Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89.781
Filter
1.
Arch Virol ; 169(8): 159, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972922

ABSTRACT

In this study, we identified a novel partitivirus, named "Cordyceps militaris partitivirus 1" (CmPV1), in Cordyceps militaris strain RCEF7506. The complete genome of CmPV1 comprises two segments, dsRNA1 and dsRNA2, each encoding a single protein. dsRNA1 (2,206 bp) encodes an RNA-dependent RNA polymerase (RdRp), and dsRNA2 (2,256 bp) encodes a coat protein (CP). Sequence analysis revealed that dsRNA1 has the highest similarity to that of Bipolaris maydis partitivirus 2 (BmPV2), whereas dsRNA2 shows the highest similarity to human blood-associated partitivirus (HuBPV). Phylogenetic analysis based on RdRp sequences suggests that CmPV1 is a new member of the genus Betapartitivirus of the family Partitiviridae. This is the first documentation of a betapartitivirus infecting the entomopathogenic fungus C. militaris.


Subject(s)
Cordyceps , Fungal Viruses , Genome, Viral , Phylogeny , RNA Viruses , Cordyceps/genetics , Cordyceps/virology , Cordyceps/isolation & purification , Genome, Viral/genetics , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fungal Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Open Reading Frames , Viral Proteins/genetics , Capsid Proteins/genetics
2.
Virologie (Montrouge) ; 28(3): 199-215, 2024 Jun 01.
Article in French | MEDLINE | ID: mdl-38970341

ABSTRACT

Viroids are the smallest non-coding infectious RNAs (between 246 and 401 nucleotides) known to be highly structured and replicate autonomously in the host plants. Although they do not encode any peptides, viroids induce visible symptoms in susceptible host plants. This article provides an overview of their physical and biological properties, the diseases they cause and their significance for the plants. The mechanisms underlying the expression of symptoms in host plants, their detection and various strategies employed for diseases prevention are also developed.


Subject(s)
Plant Diseases , Plants , RNA, Viral , Viroids , Viroids/genetics , Viroids/physiology , Plant Diseases/virology , Plant Diseases/prevention & control , RNA, Viral/genetics , RNA, Untranslated/genetics , RNA, Untranslated/physiology , Virus Replication
3.
Anal Chim Acta ; 1316: 342838, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969428

ABSTRACT

The diagnosis of dengue virus (DENV) has been challenging particularly in areas far from clinical laboratories. Early diagnosis of pathogens is a prerequisite for the timely treatment and pathogen control. An ideal diagnostic for viral infections should possess high sensitivity, specificity, and flexibility. In this study, we implemented dual amplification involving Cas13a and Cas12a, enabling sensitive and visually aided diagnostics for the dengue virus. Cas13a recognized the target RNA by crRNA and formed the assembly of the Cas13a/crRNA/RNA ternary complex, engaged in collateral cleavage of nearby crRNA of Cas12a. The Cas12a/crRNA/dsDNA activator ternary complex could not be assembled due to the absence of crRNA of Cas12a. Moreover, the probe, with 5' and 3' termini labeled with FAM and biotin, could not be separated. The probes labeled with FAM and biotin, combined the Anti-FAM and the Anti-Biotin Ab-coated gold nanoparticle, and conformed sandwich structure on the T-line. The red line on the paper strip caused by clumping of AuNPs on the T-line indicated the detection of dengue virus. This technique, utilizing an activated Cas13a system cleaving the crRNA of Cas12a, triggered a cascade that amplifies the virus signal, achieving a low detection limit of 190 fM with fluorescence. Moreover, even at 1 pM, the red color on the T-line was easily visible by naked eyes. The developed strategy, incorporating cascade enzymatic amplification, exhibited good sensitivity and may serve as a field-deployable diagnostic tool for dengue virus.


