Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.441
Filter
1.
Methods Mol Biol ; 2808: 9-17, 2024.
Article in English | MEDLINE | ID: mdl-38743359

ABSTRACT

Protein-fragment complementation assays (PCAs) are powerful tools to investigate protein-protein interactions in a cellular context. These are especially useful to study unstable proteins and weak interactions that may not resist protein isolation or purification. The PCA based on the reconstitution of the Gaussia princeps luciferase (split-luc) is a sensitive approach allowing the mapping of protein-protein interactions and the semiquantitative measurement of binding affinity. Here, we describe the split-luc protocol we used to map the viral interactome of measles virus polymerase complex.


Subject(s)
Measles virus , Protein Binding , Protein Interaction Mapping , Protein Interaction Mapping/methods , Humans , Luciferases/metabolism , Luciferases/genetics , Viral Proteins/metabolism , RNA-Dependent RNA Polymerase/metabolism
2.
Methods Mol Biol ; 2808: 19-33, 2024.
Article in English | MEDLINE | ID: mdl-38743360

ABSTRACT

Morbilliviruses such as measles virus (MeV) are responsible for major morbidity and mortality worldwide, despite the availability of an effective vaccine and global vaccination campaigns. MeV belongs to the mononegavirus order of viral pathogens that store their genetic information in non-segmented negative polarity RNA genomes. Genome replication and viral gene expression are carried out by a virus-encoded RNA-dependent RNA polymerase (RdRP) complex that has no immediate host cell analog. To better understand the organization and regulation of the viral RdRP and mechanistically characterize antiviral candidates, biochemical RdRP assays have been developed that employ purified recombinant polymerase complexes and synthetic RNA templates to monitor the initiation of RNA synthesis and RNA elongation in vitro. In this article, we will discuss strategies for the efficient expression and preparation of mononegavirus polymerase complexes, provide detailed protocols for the execution and optimization of RdRP assays, evaluate alternative options for the choice of template and detection system, and describe the application of the assay for the characterization of inhibitor candidates. Although MeV RdRP assays are the focus of this article, the general strategies and experimental approaches are readily transferable to related viruses in the mononegavirus order.


Subject(s)
Measles virus , RNA-Dependent RNA Polymerase , Virus Replication , Measles virus/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA, Viral/genetics , Mononegavirales/genetics , Animals , Viral Proteins/metabolism , Viral Proteins/genetics , Humans
3.
Nat Commun ; 15(1): 4189, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760379

ABSTRACT

The viral polymerase complex, comprising the large protein (L) and phosphoprotein (P), is crucial for both genome replication and transcription in non-segmented negative-strand RNA viruses (nsNSVs), while structures corresponding to these activities remain obscure. Here, we resolved two L-P complex conformations from the mumps virus (MuV), a typical member of nsNSVs, via cryogenic-electron microscopy. One conformation presents all five domains of L forming a continuous RNA tunnel to the methyltransferase domain (MTase), preferably as a transcription state. The other conformation has the appendage averaged out, which is inaccessible to MTase. In both conformations, parallel P tetramers are revealed around MuV L, which, together with structures of other nsNSVs, demonstrates the diverse origins of the L-binding X domain of P. Our study links varying structures of nsNSV polymerase complexes with genome replication and transcription and points to a sliding model for polymerase complexes to advance along the RNA templates.


Subject(s)
Cryoelectron Microscopy , Mumps virus , Viral Proteins , Mumps virus/genetics , Mumps virus/ultrastructure , Mumps virus/metabolism , Viral Proteins/metabolism , Viral Proteins/ultrastructure , Viral Proteins/chemistry , Viral Proteins/genetics , Models, Molecular , RNA, Viral/metabolism , RNA, Viral/ultrastructure , RNA, Viral/genetics , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/ultrastructure , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Protein Domains , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/ultrastructure , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/ultrastructure , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , Virus Replication , Transcription, Genetic , Protein Conformation
4.
Nat Commun ; 15(1): 4123, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750014

