Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.583
Filter
1.
Arch Virol ; 169(7): 140, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850451

ABSTRACT

A novel totivirus, named "birch toti-like virus" (BTLV), was discovered in European white birch (Betula pendula) plants. The genome of BTLV is 4,967 nucleotides long and contains two overlapping open reading frames (ORFs) coding for the capsid protein (CP) and an RNA-dependent RNA-polymerase (RdRP). The encoded CP and RdRP proteins shared 46.9% and 60.2% amino acid sequence identity, respectively, with those of Panax notoginseng virus B. The presence of a putative slippery heptamer signal 82 nt upstream of the stop codon of ORF1 suggests that a -1 translational frameshifting strategy is involved in the expression of ORF2, like in other totiviruses. Phylogenetic analysis based on the CP and RdRP amino acid sequences placed this virus within a clade of plant-associated totiviruses, with taro-associated virus as its closest relative. Hence, based on its distinct host and the amino acid sequence similarity between BTLV and its relatives, we conclude that birch toti-like virus is a new member of the genus Totivirus.


Subject(s)
Betula , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , Betula/virology , Genome, Viral/genetics , Plant Diseases/virology , Capsid Proteins/genetics , Totiviridae/genetics , Totiviridae/classification , Totiviridae/isolation & purification , Amino Acid Sequence , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , RNA, Viral/genetics
2.
J Gen Virol ; 105(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38888587

ABSTRACT

Turtlegrass virus X, which infects the seagrass Thalassia testudinum, is the only potexvirus known to infect marine flowering plants. We investigated potexvirus distribution in seagrasses using a degenerate reverse transcription polymerase chain reaction (RT-PCR) assay originally designed to capture potexvirus diversity in terrestrial plants. The assay, which implements Potex-5 and Potex-2RC primers, successfully amplified a 584 nt RNA-dependent RNA polymerase (RdRp) fragment from TVX-infected seagrasses. Following validation, we screened 74 opportunistically collected, apparently healthy seagrass samples for potexviruses using this RT-PCR assay. The survey examined the host species T. testudinum, Halodule wrightii, Halophila stipulacea, Syringodium filiforme, Ruppia maritima, and Zostera marina. Potexvirus PCR products were successfully generated only from T. testudinum samples and phylogenetic analysis of sequenced PCR products revealed five distinct TVX sequence variants. Although the RT-PCR assay revealed limited potexvirus diversity in seagrasses, the expanded geographic distribution of TVX shown here emphasizes the importance of future studies to investigate T. testudinum populations across its native range and understand how the observed fine-scale genetic diversity affects host-virus interactions.


Subject(s)
Genetic Variation , Phylogeny , Potexvirus , Potexvirus/genetics , Potexvirus/isolation & purification , Potexvirus/classification , Gulf of Mexico , Plant Diseases/virology , Hydrocharitaceae/virology , RNA-Dependent RNA Polymerase/genetics , RNA, Viral/genetics , Zosteraceae/virology
3.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891989

ABSTRACT

Negeviruses are insect-specific enveloped RNA viruses that exhibit a wide geographic distribution. A novel nege-like virus, tentatively named Aphis gossypii nege-like virus (AGNLV, GenBank: OR880429.1), was isolated from aphids (Aphis gossypii) in Lijiang City, Yunnan, China. AGNLV has a genome sequence of 9258 nt (excluding the polyA tail) encoding three open reading frames (ORFs). ORF1 (7149 nt) encodes a viral methyltransferase, a viral RNA helicase, and an RNA-dependent RNA polymerase. ORF2 (1422 nt) encodes a DiSB-ORF2_chro domain and ORF3 encodes an SP24 domain. The genome sequence of AGNLV shares the highest nucleotide identity of 60.0% and 59.5% with Wuhan house centipede virus 1 (WHCV1) and Astegopteryx formosana nege-like virus (AFNLV), respectively. Phylogenetic analysis based on the RNA-dependent RNA polymerase shows that AGNLV is clustered with other negeviruses and nege-like viruses discovered in aphids, forming a distinct "unclassified clade". Interestingly, AGNLV only encodes three ORFs, whereas AFNLV and WHCV1 have four ORFs. Structure and transmembrane domain predictions show the presence of eight alpha helices and five transmembrane helices in the AGNLV ORF3. Translational enhancement of the AGNLV 5' UTR was similar to that of the 5' UTR of plant viruses. Our findings provide evidence of the diversity and structure of nege-like viruses and are the first record of such a virus from a member of the genus Aphis.


