Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Biopolymers ; 115(3): e23576, 2024 May.
Article in English | MEDLINE | ID: mdl-38511874

ABSTRACT

EWSR1 (Ewing Sarcoma Related protein 1) is an RNA binding protein that is ubiquitously expressed across cell lines and involved in multiple parts of RNA processing, such as transcription, splicing, and mRNA transport. EWSR1 has also been implicated in cellular mechanisms to control formation of R-loops, a three-stranded nucleic acid structure consisting of a DNA:RNA hybrid and a displaced single-stranded DNA strand. Unscheduled R-loops result in genomic and transcription stress. Loss of function of EWSR1 functions commonly found in Ewing Sarcoma correlates with high abundance of R-loops. In this study, we investigated the mechanism for EWSR1 to recognize an R-loop structure specifically. Using electrophoretic mobility shift assays (EMSA), we detected the high affinity binding of EWSR1 to substrates representing components found in R-loops. EWSR1 specificity could be isolated to the DNA fork region, which transitions between double- and single-stranded DNA. Our data suggests that the Zinc-finger domain (ZnF) with flanking arginine and glycine rich (RGG) domains provide high affinity binding, while the RNA recognition motif (RRM) with its RGG domains offer improved specificity. This model offers a rational for EWSR1 specificity to encompass a wide range in contexts due to the DNA forks always found with R-loops.


Subject(s)
DNA , R-Loop Structures , RNA-Binding Protein EWS , RNA-Binding Protein EWS/metabolism , RNA-Binding Protein EWS/chemistry , RNA-Binding Protein EWS/genetics , Humans , DNA/metabolism , DNA/chemistry , Protein Binding , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/genetics , Zinc Fingers , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Electrophoretic Mobility Shift Assay
2.
Biopolymers ; 114(5): e23536, 2023 May.
Article in English | MEDLINE | ID: mdl-36929870

ABSTRACT

EWS is a member of the FET family of RNA/DNA binding proteins that regulate crucial phases of nucleic acid metabolism. EWS comprises an N-terminal low-complexity domain (LCD) and a C-terminal RNA-binding domain (RBD). The RBD is further divided into three RG-rich regions, which flank an RNA-recognition motif (RRM) and a zinc finger (ZnF) domain. Recently, EWS was shown to regulate R-loops in Ewing sarcoma, a pediatric bone and soft-tissue cancer in which a chromosomal translocation fuses the N-terminal LCD of EWS to the C-terminal DNA binding domain of the transcription factor FLI1. Though EWS was shown to directly bind R-loops, the binding mechanism was not elucidated. In the current study, the RBD of EWS was divided into several constructs, which were subsequently assayed for binding to various nucleic acid structures expected to form at R-loops, including RNA stem-loops, DNA G-quadruplexes, and RNA:DNA hybrids. EWS interacted with all three nucleic acid structures with varying affinities and multiple domains contributed to binding each substrate. The RRM and RG2 region appear to bind nucleic acids promiscuously while the ZnF displayed more selectivity for single-stranded structures. With these results, the structural underpinnings of EWS recognition and binding of R-loops and other nucleic acid structures is better understood.


Subject(s)
Nucleic Acids , RNA-Binding Proteins , Humans , Child , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/chemistry , RNA-Binding Protein EWS/metabolism , DNA-Binding Proteins , DNA , RNA , Cell Line, Tumor
3.
J Am Chem Soc ; 143(30): 11520-11534, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34304571

ABSTRACT

Many membraneless organelles are thought to be biomolecular condensates formed by phase separation of proteins and other biopolymers. Post-translational modifications (PTMs) can impact protein phase separation behavior, although for many PTMs this aspect of their function is unknown. O-linked ß-D-N-acetylglucosaminylation (O-GlcNAcylation) is an abundant form of intracellular glycosylation whose roles in regulating biomolecular condensate assembly and dynamics have not been delineated. Using an in vitro approach, we found that O-GlcNAcylation reduces the phase separation propensity of the EWS N-terminal low complexity region (LCRN) under different conditions, including in the presence of the arginine- and glycine-rich RNA-binding domains (RBD). O-GlcNAcylation enhances fluorescence recovery after photobleaching (FRAP) within EWS LCRN condensates and causes the droplets to exhibit more liquid-like relaxation following fusion. Following extended incubation times, EWS LCRN+RBD condensates exhibit diminished FRAP, indicating a loss of fluidity, while condensates containing the O-GlcNAcylated LCRN do not. In HeLa cells, EWS is less O-GlcNAcylated following OGT knockdown, which correlates with its increased accumulation in a filter retardation assay. Relative to the human proteome, O-GlcNAcylated proteins are enriched with regions that are predicted to phase separate, suggesting a general role of O-GlcNAcylation in regulation of biomolecular condensates.