Subject(s)
Dengue Virus , Dengue Virus/isolation & purification , Dengue/diagnosis , Humans , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , CRISPR-Associated Proteins/metabolism , Metal Nanoparticles/chemistry , Limit of Detection , Gold/chemistry , Bacterial Proteins , Endodeoxyribonucleases
4.
Arch Virol ; 169(8): 157, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969819

ABSTRACT

Viruses use various strategies and mechanisms to deal with cells and proteins of the immune system that form a barrier against infection. One of these mechanisms is the encoding and production of viral microRNAs (miRNAs), whose function is to regulate the gene expression of the host cell and the virus, thus creating a suitable environment for survival and spreading viral infection. miRNAs are short, single-stranded, non-coding RNA molecules that can regulate the expression of host and viral proteins, and due to their non-immunogenic nature, they are not eliminated by the cells of the immune system. More than half of the viral miRNAs are encoded and produced by Orthoherpesviridae family members. Human cytomegalovirus (HCMV) produces miRNAs that mediate various processes in infected cells to contribute to HCMV pathogenicity, including immune escape, viral latency, and cell apoptosis. Here, we discuss which cellular and viral proteins or cellular pathways and processes these mysterious molecules target to evade immunity and support viral latency in infected cells. We also discuss current evidence that their function of bypassing the host's innate and adaptive immune system is essential for the survival and multiplication of the virus and the spread of HCMV infection.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Immune Evasion , MicroRNAs , Virus Latency , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Cytomegalovirus/physiology , Virus Latency/genetics , MicroRNAs/genetics , Humans , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/immunology , RNA, Viral/genetics , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics , Gene Expression Regulation, Viral
5.
Arch Microbiol ; 206(8): 345, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976047

ABSTRACT

Neurological complications, both acute and chronic, are reported commonly in COVID-19 affected individuals. In this context, the understanding of pathogenesis of SARS-CoV-2 in specific cells of central nervous system (CNS) origin is relevant. The present study explores infection biology of a clinical isolate of SARS-CoV-2 in human cell lines of neural origin such as the glioblastoma (U87-MG), neuroblastoma (SHSY5Y) and microglia (C20). Despite showing clear evidence of infection by immunofluorescence with an anti-spike protein antibody, all the three neural cell lines were observed to be highly restrictive to the replication of the infecting virus. While the U87-MG glioblastoma cells demonstrated no cytopathic effects and a low viral titre with no signs of replication, the SHSY5Y neuroblastoma cells exhibited cytopathic effects with bleb formation but no evidence of viable virus. The C20 microglial cells showed neither signs of cytopathic effects nor viable virus. Ultrastructural studies demonstrated intracellular virions in infected neural cells. The presence of lipid droplets in infected SHSY5Y cells suggested an impact on host cell metabolism. The decrease in viral RNA levels over time in all the neural cell lines suggested restricted viral replication. In conclusion, this study highlights the limited susceptibility of neural cells to SARS-CoV-2 infection. This reduced permissibility of neural cell lines to SARS-CoV-2 may point to their inherent lower expression of receptors that support viral entry in addition to the intracellular factors that potently inhibit viral replication. The study findings prompt further investigation into the mechanisms of SARS-CoV-2 infection of neural cells.


Subject(s)
COVID-19 , Microglia , Neuroglia , Neurons , SARS-CoV-2 , Virus Replication , Humans , Microglia/virology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Neurons/virology , COVID-19/virology , Neuroglia/virology , Cell Line, Tumor , Cell Line , Cytopathogenic Effect, Viral , Spike Glycoprotein, Coronavirus/metabolism , RNA, Viral/genetics
6.
J Med Virol ; 96(7): e29777, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949212

ABSTRACT

Hepatitis E virus (HEV) is a prevalent pathogen responsible for acute viral hepatitis, HEV genotypes 3 and 4 infections causing zoonotic infections. Currently, the nucleotide similarity analysis between humans and pigs for HEV genotype 4 is limited. In this study, stool samples from an HEV-infected patient who is a pig farmer and from pigs were collected to obtain the near full-length genome of HEV, phylogenetic trees were constructed for genotyping, and similarity of HEV sequences was analyzed. The results showed that HEV-RNA was detected in the stool samples from the patient and six pigs (6/30, 20.0%). Both HEV subtype in the patient and pigs was 4b. Additionally, similarity analysis showed that the range was 99.875%-99.944% between the patient and pigs at the nucleotide level. Four isolates of amino acid sequences (ORFs 1-3) from pigs were 100% identical to the patient. Phylogenetic tree and similarity analysis of an additional nine HEV sequences isolated from other patients in this region showed that the HEV sequence from the pig farmer had the closest relationship with the pigs from his farm rather than other sources of infection in this region. This study provides indirect evidences for HEV subtype 4b can be transmitted from pigs to humans at the nucleotide level. Further research is needed to explore the characteristics of different HEV subtypes.


