Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 47(6): 773-784.e6, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30562515

ABSTRACT

Rapid mitotic divisions and a fixed transcription rate limit the maximal length of transcripts in early Drosophila embryos. Previous studies suggested that transcription of long genes is initiated but aborted, as early nuclear divisions have short interphases. Here, we identify long genes that are expressed during short nuclear cycles as truncated transcripts. The RNA binding protein Sex-lethal physically associates with transcripts for these genes and is required to support early termination to specify shorter transcript isoforms in early embryos of both sexes. In addition, one truncated transcript for the gene short-gastrulation encodes a product in embryos that functionally relates to a previously characterized dominant-negative form, which maintains TGF-ß signaling in the off-state. In summary, our results reveal a developmental program of short transcripts functioning to help temporally regulate Drosophila embryonic development, keeping cell signaling at early stages to a minimum in order to support its proper initiation at cellularization.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Signal Transduction/genetics , Transcription, Genetic/physiology , Animals , Cell Nucleus/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Embryo, Nonmammalian/metabolism , Embryonic Development/physiology , Gene Expression Profiling/methods , Mitosis/physiology , Morphogenesis , RNA Isoforms/physiology , RNA-Binding Proteins/physiology , Regulatory Elements, Transcriptional/physiology , Terminator Regions, Genetic/physiology
2.
Plant Cell Environ ; 41(7): 1539-1550, 2018 07.
Article in English | MEDLINE | ID: mdl-29532482

ABSTRACT

One of the ways in which plants can respond to temperature is via alternative splicing (AS). Previous work showed that temperature changes affected the splicing of several circadian clock gene transcripts. Here, we investigated the role of RNA-binding splicing factors (SFs) in temperature-sensitive AS of the clock gene LATE ELONGATED HYPOCOTYL (LHY). We characterized, in wild type plants, temperature-associated isoform switching and expression patterns for SF transcripts from a high-resolution temperature and time series RNA-seq experiment. In addition, we employed quantitative RT-PCR of SF mutant plants to explore the role of the SFs in cooling-associated AS of LHY. We show that the splicing and expression of several SFs responds sufficiently, rapidly, and sensitively to temperature changes to contribute to the splicing of the 5'UTR of LHY. Moreover, the choice of splice site in LHY was altered in some SF mutants. The splicing of the 5'UTR region of LHY has characteristics of a molecular thermostat, where the ratio of transcript isoforms is sensitive to temperature changes as modest as 2 °C and is scalable over a wide dynamic range of temperature. Our work provides novel insight into SF-mediated coupling of the perception of temperature to post-transcriptional regulation of the clock.


Subject(s)
Alternative Splicing , Arabidopsis/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Alternative Splicing/genetics , Alternative Splicing/physiology , Arabidopsis/physiology , Circadian Rhythm/genetics , DNA-Binding Proteins/physiology , Gene Expression Regulation, Plant , RNA Isoforms/genetics , RNA Isoforms/physiology , Real-Time Polymerase Chain Reaction , Temperature , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...