ABSTRACT

Avian influenza A viruses (IAVs) pose a public health threat, as they are capable of triggering pandemics by crossing species barriers. Replication of avian IAVs in mammalian cells is hindered by species-specific variation in acidic nuclear phosphoprotein 32 (ANP32) proteins, which are essential for viral RNA genome replication. Adaptive mutations enable the IAV RNA polymerase (FluPolA) to surmount this barrier. Here, we present cryo-electron microscopy structures of monomeric and dimeric avian H5N1 FluPolA with human ANP32B. ANP32B interacts with the PA subunit of FluPolA in the monomeric form, at the site used for its docking onto the C-terminal domain of host RNA polymerase II during viral transcription. ANP32B acts as a chaperone, guiding FluPolA towards a ribonucleoprotein-associated FluPolA to form an asymmetric dimer-the replication platform for the viral genome. These findings offer insights into the molecular mechanisms governing IAV genome replication, while enhancing our understanding of the molecular processes underpinning mammalian adaptations in avian-origin FluPolA.


Subject(s)
Cryoelectron Microscopy , Genome, Viral , Influenza A Virus, H5N1 Subtype , Nuclear Proteins , Virus Replication , Humans , Influenza A Virus, H5N1 Subtype/genetics , Virus Replication/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/chemistry , Animals , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/chemistry , Adaptation, Physiological/genetics , Influenza, Human/virology , RNA, Viral/metabolism , RNA, Viral/genetics , HEK293 Cells , Protein Multimerization , Models, Molecular
5.
Mol Biol Rep ; 51(1): 642, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727866

ABSTRACT

BACKGROUND: The mitochondrial carrier homolog 2 (MTCH2) is a mitochondrial outer membrane protein regulating mitochondrial metabolism and functions in lipid homeostasis and apoptosis. Experimental data on the interaction of MTCH2 with viral proteins in virus-infected cells are very limited. Here, the interaction of MTCH2 with PA subunit of influenza A virus RdRp and its effects on viral replication was investigated. METHODS: The human MTCH2 protein was identified as the influenza A virus PA-related cellular factor with the Y2H assay. The interaction between GST.MTCH2 and PA protein co-expressed in transfected HEK293 cells was evaluated by GST-pull down. The effect of MTCH2 on virus replication was determined by quantification of viral transcript and/or viral proteins in the cells transfected with MTCH2-encoding plasmid or MTCH2-siRNA. An interaction model of MTCH2 and PA was predicted with protein modeling/docking algorithms. RESULTS: It was observed that PA and GST.MTCH2 proteins expressed in HEK293 cells were co-precipitated by glutathione-agarose beads. The influenza A virus replication was stimulated in HeLa cells whose MTCH2 expression was suppressed with specific siRNA, whereas the increase of MTCH2 in transiently transfected HEK293 cells inhibited viral RdRp activity. The results of a Y2H assay and protein-protein docking analysis suggested that the amino terminal part of the viral PA (nPA) can bind to the cytoplasmic domain comprising amino acid residues 253 to 282 of the MTCH2. CONCLUSION: It is suggested that the host mitochondrial MTCH2 protein is probably involved in the interaction with the viral polymerase protein PA to cause negative regulatory effect on influenza A virus replication in infected cells.


Subject(s)
Influenza A virus , Mitochondrial Membrane Transport Proteins , Virus Replication , Humans , Down-Regulation , HEK293 Cells , HeLa Cells , Influenza A virus/physiology , Influenza A virus/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Protein Binding , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Replication/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism
6.
RNA Biol ; 21(1): 1-9, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38785360

ABSTRACT

The RNA world hypothesis confers a central role to RNA molecules in information encoding and catalysis. Even though evidence in support of this hypothesis has accumulated from both experiments and computational modelling, the transition from an RNA world to a world where heritable genetic information is encoded in DNA remains an open question. Recent experiments show that both RNA and DNA templates can extend complementary primers using free RNA/DNA nucleotides, either non-enzymatically or in the presence of a replicase ribozyme. Guided by these experiments, we analyse protocellular evolution with an expanded set of reaction pathways made possible through the presence of DNA nucleotides. By encapsulating these reactions inside three different types of protocellular compartments, each subject to distinct modes of selection, we show how protocells containing DNA-encoded replicases in low copy numbers and replicases in high copy numbers can dominate the population. This is facilitated by a reaction that leads to auto-catalytic synthesis of replicase ribozymes from DNA templates encoding the replicase after the chance emergence of a replicase through non-enzymatic reactions. Our work unveils a pathway for the transition from an RNA world to a mixed RNA-DNA world characterized by Darwinian evolution, where DNA sequences encode heritable phenotypes.