Subject(s)
Acetylglucosamine/metabolism , RNA-Binding Protein EWS/metabolism , Acetylglucosamine/chemistry , Biomolecular Condensates , HeLa Cells , Humans , Protein Domains , Protein Processing, Post-Translational , RNA-Binding Protein EWS/chemistry , Tumor Cells, Cultured
4.
Cancer Cell ; 39(9): 1262-1278.e7, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34329586

ABSTRACT

Fusion-transcription factors (fusion-TFs) represent a class of driver oncoproteins that are difficult to therapeutically target. Recently, protein degradation has emerged as a strategy to target these challenging oncoproteins. The mechanisms that regulate fusion-TF stability, however, are generally unknown. Using CRISPR-Cas9 screening, we discovered tripartite motif-containing 8 (TRIM8) as an E3 ubiquitin ligase that ubiquitinates and degrades EWS/FLI, a driver fusion-TF in Ewing sarcoma. Moreover, we identified TRIM8 as a selective dependency in Ewing sarcoma compared with >700 other cancer cell lines. Mechanistically, TRIM8 knockout led to an increase in EWS/FLI protein levels that was not tolerated. EWS/FLI acts as a neomorphic substrate for TRIM8, defining the selective nature of the dependency. Our results demonstrate that fusion-TF protein stability is tightly regulated and highlight fusion oncoprotein-specific regulators as selective therapeutic targets. This study provides a tractable strategy to therapeutically exploit oncogene overdose in Ewing sarcoma and potentially other fusion-TF-driven cancers.


Subject(s)
Bone Neoplasms/mortality , Carrier Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oncogene Proteins, Fusion/chemistry , Proto-Oncogene Protein c-fli-1/chemistry , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/chemistry , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/mortality , Bone Neoplasms/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival , Gene Knockout Techniques , HEK293 Cells , Humans , Microfilament Proteins/metabolism , Nerve Tissue Proteins/genetics , Oncogene Proteins, Fusion/metabolism , Protein Stability , Proteolysis , Sarcoma, Ewing/metabolism , Trans-Activators/metabolism
5.
Front Endocrinol (Lausanne) ; 12: 600682, 2021.
Article in English | MEDLINE | ID: mdl-33692755

ABSTRACT

Familial inheritance in non-medullary thyroid cancer (NMTC) is an area that has yet to be adequately explored. Despite evidence suggesting strong familial clustering of non-syndromic NMTC, known variants still account for a very small percentage of the genetic burden. In a recent whole genome sequencing (WGS) study of five families with several NMTCs, we shortlisted promising variants with the help of our in-house developed Familial Cancer Variant Prioritization Pipeline (FCVPPv2). Here, we report potentially disease-causing variants in checkpoint kinase 2 (CHEK2), Ewing sarcoma breakpoint region 1 (EWSR1) and T-lymphoma invasion and metastasis-inducing protein 1 (TIAM1) in one family. Performing WGS on three cases, one probable case and one healthy individual in a family with familial NMTC left us with 112254 variants with a minor allele frequency of less than 0.1%, which was reduced by pedigree-based filtering to 6368. Application of the pipeline led to the prioritization of seven coding and nine non-coding variants from this family. The variant identified in CHEK2, a known tumor suppressor gene involved in DNA damage-induced DNA repair, cell cycle arrest, and apoptosis, has been previously identified as a germline variant in breast and prostate cancer and has been functionally validated by Roeb et al. in a yeast-based assay to have an intermediate effect on protein function. We thus hypothesized that this family may harbor additional disease-causing variants in other functionally related genes. We evaluated two further variants in EWSR1 and TIAM1 with promising in silico results and reported interaction in the DNA-damage repair pathway. Hence, we propose a polygenic mode of inheritance in this family. As familial NMTC is considered to be more aggressive than its sporadic counterpart, it is important to identify such susceptibility genes and their associated pathways. In this way, the advancement of personalized medicine in NMTC patients can be fostered. We also wish to reopen the discussion on monogenic vs polygenic inheritance in NMTC and instigate further development in this area of research.