Subject(s)
Aphids , Genome, Viral , Open Reading Frames , Phylogeny , Animals , Aphids/virology , China , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Viral Proteins/chemistry , Insect Viruses/genetics , Insect Viruses/isolation & purification , Insect Viruses/classification , RNA, Viral/genetics
4.
Arch Virol ; 169(7): 151, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902586

ABSTRACT

A new fusagra-like virus infecting papaya (Carica papaya L.) was genetically characterized. The genome of the virus, provisionally named "papaya sticky fruit-associated virus" (PSFaV), is a single molecule of double-stranded RNA, 9,199 nucleotides (nt) in length, containing two discontinuous open reading frames. Pairwise sequence comparisons based on complete RNA-dependent-RNA-polymerase (RdRp) sequences revealed identity of 79.4% and 83.3% at the nt and amino acid (aa) level, respectively, to babaco meleira-like virus (BabMelV), an uncharacterized virus sequence discovered in babaco (Vasconcellea x heilbornii) in Ecuador. Additional plant-associated viruses with sequence identity in the 50% range included papaya meleira virus (PMeV) isolates from Brazil. Phylogenetic analysis based on the amino acid sequences of the capsid protein (CP), RdRp, and CP-RdRp fusion protein genes placed PSFaV in a group within a well-supported clade that shares a recent ancestor with Sclerotium rolfsii RNA virus 2 and Phlebiopsis gigantea mycovirus dsRNA 2, two fungus-associated fusagraviruses. Genomic features and phylogenetic relatedness suggest that PSFaV, along with its closest relative BabMelV, represent a species of novel plant-associated virus classified within the recently established family Fusagraviridae.


Subject(s)
Carica , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , RNA, Viral , Carica/virology , Genome, Viral/genetics , Ecuador , Plant Diseases/virology , RNA, Viral/genetics , Whole Genome Sequencing , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA-Dependent RNA Polymerase/genetics , Capsid Proteins/genetics
5.
mBio ; 15(6): e0037724, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38752738

ABSTRACT

Ascospores, forcibly released into the air from perithecia, are the primary inoculum for Fusarium head blight. In Fusarium graminearum, the biological functions of four RNA-dependent RNA polymerases (RdRPs) (Fgrdrp1-4) have been reported, but their regulatory mechanisms are poorly understood and the function of Fgrdrp5 is still unknown. In this study, we found that in addition to Fgrdrp1 and Fgrdrp2, Fgrdrp5 also plays an important role in ascospore discharge, and they all participate in the generation of turgor pressure in a polyol-dependent manner. Moreover, these three genes all affect the maturation of ascospores. Deep sequencing and co-analysis of small RNA and mRNA certified that Fgrdrp1, Fgrdrp2, and Fgrdrp5 partly share their functions in the biogenesis and accumulation of exonic small interference RNA (ex-siRNA), and these three RdRPs negatively regulate the expression levels of ex-siRNA corresponding genes, including certain genes associated with ascospore development or discharge. Furthermore, the differentially expressed genes of deletion mutants, those involved in lipid and sugar metabolism or transport as well as sexual development-related transcription factors, may also contribute to the defects in ascospore maturation or ascospore discharge. In conclusion, our study suggested that the components of the dicer-dependent ex-siRNA-mediated RNA interference pathway include at least Fgrdrp1, Fgrdrp2, and Fgrdrp5. IMPORTANCE: We found that in addition to Fgrdrp1 and Fgrdrp2, Fgrdrp5 also plays important roles in ascospore maturation and ascospore discharge of Fusarium graminearum. These three RNA-dependent RNA polymerases participate in the biogenesis and accumulation of exonic small interference RNA and then regulate ascospore discharge.