Subject(s)
Feces , Genome, Viral , Genotype , Hepatitis E virus , Hepatitis E , Phylogeny , RNA, Viral , Swine Diseases , Animals , Hepatitis E virus/genetics , Hepatitis E virus/classification , Hepatitis E virus/isolation & purification , Swine , Hepatitis E/virology , Hepatitis E/veterinary , Hepatitis E/epidemiology , China/epidemiology , Humans , Feces/virology , Swine Diseases/virology , RNA, Viral/genetics , Male , Sequence Analysis, DNA
7.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38959049

ABSTRACT

Phasmaviridae is a family for negative-sense RNA viruses with genomes of about 9.7-15.8 kb. These viruses are maintained in and/or transmitted by insects. Phasmavirids produce enveloped virions containing three single-stranded RNA segments that encode a nucleoprotein (N), a glycoprotein precursor (GPC), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Phasmaviridae, which is available at ictv.global/report/phasmaviridae.


Subject(s)
Genome, Viral , RNA, Viral , Animals , RNA, Viral/genetics , Negative-Sense RNA Viruses/genetics , Negative-Sense RNA Viruses/classification , Virion/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Insecta/virology , Phylogeny , Virus Replication
8.
Indian J Public Health ; 68(2): 163-166, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38953800

ABSTRACT

BACKGROUND: Several sporadic cases and outbreaks of Zika virus disease have been reported from different states of India. OBJECTIVES: This paper explored the possibility of any ongoing transmission of Zika virus (ZIKV) in the Bhopal region of Central India, where the last outbreak of this disease was reported in 2018. MATERIALS AND METHODS: We screened a group of 75 febrile patients who had already tested negative for the locally endemic causes of fever like dengue, chikungunya, enteric fever, malaria, and scrub typhus and two groups of asymptomatic healthy individuals represented by blood donors (n = 75) and antenatal mothers (n = 75). We tested blood samples of febrile patients for ZIKV RNA using real-time polymerase chain reaction (PCR), and for the healthy individuals, we determined anti-zika immunoglobulin G (IgG) antibodies using enzyme-linked immunosorbent assay. RESULTS: ZIKV RNA was not detected in any of the 75 samples tested by real-time PCR assay. Among the voluntary blood donors and antenatal mothers, a total of 10 (15.38%) and 5 (6.66%) individuals were found to be seropositive for anti-ZIKV IgG antibodies, respectively. The seropositive group was found to have higher age 33.06 (±10.83) years as compared to seronegative individuals 26.60 (±5.12) years (P = 0.037). CONCLUSION: This study, which is the first survey of seroprevalence of anti-Zika antibodies from India, reports an overall seropositivity rate of 10% for anti-Zika antibodies among the healthy population, suggesting an ongoing, low level, silent transmission of ZIKV in the local community.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , India/epidemiology , Zika Virus Infection/epidemiology , Zika Virus Infection/transmission , Seroepidemiologic Studies , Adult , Female , Pilot Projects , Male , Zika Virus/immunology , Zika Virus/isolation & purification , Immunoglobulin G/blood , Young Adult , Antibodies, Viral/blood , Middle Aged , RNA, Viral , Adolescent , Enzyme-Linked Immunosorbent Assay , Real-Time Polymerase Chain Reaction
9.
Sci Rep ; 14(1): 15145, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956134

ABSTRACT

Hepatitis C virus (HCV) is a plus-stranded RNA virus that often chronically infects liver hepatocytes and causes liver cirrhosis and cancer. These viruses replicate their genomes employing error-prone replicases. Thereby, they routinely generate a large 'cloud' of RNA genomes (quasispecies) which-by trial and error-comprehensively explore the sequence space available for functional RNA genomes that maintain the ability for efficient replication and immune escape. In this context, it is important to identify which RNA secondary structures in the sequence space of the HCV genome are conserved, likely due to functional requirements. Here, we provide the first genome-wide multiple sequence alignment (MSA) with the prediction of RNA secondary structures throughout all representative full-length HCV genomes. We selected 57 representative genomes by clustering all complete HCV genomes from the BV-BRC database based on k-mer distributions and dimension reduction and adding RefSeq sequences. We include annotations of previously recognized features for easy comparison to other studies. Our results indicate that mainly the core coding region, the C-terminal NS5A region, and the NS5B region contain secondary structure elements that are conserved beyond coding sequence requirements, indicating functionality on the RNA level. In contrast, the genome regions in between contain less highly conserved structures. The results provide a complete description of all conserved RNA secondary structures and make clear that functionally important RNA secondary structures are present in certain HCV genome regions but are largely absent from other regions. Full-genome alignments of all branches of Hepacivirus C are provided in the supplement.