Subject(s)
DNA , RNA, Catalytic , RNA , DNA/genetics , DNA/metabolism , DNA/chemistry , RNA/genetics , RNA/metabolism , RNA/chemistry , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , Evolution, Molecular , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Artificial Cells/metabolism
7.
Mol Pharm ; 21(6): 2727-2739, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38709860

ABSTRACT

The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical in vitro reconstituted virus-like particles (VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate in vitro assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chlorotic mottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV). The mRNA gene is rendered self-amplifying by genetically fusing it to the RNA-dependent RNA polymerase (RdRp) of Nodamura virus, and the relative efficacies of cell uptake and downstream protein expression resulting from their CCMV- and TMV-packaged forms are compared directly. This comparison is carried out by their transfections into cells in culture: expressions of two self-amplifying genes, enhanced yellow fluorescent protein (EYFP) and Renilla luciferase (Luc), packaged alternately in CCMV and TMV VLPs, are quantified by fluorescence and chemiluminescence levels, respectively, and relative numbers of the delivered mRNAs are measured by quantitative real-time PCR. The cellular uptake of both forms of these VLPs is further confirmed by confocal microscopy of transfected cells. Finally, VLP-mediated delivery of the self-amplifying-mRNA in mice following footpad injection is shown by in vivo fluorescence imaging to result in robust expression of EYFP in the draining lymph nodes, suggesting the potential of these plant virus-like particles as a promising mRNA gene and vaccine delivery modality. These results establish that both CCMV and TMV VLPs can deliver their in vitro packaged mRNA genes to immune cells and that their self-amplifying forms significantly enhance in situ expression. Choice of one VLP (CCMV or TMV) over the other will depend on which geometry of nucleocapsid is self-assembled more efficiently for a given length and sequence of RNA, and suggests that these plant VLP gene delivery systems will prove useful in a wide variety of medical applications, both preventive and therapeutic.


Subject(s)
Capsid Proteins , RNA, Messenger , Tobacco Mosaic Virus , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mice , Tobacco Mosaic Virus/genetics , Capsid Proteins/genetics , Bromovirus/genetics , Nanoparticles/chemistry , Humans , Female , COVID-19 Vaccines/administration & dosage , Virion/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Vaccines, Virus-Like Particle/administration & dosage , Liposomes
8.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793558

ABSTRACT

The cucumber mosaic virus (CMV) 2b protein is a suppressor of plant defenses and a pathogenicity determinant. Amongst the 2b protein's host targets is the RNA silencing factor Argonaute 1 (AGO1), which it binds to and inhibits. In Arabidopsis thaliana, if 2b-induced inhibition of AGO1 is too efficient, it induces reinforcement of antiviral silencing by AGO2 and triggers increased resistance against aphids, CMV's insect vectors. These effects would be deleterious to CMV replication and transmission, respectively, but are moderated by the CMV 1a protein, which sequesters sufficient 2b protein molecules into P-bodies to prevent excessive inhibition of AGO1. Mutant 2b protein variants were generated, and red and green fluorescent protein fusions were used to investigate subcellular colocalization with AGO1 and the 1a protein. The effects of mutations on complex formation with the 1a protein and AGO1 were investigated using bimolecular fluorescence complementation and co-immunoprecipitation assays. Although we found that residues 56-60 influenced the 2b protein's interactions with the 1a protein and AGO1, it appears unlikely that any single residue or sequence domain is solely responsible. In silico predictions of intrinsic disorder within the 2b protein secondary structure were supported by circular dichroism (CD) but not by nuclear magnetic resonance (NMR) spectroscopy. Intrinsic disorder provides a plausible model to explain the 2b protein's ability to interact with AGO1, the 1a protein, and other factors. However, the reasons for the conflicting conclusions provided by CD and NMR must first be resolved.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Argonaute Proteins , Cucumovirus , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Cucumovirus/metabolism , Cucumovirus/genetics , Cucumovirus/physiology , Arabidopsis/metabolism , Arabidopsis/virology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Binding , Viral Proteins/metabolism , Viral Proteins/genetics , Host-Pathogen Interactions , Viral Replicase Complex Proteins/metabolism , Viral Replicase Complex Proteins/genetics , Plant Diseases/virology , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/chemistry , Methyltransferases
9.
Front Cell Infect Microbiol ; 14: 1331755, 2024.
Article in English | MEDLINE | ID: mdl-38800833