Subject(s)
Fusarium , Gene Expression Regulation, Fungal , RNA-Dependent RNA Polymerase , Spores, Fungal , Spores, Fungal/genetics , Spores, Fungal/growth & development , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Fusarium/genetics , Fusarium/enzymology , RNA Interference , Fungal Proteins/genetics , Fungal Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
6.
Arch Virol ; 169(6): 126, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753067

ABSTRACT

A novel mitovirus was identified in Fusarium oxysporum f. sp. melonis strain T-SD3 and designated as "Fusarium oxysporum mitovirus 3" (FoMV3). The virus was isolated from diseased muskmelon plants with the typical symptom of fusarium wilt. The complete genome of FoMV3 is 2269 nt in length with a predicted AU content of 61.40% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a polypeptide of 679 amino acids (aa) containing a conserved RNA-dependent RNA polymerase (RdRp) domain with a molecular mass of 77.39 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5'-untranslated region (UTR) and 3'-UTR of FoMV3 were predicted to fold into stem-loop structures. BLASTp analysis revealed that the RdRp of FoMV3 shared the highest aa sequence identity (83.85%) with that of Fusarium asiaticum mitovirus 5 (FaMV5, a member of the family Mitoviridae) infecting F. asiaticum, the causal agent of wheat fusarium head blight. Phylogenetic analysis further suggested that FoMV3 is a new member of the genus Unuamitovirus within the family Mitoviridae. This is the first report of a new mitovirus associated with F. oxysporum f. sp. melonis.


Subject(s)
Fungal Viruses , Fusarium , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , Fusarium/virology , Plant Diseases/microbiology , Plant Diseases/virology , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fungal Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , Whole Genome Sequencing , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Cucumis melo/virology , Cucumis melo/microbiology , Amino Acid Sequence , 5' Untranslated Regions , 3' Untranslated Regions , Base Sequence
7.
Arch Virol ; 169(6): 123, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753216

ABSTRACT

Chinese bayberry is a fruit that is appreciated for its taste. A novel totivirus associated with rolling, disfiguring, chlorotic and vein-clearing symptoms on the leaf apices of Chinese bayberry was identified by transcriptome sequencing and reverse transcription PCR (RT-PCR). The complete genome of the virus was determined to be 4959 nucleotides long, and it contains two open reading frames (ORFs). Its genomic organization is similar to that of previously reported totiviruses. ORF1 encodes a putative coat protein (CP) of 765 aa, and ORF2 encodes an RNA-dependent RNA polymerase (RdRp) of 815 aa. These two putative proteins share 55.1% and 62.6%, amino acid sequence identity, respectively, with the corresponding proteins of Panax notoginseng virus A, respectively. According to the demarcation criteria for totivirus species established by the International Committee on Taxonomy of Viruses (ICTV), the new virus should be considered a member of a new species in the genus totivirus, family Orthototiviridae, which we have tentatively named ''Myrica rubra-associated totivirus'' (MRaTV).


Subject(s)
Genome, Viral , Myrica , Open Reading Frames , Phylogeny , Plant Diseases , Plant Leaves , Totivirus , Whole Genome Sequencing , Genome, Viral/genetics , Plant Diseases/virology , Plant Leaves/virology , Myrica/virology , Myrica/genetics , Totivirus/genetics , Totivirus/isolation & purification , Totivirus/classification , Viral Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , RNA, Viral/genetics
8.
PLoS Pathog ; 20(5): e1012034, 2024 May.
Article in English | MEDLINE | ID: mdl-38814986

ABSTRACT

Ilarviruses are a relatively understudied but important group of plant RNA viruses that includes a number of crop pathogens. Their genomes comprise three RNA segments encoding two replicase subunits, movement protein, coat protein (CP), and (in some ilarvirus subgroups) a protein that suppresses RNA silencing. Here we report that, in many ilarviruses, RNA3 encodes an additional protein (termed CP-RT) as a result of ribosomal readthrough of the CP stop codon into a short downstream readthrough (RT) ORF. Using asparagus virus 2 as a model, we find that CP-RT is expressed in planta where it functions as a weak suppressor of RNA silencing. CP-RT expression is essential for persistent systemic infection in leaves and shoot apical meristem. CP-RT function is dependent on a putative zinc-finger motif within RT. Replacing the asparagus virus 2 RT with the RT of an ilarvirus from a different subgroup restored the ability to establish persistent infection. These findings open up a new avenue for research on ilarvirus silencing suppression, persistent meristem invasion and vertical transmission.