Subject(s)
Checkpoint Kinase 2/genetics , Genetic Predisposition to Disease , RNA-Binding Protein EWS/genetics , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics , Thyroid Cancer, Papillary/genetics , Amino Acid Sequence , Checkpoint Kinase 2/chemistry , Checkpoint Kinase 2/metabolism , Female , Gene Frequency , Genome, Human , Humans , Italy , Male , Pedigree , RNA-Binding Protein EWS/chemistry , RNA-Binding Protein EWS/metabolism , Sequence Alignment , T-Lymphoma Invasion and Metastasis-inducing Protein 1/chemistry , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , Thyroid Cancer, Papillary/metabolism , Whole Genome Sequencing
6.
J Vis Exp ; (160)2020 06 27.
Article in English | MEDLINE | ID: mdl-32658189

ABSTRACT

Many cancers are characterized by chromosomal translocations which result in the expression of oncogenic fusion transcription factors. Typically, these proteins contain an intrinsically disordered domain (IDD) fused with the DNA-binding domain (DBD) of another protein and orchestrate widespread transcriptional changes to promote malignancy. These fusions are often the sole recurring genomic aberration in the cancers they cause, making them attractive therapeutic targets. However, targeting oncogenic transcription factors requires a better understanding of the mechanistic role that low-complexity, IDDs play in their function. The N-terminal domain of EWSR1 is an IDD involved in a variety of oncogenic fusion transcription factors, including EWS/FLI, EWS/ATF, and EWS/WT1. Here, we use RNA-sequencing to investigate the structural features of the EWS domain important for transcriptional function of EWS/FLI in Ewing sarcoma. First shRNA-mediated depletion of the endogenous fusion from Ewing sarcoma cells paired with ectopic expression of a variety of EWS-mutant constructs is performed. Then RNA-sequencing is used to analyze the transcriptomes of cells expressing these constructs to characterize the functional deficits associated with mutations in the EWS domain. By integrating the transcriptomic analyses with previously published information about EWS/FLI DNA binding motifs, and genomic localization, as well as functional assays for transforming ability, we were able to identify structural features of EWS/FLI important for oncogenesis and define a novel set of EWS/FLI target genes critical for Ewing sarcoma. This paper demonstrates the use of RNA-sequencing as a method to map the structure-function relationship of the intrinsically disordered domain of oncogenic transcription factors.


Subject(s)
Gene Expression Profiling , Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/chemistry , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/chemistry , RNA-Binding Protein EWS/metabolism , Structure-Activity Relationship , Binding Sites , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Humans , Mutation , Oncogene Proteins, Fusion/genetics , Protein Domains , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology
7.
Nucleic Acids Res ; 47(18): 9619-9636, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31392992

ABSTRACT

Connections between epigenetic reprogramming and transcription or splicing create novel mechanistic networks that can be targeted with tailored therapies. Multiple subunits of the chromatin remodeling BAF complex, including ARID1A, play a role in oncogenesis, either as tumor suppressors or oncogenes. Recent work demonstrated that EWS-FLI1, the oncogenic driver of Ewing sarcoma (ES), plays a role in chromatin regulation through interactions with the BAF complex. However, the specific BAF subunits that interact with EWS-FLI1 and the precise role of the BAF complex in ES oncogenesis remain unknown. In addition to regulating transcription, EWS-FLI1 also alters the splicing of many mRNA isoforms, but the role of splicing modulation in ES oncogenesis is not well understood. We have identified a direct connection between the EWS-FLI1 protein and ARID1A isoform protein variant ARID1A-L. We demonstrate here that ARID1A-L is critical for ES maintenance and supports oncogenic transformation. We further report a novel feed-forward cycle in which EWS-FLI1 leads to preferential splicing of ARID1A-L, promoting ES growth, and ARID1A-L reciprocally promotes EWS-FLI1 protein stability. Dissecting this interaction may lead to improved cancer-specific drug targeting.


Subject(s)
Carcinogenesis/genetics , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/genetics , Transcription Factors/genetics , Alternative Splicing/genetics , Cell Line, Tumor , Chromatin Assembly and Disassembly/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic , Humans , Nuclear Proteins/chemistry , Oncogene Proteins, Fusion/chemistry , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Stability , Proto-Oncogene Protein c-fli-1/chemistry , RNA-Binding Protein EWS/chemistry , Sarcoma, Ewing/pathology , Transcription Factors/chemistry
8.
Sci Rep ; 9(1): 951, 2019 01 30.
Article in English | MEDLINE | ID: mdl-30700749