ABSTRACT

The mosquito-borne Rift Valley fever virus (RVFV) from the Phenuiviridae family is a single-stranded RNA virus that causes the re-emerging zoonotic disease Rift Valley fever (RVF). Classified as a Category A agent by the NIH, RVFV infection can cause debilitating disease or death in humans and lead to devastating economic impacts by causing abortion storms in pregnant cattle. In a previous study, we showed that the host chaperone protein HSP90 is an RVFV-associated host factor that plays a critical role post viral entry, during the active phase of viral genome replication/transcription. In this study, we have elucidated the molecular mechanisms behind the regulatory effect of HSP90 during infection with RVFV. Our results demonstrate that during the early infection phase, host HSP90 associates with the viral RNA-dependent RNA polymerase (L protein) and prevents its degradation through the proteasome, resulting in increased viral replication.


Subject(s)
HSP90 Heat-Shock Proteins , Proteasome Endopeptidase Complex , Proteolysis , Rift Valley fever virus , Virus Replication , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Rift Valley fever virus/genetics , Rift Valley fever virus/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Genome, Viral , Humans , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Host-Pathogen Interactions , Viral Proteins/metabolism , Viral Proteins/genetics , Transcription, Genetic , Rift Valley Fever/virology , Rift Valley Fever/metabolism , Cell Line
10.
Virus Res ; 345: 199387, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38719025

ABSTRACT

Influenza A virus can infect respiratory tracts and may cause severe illness in humans. Proteins encoded by influenza A virus can interact with cellular factors and dysregulate host biological processes to support viral replication and cause pathogenicity. The influenza viral PA protein is not only a subunit of influenza viral polymerase but also a virulence factor involved in pathogenicity during infection. To explore the role of the influenza virus PA protein in regulating host biological processes, we performed immunoprecipitation and LC‒MS/MS to globally identify cellular factors that interact with the PA proteins of the influenza A H1N1, 2009 pandemic H1N1, and H3N2 viruses. The results demonstrated that proteins located in the mitochondrion, proteasome, and nucleus are associated with the PA protein. We further discovered that the PA protein is partly located in mitochondria by immunofluorescence and mitochondrial fractionation and that overexpression of the PA protein reduces mitochondrial respiration. In addition, our results revealed the interaction between PA and the mitochondrial matrix protein PYCR2 and the antiviral role of PYCR2 during influenza A virus replication. Moreover, we found that the PA protein could also trigger autophagy and disrupt mitochondrial homeostasis. Overall, our research revealed the impacts of the influenza A virus PA protein on mitochondrial function and autophagy.