Subject(s)
Ilarvirus , Plant Diseases , RNA Interference , Capsid Proteins/genetics , Capsid Proteins/metabolism , Codon, Terminator/genetics , Ilarvirus/genetics , Nicotiana/virology , Nicotiana/genetics , Nicotiana/metabolism , Plant Diseases/virology , Plant Diseases/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
9.
ACS Infect Dis ; 10(6): 2047-2062, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38811007

ABSTRACT

Dengue virus (DENV) nonstructural protein 5 (NS5), consisting of methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, is critical for viral RNA synthesis within endoplasmic reticulum-derived replication complexes in the cytoplasm. However, a significant proportion of NS5 is localized to the nucleus of infected cells for DENV2, 3, and 4, whereas DENV1 NS5 is localized diffusely in the cytoplasm. We still have an incomplete understanding of how the DENV NS5 subcellular localization is regulated. Within NS5, two putative nuclear localization signal (NLS) sequences have been identified: NLSCentral residing in the palm of the RdRp domain as well as the recently discovered NLSC-term residing in the flexible region at the C-terminal of the RdRp domain. We have previously shown that DENV2 NS5 nuclear localization can be significantly reduced by single-point mutations to the NLSC-term. Here, we present biochemical, virological, and structural data demonstrating that the relative importance of either NLS in NS5 nuclear localization is unique to each of the four DENV serotypes. DENV1 NS5's cytoplasmic localization appears to be due to a functionally weak interaction between its NLSCentral and importin-α (IMPα), while DENV2 NS5 is almost exclusively nuclear through its NLSC-term's strong interaction with IMPα. Both NLSs of DENV3 NS5 appear to contribute to directing its nuclear localization. Lastly, in the case of DENV4, the regulation of its NS5 nuclear localization remains an enigma but appears to be associated with its NLSC-term.


Subject(s)
Cell Nucleus , Dengue Virus , Nuclear Localization Signals , Serogroup , Viral Nonstructural Proteins , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/chemistry , Dengue Virus/genetics , Dengue Virus/physiology , Cell Nucleus/metabolism , Humans , Cytoplasm/metabolism , Virus Replication , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/chemistry , Animals , Dengue/virology , Protein Transport
10.
ACS Synth Biol ; 13(6): 1773-1780, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38806167

ABSTRACT

Self-replicating RNAs (srRNAs) are synthetic molecules designed to mimic the self-replicating ability of viral RNAs. srRNAs hold significant promise for a range of applications, including enhancing protein expression, reprogramming cells into pluripotent stem cells, and creating cell-free systems for experimental evolution. However, the development of srRNAs for use in bacterial systems remains limited. Here, we demonstrate how a srRNA scaffold from Emesvirus zinderi can be engineered into a self-encoding srRNA by incorporating the coding region of the catalytically active replicase subunit. With the help of in vitro replication assays, including an in vitro translation-coupled replication approach, we show that the resulting system enables complete replication cycles of RNA both in cis and trans, including long cargo RNAs such as tethered 5S, 16S, and 23S rRNAs. In summary, our findings suggest that these srRNAs have significant potential for fundamental research, synthetic biology, and general in vitro evolution.