ABSTRACT

Ewing sarcoma is the second most common pediatric bone and soft tissue tumor presenting with an aggressive behavior and prevalence to metastasize. The diagnostic translocation t(22;11)(q24;12) leads to expression of the chimeric oncoprotein EWS-FLI1 which is uniquely expressed in all tumor cells and maintains their survival. Constant EWS-FLI1 protein turnover is regulated by the ubiquitin proteasome system. Here, we now identified ubiquitin specific protease 19 (USP19) as a regulator of EWS-FLI1 stability using an siRNA based screening approach. Depletion of USP19 resulted in diminished EWS-FLI1 protein levels and, vice versa, upregulation of active USP19 stabilized the fusion protein. Importantly, stabilization appears to be specific for the fusion protein as it could not be observed neither for EWSR1 nor for FLI1 wild type proteins even though USP19 binds to the N-terminal EWS region to regulate deubiquitination of both EWS-FLI1 and EWSR1. Further, stable shUSP19 depletion resulted in decreased cell growth and diminished colony forming capacity in vitro, and significantly delayed tumor growth in vivo. Our findings not only provide novel insights into the importance of the N-terminal EWSR1 domain for regulation of fusion protein stability, but also indicate that inhibition of deubiquitinating enzyme(s) might constitute a novel therapeutic strategy in treatment of Ewing sarcoma.


Subject(s)
Endopeptidases/metabolism , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Ubiquitination , Animals , Cell Proliferation , Humans , Mice , Models, Biological , Oncogene Proteins, Fusion/chemistry , Protein Domains , Protein Stability , Proto-Oncogene Protein c-fli-1/chemistry , RNA, Small Interfering/metabolism , RNA-Binding Protein EWS/chemistry
9.
Cell ; 173(3): 677-692.e20, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677512

ABSTRACT

RNA-binding proteins (RBPs) with prion-like domains (PrLDs) phase transition to functional liquids, which can mature into aberrant hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mislocalize to cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibrillization and cause disease. Here, we establish that nuclear-import receptors (NIRs) specifically chaperone and potently disaggregate wild-type and disease-linked RBPs bearing a NLS. Karyopherin-ß2 (also called Transportin-1) engages PY-NLSs to inhibit and reverse FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2 fibrillization, whereas Importin-α plus Karyopherin-ß1 prevent and reverse TDP-43 fibrillization. Remarkably, Karyopherin-ß2 dissolves phase-separated liquids and aberrant fibrillar hydrogels formed by FUS and hnRNPA1. In vivo, Karyopherin-ß2 prevents RBPs with PY-NLSs accumulating in stress granules, restores nuclear RBP localization and function, and rescues degeneration caused by disease-linked FUS and hnRNPA2. Thus, NIRs therapeutically restore RBP homeostasis and mitigate neurodegeneration.


Subject(s)
Active Transport, Cell Nucleus , Prions/chemistry , RNA-Binding Proteins/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , Adult , Aged , Animals , Cytoplasm/chemistry , DNA-Binding Proteins/chemistry , Drosophila melanogaster , Female , Green Fluorescent Proteins/chemistry , HEK293 Cells , HeLa Cells , Homeostasis , Humans , Karyopherins/chemistry , Male , Middle Aged , Molecular Chaperones/chemistry , Mutation , Neurodegenerative Diseases/pathology , Protein Domains , RNA-Binding Protein EWS/chemistry , TATA-Binding Protein Associated Factors/chemistry , beta Karyopherins/chemistry
10.
Protein Sci ; 27(3): 633-642, 2018 03.
Article in English | MEDLINE | ID: mdl-29193371

ABSTRACT

The FET sub-family (FUS/TLS, EWS, TAF15) of RNA-binding proteins have remarkably similar overall structure but diverse biological and pathological roles. The molecular basis for FET protein specialization is largely unknown. Gly-Arg-Rich regions (RGG-boxes) within FET proteins are targets for methylation by Protein-Arginine-Methyl-Transferase-1 (PRMT1) and substrate capture is thought to involve electrostatic attraction between positively charged polyRGG substrates and negatively charged surface channels of PRMT1. Unlike FUS and EWS, a high proportion of TAF15 RGG-boxes are embedded within neutrally charged YGGDR(S/G)G repeats, suggesting that they might not bind well to PRMT1. This notion runs contrary however to a report that YGGDR(S/G)G repeats are methylated by PRMT1. Using peptide-based polyRGG substrates and a novel 2-hybrid binding assay, we find that the Asp residue in YGGDR(S/G)G repeats confers poor binding to PRMT1. Our results therefore indicate that YGGDR(S/G)G repeats may contribute to TAF15 specialization by enabling differential interactions with PRMT1 and reduced overall levels of TAF15 methylation compared with other FET proteins. By analogy with molecular recognition of other disordered polyvalent ligands by globular protein partners, we also propose a dynamic polyelectrostatic model for substrate capture by PRMT1.