Subject(s)
Mitochondria , Viral Proteins , Virus Replication , Humans , Mitochondria/metabolism , Mitochondria/virology , Viral Proteins/metabolism , Viral Proteins/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Influenza A virus/physiology , Influenza A virus/genetics , Influenza A virus/pathogenicity , Influenza A virus/metabolism , Host-Pathogen Interactions , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H3N2 Subtype/metabolism , Autophagy , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H1N1 Subtype/pathogenicity , HEK293 Cells , Influenza, Human/virology , Influenza, Human/metabolism , A549 Cells , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Tandem Mass Spectrometry
11.
J Biomol Struct Dyn ; 42(10): 5402-5414, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38764132

ABSTRACT

RNA-dependent RNA polymerase (RdRp) is considered a potential drug target for dengue virus (DENV) inhibition and has attracted attention in antiviral drug discovery. Here, we screened 121 natural compounds from Litsea cubeba against DENV RdRp using various approaches of computer-based drug discovery. Notably, we identified four potential compounds (Ushinsunine, Cassameridine, (+)-Epiexcelsin, (-)-Phanostenine) with good binding scores and allosteric interactions with the target protein. Moreover, molecular dynamics simulation studies were done to check the conformational stability of the complexes under given conditions. Additionally, we performed post-simulation analysis to find the stability of potential drugs in the target protein. The findings suggest Litsea cubeba-derived phytomolecules as a therapeutic solution to control DENV infection.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , Dengue Virus , Litsea , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals , RNA-Dependent RNA Polymerase , Dengue Virus/drug effects , Dengue Virus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Allosteric Regulation/drug effects , Litsea/chemistry , Protein Binding
12.
Antiviral Res ; 226: 105895, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679165

ABSTRACT

Rift Valley fever virus (RVFV) is an arbovirus in the Phenuiviridae family identified initially by the large 'abortion storms' observed among ruminants; RVFV can also infect humans. In humans, there is a wide variation of clinical symptoms ranging from subclinical to mild febrile illness to hepatitis, retinitis, delayed-onset encephalitis, or even hemorrhagic fever. The RVFV is a tri-segmented negative-sense RNA virus consisting of S, M, and L segments. The L segment encodes the RNA-dependent RNA polymerase (RdRp), termed the L protein, which is responsible for both viral mRNA synthesis and genome replication. Phosphorylation of viral RdRps is known to regulate viral replication. This study shows that RVFV L protein is serine phosphorylated and identified Casein Kinase 1 alpha (CK1α) and protein phosphatase 1 alpha (PP1α) as L protein binding partners. Inhibition of CK1 and PP1 through small molecule inhibitor treatment, D4476 and 1E7-03, respectively, caused a change in the phosphorylated status of the L protein. Inhibition of PP1α resulted in increased L protein phosphorylation whereas inhibition of CK1α decreased L protein phosphorylation. It was also found that in RVFV infected cells, PP1α localized to the cytoplasmic compartment. Treatment of RVFV infected cells with CK1 inhibitors reduced virus production in both mammalian and mosquito cells. Lastly, inhibition of either CK1 or PP1 reduced viral genomic RNA levels. These data indicate that L protein is phosphorylated and that CK1 and PP1 play a crucial role in regulating the L protein phosphorylation cycle, which is critical to viral RNA production and viral replication.


Subject(s)
Protein Phosphatase 1 , Rift Valley fever virus , Virus Replication , Rift Valley fever virus/physiology , Rift Valley fever virus/genetics , Phosphorylation , Humans , Animals , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , Genome, Viral , Viral Proteins/metabolism , Viral Proteins/genetics , Casein Kinase Ialpha/metabolism , Casein Kinase Ialpha/genetics , Chlorocebus aethiops , Cell Line , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Vero Cells , RNA, Viral/genetics , RNA, Viral/metabolism , Rift Valley Fever/virology
13.
Bioorg Chem ; 147: 107353, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615475