Subject(s)
RNA, Viral , Replicon , RNA, Viral/genetics , Replicon/genetics , Synthetic Biology/methods , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism
11.
Mol Pharm ; 21(6): 2727-2739, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38709860

ABSTRACT

The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical in vitro reconstituted virus-like particles (VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate in vitro assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chlorotic mottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV). The mRNA gene is rendered self-amplifying by genetically fusing it to the RNA-dependent RNA polymerase (RdRp) of Nodamura virus, and the relative efficacies of cell uptake and downstream protein expression resulting from their CCMV- and TMV-packaged forms are compared directly. This comparison is carried out by their transfections into cells in culture: expressions of two self-amplifying genes, enhanced yellow fluorescent protein (EYFP) and Renilla luciferase (Luc), packaged alternately in CCMV and TMV VLPs, are quantified by fluorescence and chemiluminescence levels, respectively, and relative numbers of the delivered mRNAs are measured by quantitative real-time PCR. The cellular uptake of both forms of these VLPs is further confirmed by confocal microscopy of transfected cells. Finally, VLP-mediated delivery of the self-amplifying-mRNA in mice following footpad injection is shown by in vivo fluorescence imaging to result in robust expression of EYFP in the draining lymph nodes, suggesting the potential of these plant virus-like particles as a promising mRNA gene and vaccine delivery modality. These results establish that both CCMV and TMV VLPs can deliver their in vitro packaged mRNA genes to immune cells and that their self-amplifying forms significantly enhance in situ expression. Choice of one VLP (CCMV or TMV) over the other will depend on which geometry of nucleocapsid is self-assembled more efficiently for a given length and sequence of RNA, and suggests that these plant VLP gene delivery systems will prove useful in a wide variety of medical applications, both preventive and therapeutic.


Subject(s)
Capsid Proteins , RNA, Messenger , Tobacco Mosaic Virus , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mice , Tobacco Mosaic Virus/genetics , Capsid Proteins/genetics , Bromovirus/genetics , Nanoparticles/chemistry , Humans , Female , COVID-19 Vaccines/administration & dosage , Virion/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Vaccines, Virus-Like Particle/administration & dosage , Liposomes
12.
PLoS One ; 19(5): e0303838, 2024.
Article in English | MEDLINE | ID: mdl-38753834

ABSTRACT

This study presents the complete genome sequence of a novel nege-like virus identified in whiteflies (Bemisia tabaci MEAM1), provisionally designated as whitefly negevirus 1 (WfNgV1). The virus possesses a single-stranded RNA genome comprising 11,848 nucleotides, organized into four open reading frames (ORFs). These ORFs encode the putative RNA-dependent-RNA-polymerase (RdRp, ORF 1), a glycoprotein (ORF 2), a structural protein with homology to those in the SP24 family, (ORF 3), and a protein of unknown function (ORF 4). Phylogenetic analysis focusing on RdRp and SP24 amino acid sequences revealed a close relationship between WfNgV1 and Bemisia tabaci negevirus 1, a negevirus sequence recently discovered in whiteflies from Israel. Both viruses form a clade sharing a most recent common ancestor with the proposed nelorpivirus and centivirus taxa. The putative glycoprotein from ORF 2 and SP24 (ORF 3) of WfNgV1 exhibit the characteristic topologies previously reported for negevirus counterparts. This marks the first reported negevirus-like sequence from whiteflies in the Americas.


Subject(s)
Genome, Viral , Hemiptera , Open Reading Frames , Phylogeny , Animals , Hemiptera/virology , Hemiptera/genetics , Open Reading Frames/genetics , Viral Proteins/genetics , RNA, Viral/genetics , Amino Acid Sequence , RNA-Dependent RNA Polymerase/genetics
13.
Nat Commun ; 15(1): 4189, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760379

ABSTRACT

The viral polymerase complex, comprising the large protein (L) and phosphoprotein (P), is crucial for both genome replication and transcription in non-segmented negative-strand RNA viruses (nsNSVs), while structures corresponding to these activities remain obscure. Here, we resolved two L-P complex conformations from the mumps virus (MuV), a typical member of nsNSVs, via cryogenic-electron microscopy. One conformation presents all five domains of L forming a continuous RNA tunnel to the methyltransferase domain (MTase), preferably as a transcription state. The other conformation has the appendage averaged out, which is inaccessible to MTase. In both conformations, parallel P tetramers are revealed around MuV L, which, together with structures of other nsNSVs, demonstrates the diverse origins of the L-binding X domain of P. Our study links varying structures of nsNSV polymerase complexes with genome replication and transcription and points to a sliding model for polymerase complexes to advance along the RNA templates.