Subject(s)
Conserved Sequence , Genome, Viral , Hepacivirus , Nucleic Acid Conformation , RNA, Viral , Hepacivirus/genetics , RNA, Viral/genetics , RNA, Viral/chemistry , Humans , Sequence Alignment , Hepatitis C/virology , Hepatitis C/genetics
10.
Sci Rep ; 14(1): 15181, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956295

ABSTRACT

Human norovirus (HuNoV) is an enteric infectious pathogen belonging to the Caliciviridae family that causes occasional epidemics. Circulating alcohol-tolerant viral particles that are readily transmitted via food-borne routes significantly contribute to the global burden of HuNoV-induced gastroenteritis. Moreover, contact with enzymes secreted by other microorganisms in the environment can impact the infectivity of viruses. Hence, understanding the circulation dynamics of Caliciviridae is critical to mitigating epidemics. Accordingly, in this study, we screened whether environmentally abundant secretase components, particularly proteases, affect Caliciviridae infectivity. Results showed that combining Bacillaceae serine proteases with epsilon-poly-L-lysine (EPL) produced by Streptomyces-a natural antimicrobial-elicited anti-Caliciviridae properties, including against the epidemic HuNoV GII.4_Sydney_2012 strain. In vitro and in vivo biochemical and virological analyses revealed that EPL has two unique synergistic viral inactivation functions. First, it maintains an optimal pH to promote viral surface conformational changes to the protease-sensitive structure. Subsequently, it inhibits viral RNA genome release via partial protease digestion at the P2 and S domains in the VP1 capsid. This study provides new insights regarding the high-dimensional environmental interactions between bacteria and Caliciviridae, while promoting the development of protease-based anti-viral disinfectants.


Subject(s)
Bacillaceae , Polylysine , Serine Proteases , Streptomyces , Streptomyces/enzymology , Polylysine/pharmacology , Polylysine/chemistry , Polylysine/metabolism , Serine Proteases/metabolism , Bacillaceae/enzymology , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , Genome, Viral , Animals , Norovirus/drug effects , Norovirus/genetics , Virus Inactivation/drug effects , Caliciviridae/genetics , Antiviral Agents/pharmacology
11.
Biomed Environ Sci ; 37(6): 639-646, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38988114

ABSTRACT

Objective: To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We designed, developed, and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection. The precision of the liquid transfer and temperature control was tested. A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction (RT-PCR). The entire process, from SARS-CoV-2 nucleic acid extraction to amplification, was evaluated. Results: The precision of the syringe transfer volume was 19.2 ± 1.9 µL (set value was 20), 32.2 ± 1.6 (set value was 30), and 57.2 ± 3.5 (set value was 60). Temperature control in the amplification tube was measured at 60.0 ± 0.0 °C (set value was 60) and 95.1 ± 0.2 °C (set value was 95) respectively. SARS-Cov-2 nucleic acid extraction yield through the device was 7.10 × 10 6 copies/mL, while a commercial kit yielded 2.98 × 10 6 copies/mL. The mean time to complete the entire assay, from SARS-CoV-2 nucleic acid extraction to amplification detection, was 36 min and 45 s. The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL. Conclusion: The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test (POCT).


Subject(s)
COVID-19 , Disposable Equipment , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/virology , Humans , RNA, Viral/isolation & purification , RNA, Viral/analysis , COVID-19 Nucleic Acid Testing/instrumentation , COVID-19 Nucleic Acid Testing/methods , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/instrumentation
12.
Sex Transm Dis ; 51(8): 545-547, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38989902

ABSTRACT

ABSTRACT: At our medical center, HIV nucleic acid tests are recommended when the HIV antigen-antibody screening immunoassay and antibody differentiation tests are discordant, but not done reflexively. A retrospective chart review found that 35% of discordant test results did not have HIV nucleic acid test completed as recommended.