ABSTRACT

Dialkyl/aryl aminophosphonates, 3a-g and 4a-e were synthesized using the LiClO4 catalyzed Kabachnic Fields-type reaction straightforwardly and efficiently. The synthesized phosphonates structures were characterized using elemental analyses, FT-IR, 1H NMR, 13C NMR, and MS spectroscopy. The new compounds were subjected to in-silico molecular docking simulations to evaluate their potential inhibition against Influenza A Neuraminidase and RNA-dependent RNA polymerase of human coronavirus 229E. Subsequently, the compounds were further tested in vitro using a cytopathic inhibition assay to assess their antiviral activity against both human Influenza (H1N1) and human coronavirus (HCoV-229E). Diphenyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (furan-2-yl) methyl) phosphonate (3f) and diethyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) methyl) phosphonate (4e) were demonstrated direct inhibition activity against Influenza A Neuraminidase and RNA-dependent RNA polymerase. This was supported by their highly favorable binding energies in-silico, with top-ranked values of -12.5 kcal/mol and -14.2 kcal/mol for compound (3f), and -13.5 kcal/mol and -9.89 kcal/mol for compound (4e). Moreover, they also displayed notable antiviral efficacy in vitro against both viruses. These compounds demonstrated significant antiviral activity, as evidenced by selectivity indices (SI) of 101.7 and 51.8, respectively against H1N1, and 24.5 and 5.1 against HCoV-229E, respectively.


Subject(s)
Antiviral Agents , Coronavirus 229E, Human , Drug Design , Influenza A Virus, H1N1 Subtype , Molecular Docking Simulation , Organophosphonates , Pyrimidinones , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Influenza A Virus, H1N1 Subtype/drug effects , Humans , Pyrimidinones/pharmacology , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Structure-Activity Relationship , Organophosphonates/pharmacology , Organophosphonates/chemistry , Organophosphonates/chemical synthesis , Coronavirus 229E, Human/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism
14.
Virology ; 595: 110088, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643657

ABSTRACT

Human norovirus (HuNoV), a primary cause of non-bacterial gastroenteritis, currently lacks approved treatment. RdRp is vital for virus replication, making it an attractive target for therapeutic intervention. By application of structure-based virtual screening procedure, we present CX-6258 hydrochloride hydrate as a potent RdRp non-nucleoside inhibitor, effectively inhibiting HuNoV RdRp activity with an IC50 of 3.61 µM. Importantly, this compound inhibits viral replication in cell culture, with an EC50 of 0.88 µM. In vitro binding assay validate that CX-6258 hydrochloride hydrate binds to RdRp through interaction with the "B-site" binding pocket. Interestingly, CX-6258-contacting residues such as R392, Q439, and Q414 are highly conserved among major norovirus GI and GII variants, suggesting that it may be a general inhibitor of norovirus RdRp. Given that CX-6258 hydrochloride hydrate is already utilized as an orally efficacious pan-Pim kinase inhibitor, it may serve as a potential lead compound in the effort to control HuNoV infections.


Subject(s)
Antiviral Agents , Norovirus , RNA-Dependent RNA Polymerase , Virus Replication , Norovirus/drug effects , Norovirus/enzymology , Norovirus/genetics , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Virus Replication/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Binding Sites
15.
J Virol ; 98(5): e0013824, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38563748

ABSTRACT

Influenza A viruses, causing seasonal epidemics and occasional pandemics, rely on interactions with host proteins for their RNA genome transcription and replication. The viral RNA polymerase utilizes host RNA polymerase II (Pol II) and interacts with the serine 5 phosphorylated (pS5) C-terminal domain (CTD) of Pol II to initiate transcription. Our study, using single-particle electron cryomicroscopy (cryo-EM), reveals the structure of the 1918 pandemic influenza A virus polymerase bound to a synthetic pS5 CTD peptide composed of four heptad repeats mimicking the 52 heptad repeat mammalian Pol II CTD. The structure shows that the CTD peptide binds at the C-terminal domain of the PA viral polymerase subunit (PA-C) and reveals a previously unobserved position of the 627 domain of the PB2 subunit near the CTD. We identify crucial residues of the CTD peptide that mediate interactions with positively charged cavities on PA-C, explaining the preference of the viral polymerase for pS5 CTD. Functional analysis of mutants targeting the CTD-binding site within PA-C reveals reduced transcriptional function or defects in replication, highlighting the multifunctional role of PA-C in viral RNA synthesis. Our study provides insights into the structural and functional aspects of the influenza virus polymerase-host Pol II interaction and identifies a target for antiviral development.IMPORTANCEUnderstanding the intricate interactions between influenza A viruses and host proteins is crucial for developing targeted antiviral strategies. This study employs advanced imaging techniques to uncover the structural nuances of the 1918 pandemic influenza A virus polymerase bound to a specific host protein, shedding light on the vital process of viral RNA synthesis. The study identifies key amino acid residues in the influenza polymerase involved in binding host polymerase II (Pol II) and highlights their role in both viral transcription and genome replication. These findings not only deepen our understanding of the influenza virus life cycle but also pinpoint a potential target for antiviral development. By elucidating the structural and functional aspects of the influenza virus polymerase-host Pol II interaction, this research provides a foundation for designing interventions to disrupt viral replication and transcription, offering promising avenues for future antiviral therapies.