Subject(s)
Protein-Arginine N-Methyltransferases/metabolism , RNA-Binding Protein EWS/metabolism , Repressor Proteins/metabolism , TATA-Binding Protein Associated Factors/metabolism , Asparagine/metabolism , Binding Sites , Cell Line , Humans , Methylation , Protein Binding , Protein Interaction Domains and Motifs , RNA-Binding Protein EWS/chemistry , TATA-Binding Protein Associated Factors/chemistry
11.
Sci Rep ; 7(1): 7172, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28775288

ABSTRACT

The EWS-FLI1 chimeric protein uniquely expressed in Ewing's sarcoma has an obligate role in its aetiology. In our previous report we showed that ectopic expression of the DNA sequences form the junction region (a.a 251-280) can inhibit Ewing's sarcoma cell growth. In the present report, we introduced a peptide (TAT/NLS/EWS-PEP) comprising of thirty amino acids spanning the junction in conjunction with HIV-1-trans-activating (TAT) and nuclear localization signal sequence (NLS). Peptide uptake and localization studies revealed presence of peptide in ~99% of transduced cells and in the nucleus. Peptide transfection induced cytotoxicity relative to untreated and TAT-NLS peptide treated Ewing's sarcoma cells. The peptide inhibited clonogenicity, cell cycle, bromo-deoxy uridine (BrdU) uptake and invasion capacity of treated cells. The treatment also affected epithelial to mesenchymal transition (EMT) markers and EWS-FLI1 target gene expression levels. Co-immunoprecipitation experiments involving ectopically expressed full-length EWS-FLI1 protein and the peptide revealed an interaction. Additionally, we found that peptide interaction also occurs with the protein-GGAA microsatellite sequences complex known to contain EWS-FLI1. Further, in the pull-down assay, the peptide was found to interact with proteins known to potentially interact with EWS-FLI1. Based on these results we conclude that peptide could be applied in targeting EWS-FLI1 protein.


Subject(s)
Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/genetics , Cell Cycle , Cell Line , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/metabolism , Peptides/genetics , Peptides/metabolism , Proto-Oncogene Protein c-fli-1/chemistry , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/chemistry , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/metabolism , Trans-Activators , Transfection
13.
Biosci Biotechnol Biochem ; 81(3): 541-546, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27903134

ABSTRACT

Of the FET (fused in sarcoma [FUS]/Ewing sarcoma protein [EWS]/TATA binding protein-associated factor 15 [TAF15]) family of heterogeneous nuclear ribonucleoprotein particle proteins, FUS and TAF15 are consistently and EWS variably found in inclusion bodies in neurodegenerative diseases such as frontotemporal lobar degeneration associated with FUS. It is speculated that dysregulation of FET proteins at the post-translational level is involved in their cytoplasmic deposition. Here, the O-linked ß-N-acetylglucosamine (O-GlcNAc) glycosylation stoichiometry of the FET proteins was chemoenzymatically analyzed, and it was found that only EWS is dynamically glycosylated with a high stoichiometry in the neural cell lines tested and in mouse brain. It was also confirmed that EWS, but not FUS and TAF15, is glycosylated with a high stoichiometry not only in the neural cells but also in the non-neural cell lines tested. These results indicate that O-GlcNAc glycosylation imparts a physicochemical property on EWS that is distinct from that of the other FET proteins in most of cell lineages or tissues.


Subject(s)
RNA-Binding Protein EWS/metabolism , RNA-Binding Protein FUS/metabolism , TATA-Binding Protein Associated Factors/metabolism , Acetylglucosamine/metabolism , Animals , Cell Differentiation , Glycosylation , Humans , Mice , Mice, Inbred Strains , Neurons/metabolism , Neurons/pathology , RNA-Binding Protein EWS/chemistry , RNA-Binding Protein FUS/chemistry , TATA-Binding Protein Associated Factors/chemistry
14.
Mol Ther ; 24(8): 1412-22, 2016 08.
Article in English | MEDLINE | ID: mdl-27166877