Subject(s)
Algorithms , HIV Infections , Nucleic Acid Amplification Techniques , Humans , HIV Infections/diagnosis , Retrospective Studies , Male , Female , Adult , HIV Testing , RNA, Viral , Mass Screening/methods , Middle Aged , HIV-1/isolation & purification , HIV-1/immunology , HIV Antibodies/blood , Immunoassay/methods
13.
Arch Virol ; 169(8): 165, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990253

ABSTRACT

Monilinia fructicola is one of the most devastating fungal diseases of rosaceous fruit crops, both in the field and postharvest, causing significant yield losses. Here, we report the discovery of a novel positive single-stranded RNA virus, Monilinia fructicola hypovirus 3 (MfHV3), in a strain (hf-1) of the phytopathogenic fungus Monilinia fructicola. The complete genome of MfHV3 is 9259 nucleotides (nt) in length and contains a single large open reading frame (ORF) from nt position 462 to 8411. This ORF encodes a polyprotein with three conserved domains, namely UDP-glycosyltransferase, RNA-dependent RNA polymerase (RdRp), and DEAD-like helicase. The MfHV3 polyprotein shares the highest similarity with Colletotrichum camelliae hypovirus 1. Phylogenetic analysis indicated that MfHV3 clustered with members of the genus Betahypovirus within the family Hypoviridae. Taken together, the results of genomic organization comparisons, amino acid sequence alignments, and phylogenetic analysis convincingly show that MfHV3 is a new member of the genus Betahypovirus, family Hypoviridae.


Subject(s)
Ascomycota , Fungal Viruses , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , Ascomycota/virology , Ascomycota/genetics , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Plant Diseases/microbiology , Plant Diseases/virology , RNA, Viral/genetics , Viral Proteins/genetics , Whole Genome Sequencing , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA-Dependent RNA Polymerase/genetics , Amino Acid Sequence
14.
Euro Surveill ; 29(28)2024 Jul.
Article in English | MEDLINE | ID: mdl-38994600

ABSTRACT

We investigated a variant of measles virus that encodes three mismatches to the reverse priming site for a widely used diagnostic real-time RT-PCR assay; reduction of sensitivity was hypothesised. We examined performance of the assay in context of the variant using in silico data, synthetic RNA templates and clinical specimens. Sensitivity was reduced observed at low copy numbers for templates encoding the variant sequence. We designed and tested an alternate priming strategy, rescuing the sensitivity of the assay.


Subject(s)
Measles virus , Measles , RNA, Viral , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Humans , Measles/diagnosis , Measles/virology , Measles virus/genetics , Measles virus/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , RNA, Viral/genetics
15.
Cells ; 13(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38994942

ABSTRACT

Small synthetic oligodeoxynucleotides (ODNs) can mimic microbial nucleic acids by interacting with receptor systems and promoting immunostimulatory activities. Nevertheless, some ODNs can act differently on the plasmacytoid dendritic cell (pDC) subset, shaping their immunoregulatory properties and rendering them suitable immunotherapeutic tools in several clinical settings for treating overwhelming immune responses. We designed HIV-1-derived, DNA- and RNA-based oligonucleotides (gag, pol, and U5 regions) and assessed their activity in conferring a tolerogenic phenotype to pDCs in skin test experiments. RNA-but not DNA-oligonucleotides are capable of inducing tolerogenic features in pDCs. Interestingly, sensing the HIV-1-derived single-stranded RNA-gag oligonucleotide (RNA-gag) requires both TLR3 and TLR7 and the engagement of the TRIF adaptor molecule. Moreover, the induction of a suppressive phenotype in pDCs by RNA-gag is contingent upon the induction and activation of the immunosuppressive enzyme Arginase 1. Thus, our data suggest that sensing of the synthetic RNA-gag oligonucleotide in pDCs can induce a suppressive phenotype in pDCs, a property rendering RNA-gag a potential tool for therapeutic strategies in allergies and autoimmune diseases.