Subject(s)
Cryoelectron Microscopy , Mumps virus , Viral Proteins , Mumps virus/genetics , Mumps virus/ultrastructure , Mumps virus/metabolism , Viral Proteins/metabolism , Viral Proteins/ultrastructure , Viral Proteins/chemistry , Viral Proteins/genetics , Models, Molecular , RNA, Viral/metabolism , RNA, Viral/ultrastructure , RNA, Viral/genetics , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/ultrastructure , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Protein Domains , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/ultrastructure , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/ultrastructure , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , Virus Replication , Transcription, Genetic , Protein Conformation
14.
Front Cell Infect Microbiol ; 14: 1331755, 2024.
Article in English | MEDLINE | ID: mdl-38800833

ABSTRACT

The mosquito-borne Rift Valley fever virus (RVFV) from the Phenuiviridae family is a single-stranded RNA virus that causes the re-emerging zoonotic disease Rift Valley fever (RVF). Classified as a Category A agent by the NIH, RVFV infection can cause debilitating disease or death in humans and lead to devastating economic impacts by causing abortion storms in pregnant cattle. In a previous study, we showed that the host chaperone protein HSP90 is an RVFV-associated host factor that plays a critical role post viral entry, during the active phase of viral genome replication/transcription. In this study, we have elucidated the molecular mechanisms behind the regulatory effect of HSP90 during infection with RVFV. Our results demonstrate that during the early infection phase, host HSP90 associates with the viral RNA-dependent RNA polymerase (L protein) and prevents its degradation through the proteasome, resulting in increased viral replication.


Subject(s)
HSP90 Heat-Shock Proteins , Proteasome Endopeptidase Complex , Proteolysis , Rift Valley fever virus , Virus Replication , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Rift Valley fever virus/genetics , Rift Valley fever virus/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Genome, Viral , Humans , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Host-Pathogen Interactions , Viral Proteins/metabolism , Viral Proteins/genetics , Transcription, Genetic , Rift Valley Fever/virology , Rift Valley Fever/metabolism , Cell Line
15.
Virus Res ; 345: 199387, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38719025

ABSTRACT

Influenza A virus can infect respiratory tracts and may cause severe illness in humans. Proteins encoded by influenza A virus can interact with cellular factors and dysregulate host biological processes to support viral replication and cause pathogenicity. The influenza viral PA protein is not only a subunit of influenza viral polymerase but also a virulence factor involved in pathogenicity during infection. To explore the role of the influenza virus PA protein in regulating host biological processes, we performed immunoprecipitation and LC‒MS/MS to globally identify cellular factors that interact with the PA proteins of the influenza A H1N1, 2009 pandemic H1N1, and H3N2 viruses. The results demonstrated that proteins located in the mitochondrion, proteasome, and nucleus are associated with the PA protein. We further discovered that the PA protein is partly located in mitochondria by immunofluorescence and mitochondrial fractionation and that overexpression of the PA protein reduces mitochondrial respiration. In addition, our results revealed the interaction between PA and the mitochondrial matrix protein PYCR2 and the antiviral role of PYCR2 during influenza A virus replication. Moreover, we found that the PA protein could also trigger autophagy and disrupt mitochondrial homeostasis. Overall, our research revealed the impacts of the influenza A virus PA protein on mitochondrial function and autophagy.


Subject(s)
Mitochondria , Viral Proteins , Virus Replication , Humans , Mitochondria/metabolism , Mitochondria/virology , Viral Proteins/metabolism , Viral Proteins/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Influenza A virus/physiology , Influenza A virus/genetics , Influenza A virus/pathogenicity , Influenza A virus/metabolism , Host-Pathogen Interactions , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H3N2 Subtype/metabolism , Autophagy , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H1N1 Subtype/pathogenicity , HEK293 Cells , Influenza, Human/virology , Influenza, Human/metabolism , A549 Cells , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Tandem Mass Spectrometry
16.
Methods Mol Biol ; 2808: 19-33, 2024.
Article in English | MEDLINE | ID: mdl-38743360