ABSTRACT

The EWS/FLI1 fusion gene is well characterized as a driver of Ewing's sarcoma. Bi-shRNA EWS/FLI1 is a functional plasmid DNA construct that transcribes both siRNA and miRNA-like effectors each of which targets the identical type 1 translocation junction region of the EWS/FLI1 transcribed mRNA sequence. Previous preclinical and clinical studies confirm the safety of this RNA interference platform technology and consistently demonstrate designated mRNA and protein target knockdown at greater than 90% efficiency. We initiated development of pbi-shRNA EWS/FLI1 lipoplex (LPX) for the treatment of type 1 Ewing's sarcoma. Clinical-grade plasmid was manufactured and both sequence and activity verified. Target protein and RNA knockdown of 85-92% was demonstrated in vitro in type 1 human Ewing's sarcoma tumor cell lines with the optimal bi-shRNA EWS/FLI1 plasmid. This functional plasmid was placed in a clinically tested, liposomal (LP) delivery vehicle followed by in vivo verification of activity. Type 1 Ewing's sarcoma xenograft modeling confirmed dose related safety and tumor response to pbi-shRNA EWS/FLI1 LPX. Toxicology studies in mini-pigs with doses comparable to the demonstrated in vivo efficacy dose resulted in transient fever, occasional limited hypertension at low- and high-dose assessment and transient liver enzyme elevation at high dose. These results provide the justification to initiate clinical testing.


Subject(s)
Liposomes , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , RNA, Small Interfering/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/genetics , Animals , Binding Sites , Cell Line, Tumor , Cytokines/metabolism , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Gene Knockdown Techniques , Gene Order , Genetic Therapy , Humans , Inflammation Mediators , Male , Oncogene Proteins, Fusion/administration & dosage , Oncogene Proteins, Fusion/chemistry , Plasmids/administration & dosage , Plasmids/genetics , Proto-Oncogene Protein c-fli-1/administration & dosage , Proto-Oncogene Protein c-fli-1/chemistry , RNA Interference , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , RNA-Binding Protein EWS/administration & dosage , RNA-Binding Protein EWS/chemistry , Sarcoma, Ewing/mortality , Sarcoma, Ewing/pathology , Sarcoma, Ewing/therapy , Targeted Gene Repair , Transfection , Tumor Burden , Xenograft Model Antitumor Assays
15.
Transcription ; 7(4): 141-51, 2016 08 07.
Article in English | MEDLINE | ID: mdl-27159574

ABSTRACT

The multi-functional TET (TAF15/EWS/TLS) or FET (FUS/EWS/TLS) protein family of higher organisms harbor a transcriptional-activation domain (EAD) and an RNA-binding domain (RBD). The transcriptional activation function is, however, only revealed in oncogenic TET-fusion proteins because in native TET proteins it is auto-repressed by RGG-boxes within the TET RBD. Auto-repression is suggested to involve direct cation-pi interactions between multiple Arg residues within RGG boxes and EAD aromatics. Via analysis of TET transcriptional activity in different organisms, we report herein that repression is not autonomous but instead requires additional trans-acting factors. This finding is not supportive of a proposed model whereby repression occurs via a simple intramolecular EAD/RGG-box interaction. We also show that RGG-boxes present within reiterated YGGDRGG repeats that are unique to TAF15, are defective for repression due to the conserved Asp residue. Thus, RGG boxes within TET proteins can be functionally distinguished. While our results show that YGGDRGG repeats are not involved in TAF15 auto-repression, their remarkable number and conservation strongly suggest that they may confer specialized properties to TAF15 and thus contribute to functional differentiation within the TET/FET protein family.


Subject(s)
Amino Acid Motifs , Protein Interaction Domains and Motifs , RNA-Binding Protein EWS/metabolism , RNA-Binding Protein FUS/metabolism , TATA-Binding Protein Associated Factors/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cell Line , Gene Expression , Gene Expression Regulation , Genes, Reporter , Protein Binding , RNA-Binding Protein EWS/chemistry , RNA-Binding Protein FUS/chemistry , TATA-Binding Protein Associated Factors/chemistry , Trans-Activators/metabolism , Transcriptional Activation
16.
Sci Rep ; 5: 7826, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25591392