Subject(s)
Arginase , Dendritic Cells , HIV-1 , Arginase/metabolism , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Immune Tolerance , Oligonucleotides , RNA, Viral/genetics , RNA, Viral/metabolism
16.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38995674

ABSTRACT

Mayaro virus (MAYV), a mosquito-borne alphavirus, is considered an emerging threat to public health with epidemic potential. Phylogenetic studies show the existence of three MAYV genotypes. In this study, we provide a preliminary analysis of the pathogenesis of all three MAYV genotypes in cynomolgus macaques (Macaca facicularis, Mauritian origin). Significant MAYV-specific RNAemia and viremia were detected during acute infection in animals challenged intravenously with the three MAYV genotypes, and strong neutralizing antibody responses were observed. MAYV RNA was detected at high levels in lymphoid tissues, joint muscle and synovia over 1 month after infection, suggesting that this model could serve as a promising tool in studying MAYV-induced chronic arthralgia, which can persist for years. Significant leucopenia was observed across all MAYV genotypes, peaking with RNAemia. Notable differences in the severity of acute RNAemia and composition of cytokine responses were observed among the three MAYV genotypes. Our model showed no outward signs of clinical disease, but several major endpoints for future MAYV pathology and intervention studies are described. Disruptions to normal blood cell counts and cytokine responses were markedly distinct from those observed in macaque models of CHIKV infection, underlining the importance of developing non-human primate models specific to MAYV infection.


Subject(s)
Alphavirus Infections , Alphavirus , Genotype , Macaca fascicularis , RNA, Viral , Viremia , Animals , Macaca fascicularis/virology , Alphavirus/genetics , Alphavirus/pathogenicity , Alphavirus/classification , Alphavirus/isolation & purification , Alphavirus Infections/virology , Alphavirus Infections/veterinary , Viremia/virology , RNA, Viral/genetics , Antibodies, Viral/blood , Antibodies, Neutralizing/blood , Disease Models, Animal , Phylogeny , Cytokines/genetics , Cytokines/blood
17.
J Med Microbiol ; 73(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38995847

ABSTRACT

Introduction. At the end of 2019 and the year before, there was a significant spread of measles in the World Health Organization (WHO) European Region.Gap statement. Among the countries that reported, a measles outbreak was Bosnia and Herzegovina (BiH).Aim. To describe the measles outbreak in BiH (an entity of the Federation of BiH, FBiH) in 2019.Methodology. Confirmatory IgM serology, measles nucleic acid detection by real-time RT-PCR and virus genotyping were done in the WHO-accredited laboratory for measles and rubella at the Clinical Center of the University of Sarajevo, Unit for Clinical Microbiology. Genotype was determined in all measles-RNA-positive cases by sequence analysis of the 450 nt fragment coding the C-terminal of measles virus nucleoprotein (N).Results. From 1 January to 31 December 2019, 1332 measles cases were reported, with the peak observed in April 2019 (413/1332, 31.01 %). Sarajevo Canton had the highest incidence, number of cases and percentage (206.4; 868/1332; 65.17 %) of measles cases. Around four-fifths of infected persons were unvaccinated (1086/1332, 81.53 %), while 4.58 % of the patients (61/1332) were immunized with one dose of measles-containing vaccine. The highest proportion of cases was found in children 0-6 years of age (738/1332, 55.41 %). Measles IgM positivity was determined in 75.88 % (346/456), while virus RNA was detected in 82.46 % (47/57) of the swab samples. All measles virus sequences belonged to genotype B3. SNP (position 216: C=>T) was detected in 1 of the 40 sequences obtained during this outbreak.Conclusion. Due to suboptimal immunization coverage, BiH belongs to countries at a high risk for measles outbreaks. Post-COVID-19 (coronavirus disease 2019) pandemic, targeted and tailored strategies are required to ensure routine vaccination demand and acceptance and broad partner and stakeholder group participation.