ABSTRACT

Morbilliviruses such as measles virus (MeV) are responsible for major morbidity and mortality worldwide, despite the availability of an effective vaccine and global vaccination campaigns. MeV belongs to the mononegavirus order of viral pathogens that store their genetic information in non-segmented negative polarity RNA genomes. Genome replication and viral gene expression are carried out by a virus-encoded RNA-dependent RNA polymerase (RdRP) complex that has no immediate host cell analog. To better understand the organization and regulation of the viral RdRP and mechanistically characterize antiviral candidates, biochemical RdRP assays have been developed that employ purified recombinant polymerase complexes and synthetic RNA templates to monitor the initiation of RNA synthesis and RNA elongation in vitro. In this article, we will discuss strategies for the efficient expression and preparation of mononegavirus polymerase complexes, provide detailed protocols for the execution and optimization of RdRP assays, evaluate alternative options for the choice of template and detection system, and describe the application of the assay for the characterization of inhibitor candidates. Although MeV RdRP assays are the focus of this article, the general strategies and experimental approaches are readily transferable to related viruses in the mononegavirus order.


Subject(s)
Measles virus , RNA-Dependent RNA Polymerase , Virus Replication , Measles virus/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA, Viral/genetics , Mononegavirales/genetics , Animals , Viral Proteins/metabolism , Viral Proteins/genetics , Humans
17.
Nat Commun ; 15(1): 4123, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750014

ABSTRACT

Avian influenza A viruses (IAVs) pose a public health threat, as they are capable of triggering pandemics by crossing species barriers. Replication of avian IAVs in mammalian cells is hindered by species-specific variation in acidic nuclear phosphoprotein 32 (ANP32) proteins, which are essential for viral RNA genome replication. Adaptive mutations enable the IAV RNA polymerase (FluPolA) to surmount this barrier. Here, we present cryo-electron microscopy structures of monomeric and dimeric avian H5N1 FluPolA with human ANP32B. ANP32B interacts with the PA subunit of FluPolA in the monomeric form, at the site used for its docking onto the C-terminal domain of host RNA polymerase II during viral transcription. ANP32B acts as a chaperone, guiding FluPolA towards a ribonucleoprotein-associated FluPolA to form an asymmetric dimer-the replication platform for the viral genome. These findings offer insights into the molecular mechanisms governing IAV genome replication, while enhancing our understanding of the molecular processes underpinning mammalian adaptations in avian-origin FluPolA.


Subject(s)
Cryoelectron Microscopy , Genome, Viral , Influenza A Virus, H5N1 Subtype , Nuclear Proteins , Virus Replication , Humans , Influenza A Virus, H5N1 Subtype/genetics , Virus Replication/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/chemistry , Animals , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/chemistry , Adaptation, Physiological/genetics , Influenza, Human/virology , RNA, Viral/metabolism , RNA, Viral/genetics , HEK293 Cells , Protein Multimerization , Models, Molecular
18.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793558

ABSTRACT

The cucumber mosaic virus (CMV) 2b protein is a suppressor of plant defenses and a pathogenicity determinant. Amongst the 2b protein's host targets is the RNA silencing factor Argonaute 1 (AGO1), which it binds to and inhibits. In Arabidopsis thaliana, if 2b-induced inhibition of AGO1 is too efficient, it induces reinforcement of antiviral silencing by AGO2 and triggers increased resistance against aphids, CMV's insect vectors. These effects would be deleterious to CMV replication and transmission, respectively, but are moderated by the CMV 1a protein, which sequesters sufficient 2b protein molecules into P-bodies to prevent excessive inhibition of AGO1. Mutant 2b protein variants were generated, and red and green fluorescent protein fusions were used to investigate subcellular colocalization with AGO1 and the 1a protein. The effects of mutations on complex formation with the 1a protein and AGO1 were investigated using bimolecular fluorescence complementation and co-immunoprecipitation assays. Although we found that residues 56-60 influenced the 2b protein's interactions with the 1a protein and AGO1, it appears unlikely that any single residue or sequence domain is solely responsible. In silico predictions of intrinsic disorder within the 2b protein secondary structure were supported by circular dichroism (CD) but not by nuclear magnetic resonance (NMR) spectroscopy. Intrinsic disorder provides a plausible model to explain the 2b protein's ability to interact with AGO1, the 1a protein, and other factors. However, the reasons for the conflicting conclusions provided by CD and NMR must first be resolved.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Argonaute Proteins , Cucumovirus , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Cucumovirus/metabolism , Cucumovirus/genetics , Cucumovirus/physiology , Arabidopsis/metabolism , Arabidopsis/virology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Binding , Viral Proteins/metabolism , Viral Proteins/genetics , Host-Pathogen Interactions , Viral Replicase Complex Proteins/metabolism , Viral Replicase Complex Proteins/genetics , Plant Diseases/virology , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/chemistry , Methyltransferases
19.
RNA Biol ; 21(1): 1-9, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38785360