ABSTRACT

A mouse model that recapitulates the human Ewing's sarcoma-specific chromosomal translocation was generated utilizing the Cre/loxP-mediated recombination technique. A cross between Ewsr1-loxP and Fli1-loxP mice and expression of ubiquitous Cre recombinase induced a specific translocation between Ewsr1 and Fli1 loci in systemic organs of both adult mice and embryos. As a result Ewsr1-Fli1 fusion transcripts were expressed, suggesting a functional Ews-Fli1 protein might be synthesized in vivo. However, by two years of age, none of the Ewsr1-loxP/Fli1-loxP/CAG-Cre (EFCC) mice developed any malignancies, including Ewing-like small round cell sarcoma. Unexpectedly, all the EFCC mice suffered from dilated cardiomyopathy and died of chronic cardiac failure. Genetic recombination between Ewsr1 and Fli1 was confirmed in the myocardial tissue and apoptotic cell death of cardiac myocytes was observed at significantly higher frequency in EFCC mice. Moreover, expression of Ews-Fli1 in the cultured cardiac myocytes induced apoptosis. Collectively, these results indicated that ectopic expression of the Ews-Fli1 oncogene stimulated apoptotic signals, and suggested an important relationship between oncogenic signals and cellular context in the cell-of-origin of Ewing's sarcoma.


Subject(s)
Cardiomyopathy, Dilated/pathology , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Translocation, Genetic , Animals , Apoptosis , Base Sequence , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/mortality , Cells, Cultured , Chromosomes , Disease Models, Animal , Gene Targeting , Genetic Loci , Liver/pathology , Mice , Mice, Inbred ICR , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/chemistry , RNA-Binding Protein EWS/chemistry , Sequence Analysis, DNA , Survival Rate
17.
Bioorg Khim ; 40(1): 20-30, 2014.
Article in English | MEDLINE | ID: mdl-25898720

ABSTRACT

A relationship was found between the Amino acid (AA) composition, Intrinsic Protein Disorder (IPD) and Protein Binding Regions (PBRs) of the functional regions of Ewing's sarcoma protein (EWS) and oncogenic EWS fusion proteins (EFPs). EWS has high IPD and 64% predicted Disordered Binding Regions (DBRs) by ANCHOR. The native Transcription Factors, fused to EWS Activation Domain (EAD) in EFPs, show high DBRs in N-terminal domain and relatively low in C-terminal domain. EFPs oncogenic function is related to IPD and PBRs probabilities, high around breakpoint and decreased in the fused Transcription Factor. The increased IPD in EAD around (AA 82), and the small RBRs around (AAs (50-60) and 100) are consistent with the reported physical interactions with RNA Polymerase II subunits. The AAs (228-264) of EWS, interacting with ZFM1 (SF1), correspond to two peaks of DBRs by Anchor and high IPD by IUPred. The IQ domain of EAD (AAs 258-280) that is phosphorylated by PKC and interacts with calmodulin, has high IPD and DBRs probability. The Ser266, conserved site of PKC phosphorylation, is situated in DBR and IPD region with about 100% probability. The small PBRs found in the EAD correspond to important physical protein-protein interactions, confirmed by experimental data. Thus regions of EWS and EFPs, included in functional interactions with other partners, are enriched of Protein Binding Regions by ANCHOR. The development of IPD- and PBRs-related, EWS-FLI1-directed specific therapies will help the design of antitumor agents against ESFT because of high patient mortality in cases of meta- static disease.


Subject(s)
Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/chemistry , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/chemistry , RNA-Binding Protein EWS/metabolism , Transcription Factors/chemistry , Binding Sites , Humans , Kruppel-Like Transcription Factors/chemistry , Kruppel-Like Transcription Factors/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Structure-Activity Relationship , Transcription Factors/metabolism
18.
PLoS One ; 8(10): e77416, 2013.
Article in English | MEDLINE | ID: mdl-24124617

ABSTRACT

Tumours defined as Ewing sarcoma (ES) constitute a group of highly malignant neoplasms that most often affect children and young adults in the first 2 decades of life. The EWS/Fli-1 fusion gene, a product of the translocation t(11;22) (q24; 12), is detected in 95% of ES patients. Recently, it was validated that cells emit a heterogeneous mixture of vesicular, organelle-like structures (microvesicles, MVs) into their surroundings including blood and body fluids, and that these MVs contain a selected set of tumor-related proteins and high levels of mRNAs and miRNAs. In this present study, we detected the Ewing sarcoma-specific EWS/Fli-1 mRNA in MVs from the culture medium of ES cell lines carrying t(11;22) (q24; 12). Also, we detected this fusion gene in approximately 40% of the blood samples from mice inoculated with xenografts of TC135 or A673 cells. These findings indicate the EWS/Fli-1 mRNA in MVs might be a new non-invasive diagnostic marker for specific cases of Ewing sarcoma.


