervention. The intricate pathophysiology of sepsis is examined in this review, which explores the dynamic interaction between ncRNAs and pyroptosis, a highly regulated kind of programmed cell death.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Sepsis , Humans , Pyroptosis/physiology , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics
19.
RNA ; 30(5): 570-582, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38531653

ABSTRACT

RNA 2'-O-methylation (Nm) is highly abundant in noncoding RNAs including ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA), and occurs in the 5' cap of virtually all messenger RNAs (mRNAs) in higher eukaryotes. More recently, Nm has also been reported to occur at internal sites in mRNA. High-throughput methods have been developed for the transcriptome-wide detection of Nm. However, these methods have mostly been applied to abundant RNAs such as rRNA, and the validity of the internal mRNA Nm sites detected with these approaches remains controversial. Nonetheless, Nm in both coding and noncoding RNAs has been demonstrated to impact cellular processes, including translation and splicing. In addition, Nm modifications at the 5' cap and possibly at internal sites in mRNA serve to prevent the binding of nucleic acid sensors, thus preventing the activation of the innate immune response by self-mRNAs. Finally, Nm has been implicated in a variety of diseases including cancer, cardiovascular diseases, and neurologic syndromes. In this review, we discuss current challenges in determining the distribution, regulation, function, and disease relevance of Nm, as well as potential future directions for the field.


Subject(s)
RNA, Transfer , RNA , RNA/genetics , RNA/metabolism , Methylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA, Small Nuclear/metabolism , RNA, Ribosomal/metabolism
20.
Nat Commun ; 15(1): 2425, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499544

ABSTRACT

Up to 80% of the human genome produces "dark matter" RNAs, most of which are noncapped RNAs (napRNAs) that frequently act as noncoding RNAs (ncRNAs) to modulate gene expression. Here, by developing a method, NAP-seq, to globally profile the full-length sequences of napRNAs with various terminal modifications at single-nucleotide resolution, we reveal diverse classes of structured ncRNAs. We discover stably expressed linear intron RNAs (sliRNAs), a class of snoRNA-intron RNAs (snotrons), a class of RNAs embedded in miRNA spacers (misRNAs) and thousands of previously uncharacterized structured napRNAs in humans and mice. These napRNAs undergo dynamic changes in response to various stimuli and differentiation stages. Importantly, we show that a structured napRNA regulates myoblast differentiation and a napRNA DINAP interacts with dyskerin pseudouridine synthase 1 (DKC1) to promote cell proliferation by maintaining DKC1 protein stability. Our approach establishes a paradigm for discovering various classes of ncRNAs with regulatory functions.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , Animals , Mice , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , MicroRNAs/genetics , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Nuclear Proteins , Cell Cycle Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...