ABSTRACT

The RNA world hypothesis confers a central role to RNA molecules in information encoding and catalysis. Even though evidence in support of this hypothesis has accumulated from both experiments and computational modelling, the transition from an RNA world to a world where heritable genetic information is encoded in DNA remains an open question. Recent experiments show that both RNA and DNA templates can extend complementary primers using free RNA/DNA nucleotides, either non-enzymatically or in the presence of a replicase ribozyme. Guided by these experiments, we analyse protocellular evolution with an expanded set of reaction pathways made possible through the presence of DNA nucleotides. By encapsulating these reactions inside three different types of protocellular compartments, each subject to distinct modes of selection, we show how protocells containing DNA-encoded replicases in low copy numbers and replicases in high copy numbers can dominate the population. This is facilitated by a reaction that leads to auto-catalytic synthesis of replicase ribozymes from DNA templates encoding the replicase after the chance emergence of a replicase through non-enzymatic reactions. Our work unveils a pathway for the transition from an RNA world to a mixed RNA-DNA world characterized by Darwinian evolution, where DNA sequences encode heritable phenotypes.


Subject(s)
DNA , RNA, Catalytic , RNA , DNA/genetics , DNA/metabolism , DNA/chemistry , RNA/genetics , RNA/metabolism , RNA/chemistry , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , Evolution, Molecular , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Artificial Cells/metabolism
20.
Mol Biol Rep ; 51(1): 642, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727866

ABSTRACT

BACKGROUND: The mitochondrial carrier homolog 2 (MTCH2) is a mitochondrial outer membrane protein regulating mitochondrial metabolism and functions in lipid homeostasis and apoptosis. Experimental data on the interaction of MTCH2 with viral proteins in virus-infected cells are very limited. Here, the interaction of MTCH2 with PA subunit of influenza A virus RdRp and its effects on viral replication was investigated. METHODS: The human MTCH2 protein was identified as the influenza A virus PA-related cellular factor with the Y2H assay. The interaction between GST.MTCH2 and PA protein co-expressed in transfected HEK293 cells was evaluated by GST-pull down. The effect of MTCH2 on virus replication was determined by quantification of viral transcript and/or viral proteins in the cells transfected with MTCH2-encoding plasmid or MTCH2-siRNA. An interaction model of MTCH2 and PA was predicted with protein modeling/docking algorithms. RESULTS: It was observed that PA and GST.MTCH2 proteins expressed in HEK293 cells were co-precipitated by glutathione-agarose beads. The influenza A virus replication was stimulated in HeLa cells whose MTCH2 expression was suppressed with specific siRNA, whereas the increase of MTCH2 in transiently transfected HEK293 cells inhibited viral RdRp activity. The results of a Y2H assay and protein-protein docking analysis suggested that the amino terminal part of the viral PA (nPA) can bind to the cytoplasmic domain comprising amino acid residues 253 to 282 of the MTCH2. CONCLUSION: It is suggested that the host mitochondrial MTCH2 protein is probably involved in the interaction with the viral polymerase protein PA to cause negative regulatory effect on influenza A virus replication in infected cells.


Subject(s)
Influenza A virus , Mitochondrial Membrane Transport Proteins , Virus Replication , Humans , Down-Regulation , HEK293 Cells , HeLa Cells , Influenza A virus/physiology , Influenza A virus/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Protein Binding , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Replication/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...