Subject(s)
COVID-19 , Disease Outbreaks , Genotype , Measles virus , Measles , Humans , Measles/epidemiology , Measles/virology , Measles/prevention & control , Measles virus/genetics , Measles virus/isolation & purification , Measles virus/classification , Measles virus/immunology , Child , Male , Adult , Child, Preschool , Adolescent , Female , Young Adult , Infant , COVID-19/epidemiology , COVID-19/prevention & control , Bosnia and Herzegovina/epidemiology , Middle Aged , Immunoglobulin M/blood , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Measles Vaccine/administration & dosage , Antibodies, Viral/blood
18.
Vopr Virusol ; 69(3): 203-218, 2024 Jul 05.
Article in Russian | MEDLINE | ID: mdl-38996370

ABSTRACT

The basis for criteria of the taxonomic classification of DNA and RNA viruses based on data of the genomic sequencing are viewed in this review. The genomic sequences of viruses, which have genome represented by double-stranded DNA (orthopoxviruses as example), positive-sense single-stranded RNA (alphaviruses and flaviviruses as example), non-segmented negative-sense single-stranded RNA (filoviruses as example), segmented negative-sense single-stranded RNA (arenaviruses and phleboviruses as example) are analyzed. The levels of genetic variability that determine the assignment of compared viruses to taxa of various orders are established for each group of viruses.


Subject(s)
DNA Viruses , Genome, Viral , RNA Viruses , RNA Viruses/genetics , RNA Viruses/classification , DNA Viruses/genetics , DNA Viruses/classification , Phylogeny , Humans , Animals , Genomics/methods , RNA, Viral/genetics , Genetic Variation
19.
Nat Commun ; 15(1): 5725, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977675

ABSTRACT

The rational targeting of RNA with small molecules is hampered by our still limited understanding of RNA structural and dynamic properties. Most in silico tools for binding site identification rely on static structures and therefore cannot face the challenges posed by the dynamic nature of RNA molecules. Here, we present SHAMAN, a computational technique to identify potential small-molecule binding sites in RNA structural ensembles. SHAMAN enables exploring the conformational landscape of RNA with atomistic molecular dynamics simulations and at the same time identifying RNA pockets in an efficient way with the aid of probes and enhanced-sampling techniques. In our benchmark composed of large, structured riboswitches as well as small, flexible viral RNAs, SHAMAN successfully identifies all the experimentally resolved pockets and ranks them among the most favorite probe hotspots. Overall, SHAMAN sets a solid foundation for future drug design efforts targeting RNA with small molecules, effectively addressing the long-standing challenges in the field.


Subject(s)
Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA, Viral , RNA , Binding Sites , RNA/chemistry , RNA/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA, Viral/genetics , Riboswitch , Small Molecule Libraries/chemistry , Traditional Medicine Practitioners
20.
BMC Infect Dis ; 24(1): 679, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982392

ABSTRACT

BACKGROUND: There is an increasing disease trend for SARS-COV-2, so need a quick and affordable diagnostic method. It should be highly accurate and save costs compared to other methods. The purpose of this research is to achieve these goals. METHODS: This study analyzed 342 samples using TaqMan One-Step RT-qPCR and fast One-Step RT-LAMP (Reverse Transcriptase Loop-Mediated Isothermal Amplification). The One-Step LAMP assay was conducted to assess the sensitivity and specificity. RESULTS: The research reported positive samples using two different methods. In the RT-LAMP method, saliva had 92 positive samples (26.9%) and 250 negative samples (73.09%) and nasopharynx had 94 positive samples (27.4%) and 248 negative samples (72.51%). In the RT-qPCR method, saliva had 86 positive samples (25.1%) and 256 negative samples (74.8%) and nasopharynx had 93 positive samples (27.1%) and 249 negative samples (72.8%). The agreement between the two tests in saliva and nasopharynx samples was 93% and 94% respectively, based on Cohen's kappa coefficient (κ) (P < 0.001). The rate of sensitivity in this technique was reported at a dilution of 1 × 101 and 100% specificity. CONCLUSIONS: Based on the results of the study the One-Step LAMP assay has multiple advantages. These include simplicity, cost-effectiveness, high sensitivity, and specificity. The One-Step LAMP assay shows promise as a diagnostic tool. It can help manage disease outbreaks, ensure prompt treatment, and safeguard public health by providing rapid, easy-to-use testing.


Subject(s)
COVID-19 , Molecular Diagnostic Techniques , Nasopharynx , Nucleic Acid Amplification Techniques , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Saliva , Sensitivity and Specificity , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/virology , Nasopharynx/virology , Nucleic Acid Amplification Techniques/methods , Saliva/virology , Real-Time Polymerase Chain Reaction/methods , Molecular Diagnostic Techniques/methods , COVID-19 Nucleic Acid Testing/methods , RNA, Viral/genetics , RNA, Viral/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...