Subject(s)
Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA, Messenger/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Secretory Vesicles/metabolism , Animals , Base Sequence , Biological Transport , Cell Line, Tumor , Disease Models, Animal , Extracellular Space/metabolism , Heterografts , Humans , Mice , Oncogene Proteins, Fusion/chemistry , Proto-Oncogene Protein c-fli-1/chemistry , RNA, Messenger/chemistry , RNA-Binding Protein EWS/chemistry
19.
PLoS One ; 8(6): e66281, 2013.
Article in English | MEDLINE | ID: mdl-23750284

ABSTRACT

Ewing sarcoma is the second most common bone malignancy in children and young adults. It is driven by oncogenic fusion proteins (i.e. EWS/FLI1) acting as aberrant transcription factors that upregulate and downregulate target genes, leading to cellular transformation. Thus, identificating these target genes and understanding their contribution to Ewing sarcoma tumorigenesis are key for the development of new therapeutic strategies. In this study we show that lysyl oxidase (LOX), an enzyme involved in maintaining structural integrity of the extracellular matrix, is downregulated by the EWS/FLI1 oncoprotein and in consequence it is not expressed in Ewing sarcoma cells and primary tumors. Using a doxycycline inducible system to restore LOX expression in an Ewing sarcoma derived cell line, we showed that LOX displays tumor suppressor activities. Interestingly, we showed that the tumor suppressor activity resides in the propeptide domain of LOX (LOX-PP), an N-terminal domain produced by proteolytic cleavage during the physiological processing of LOX. Expression of LOX-PP reduced cell proliferation, cell migration, anchorage-independent growth in soft agar and formation of tumors in immunodeficient mice. By contrast, the C-terminal domain of LOX, which contains the enzymatic activity, had the opposite effects, corroborating that the tumor suppressor activity of LOX is mediated exclusively by its propeptide domain. Finally, we showed that LOX-PP inhibits ERK/MAPK signalling pathway, and that many pathways involved in cell cycle progression were significantly deregulated by LOX-PP, providing a mechanistic explanation to the cell proliferation inhibition observed upon LOX-PP expression. In summary, our observations indicate that deregulation of the LOX gene participates in Ewing sarcoma development and identify LOX-PP as a new therapeutic target for one of the most aggressive paediatric malignancies. These findings suggest that therapeutic strategies based on the administration of LOX propeptide or functional analogues could be useful for the treatment of this devastating paediatric cancer.


Subject(s)
Down-Regulation , Oncogene Proteins, Fusion/metabolism , Protein-Lysine 6-Oxidase/chemistry , Protein-Lysine 6-Oxidase/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/pathology , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Animals , Cell Line, Tumor , Female , Humans , Mice , Oncogene Proteins, Fusion/chemistry , Protein Structure, Tertiary , Protein-Lysine 6-Oxidase/metabolism , Proto-Oncogene Protein c-fli-1/chemistry , RNA-Binding Protein EWS/chemistry , Tumor Suppressor Proteins/metabolism
20.
PLoS One ; 8(2): e56408, 2013.
Article in English | MEDLINE | ID: mdl-23441188

ABSTRACT

Chromosomal translocations between the EWS gene and members of the ETS gene family are characteristic molecular features of the Ewing sarcoma. The most common translocation t(11;22)(q24;q12) fuses the EWS gene to FLI1, and is present in 85-90% of Ewing sarcomas. In the present study, a specifically designed multiplex long-range PCR assay was applied to amplify genomic EWS-FLI1 fusion sites from as little as 100 ng template DNA. Characterization of the EWS-FLI1 fusion sites of 42 pediatric and young adult Ewing sarcoma patients and seven cell lines revealed a clustering in the 5' region of the EWS-breakpoint cluster region (BCR), in contrast to random distribution of breakpoints in the FLI1-BCR. No association of breakpoints with various recombination-inducing sequence motifs was identified. The occurrence of small deletions and duplications at the genomic junction is characteristic of involvement of the non-homologous end-joining (NHEJ) repair system, similar to findings at chromosomal breakpoints in pediatric leukemia and lymphoma.


Subject(s)
Chromosome Breakpoints , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Adolescent , Adult , Base Sequence , Cell Line, Tumor , Child , Child, Preschool , Female , Gene Order , Humans , Leukemia, Lymphoid/genetics , Lymphoma/genetics , Male , Oncogene Proteins, Fusion/chemistry , Proto-Oncogene Protein c-fli-1/chemistry , RNA-Binding Protein EWS/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...