Subject(s)
Cryoelectron Microscopy , Influenza A virus , RNA Polymerase II , RNA-Dependent RNA Polymerase , Viral Proteins , Humans , Influenza A virus/metabolism , Influenza A virus/genetics , Influenza A virus/enzymology , Influenza, Human/virology , Models, Molecular , Phosphorylation , Protein Binding , Protein Domains , RNA Polymerase II/metabolism , RNA Polymerase II/chemistry , RNA, Viral/metabolism , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/chemistry , Transcription, Genetic , Viral Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Virus Replication
16.
Curr Protoc ; 4(3): e1007, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38511495

ABSTRACT

An optimized protocol has been developed to express and purify the core RNA-dependent RNA polymerase (RdRP) complex from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The expression and purification of active core SARS-CoV-2 RdRp complex is challenging due to the complex multidomain fold of nsp12, and the assembly of the multimeric complex involving nsp7, nsp8, and nsp12. Our approach adapts a previously published method to express the core SARS-CoV-2 RdRP complex in Escherichia coli and combines it with a procedure to express the nsp12 fusion with maltose-binding protein in insect cells to promote the efficient assembly and purification of an enzymatically active core polymerase complex. The resulting method provides a reliable platform to produce milligram amounts of the polymerase complex with the expected 1:2:1 stoichiometry for nsp7, nsp8, and nsp12, respectively, following the removal of all affinity tags. This approach addresses some of the limitations of previously reported methods to provide a reliable source of the active polymerase complex for structure, function, and inhibition studies of the SARS-CoV-2 RdRP complex using recombinant plasmid constructs that have been deposited in the widely accessible Addgene repository. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Expression and production of SARS-CoV-2 nsp7, nsp8, and nsp12 in E. coli cells Support Protocol: Establishment and maintenance of insect cell cultures Basic Protocol 2: Generation of recombinant baculovirus in Sf9 cells and production of nsp12 fusion protein in T. ni cells Basic Protocol 3: Purification of the SARS-CoV-2 core polymerase complex.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Escherichia coli/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism
17.
Antimicrob Agents Chemother ; 68(4): e0095623, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38446062

ABSTRACT

Viral RNA-dependent RNA polymerase (RdRp), a highly conserved molecule in RNA viruses, has recently emerged as a promising drug target for broad-acting inhibitors. Through a Vero E6-based anti-cytopathic effect assay, we found that BPR3P0128, which incorporates a quinoline core similar to hydroxychloroquine, outperformed the adenosine analog remdesivir in inhibiting RdRp activity (EC50 = 0.66 µM and 3 µM, respectively). BPR3P0128 demonstrated broad-spectrum activity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. When introduced after viral adsorption, BPR3P0128 significantly decreased SARS-CoV-2 replication; however, it did not affect the early entry stage, as evidenced by a time-of-drug-addition assay. This suggests that BPR3P0128's primary action takes place during viral replication. We also found that BPR3P0128 effectively reduced the expression of proinflammatory cytokines in human lung epithelial Calu-3 cells infected with SARS-CoV-2. Molecular docking analysis showed that BPR3P0128 targets the RdRp channel, inhibiting substrate entry, which implies it operates differently-but complementary-with remdesivir. Utilizing an optimized cell-based minigenome RdRp reporter assay, we confirmed that BPR3P0128 exhibited potent inhibitory activity. However, an enzyme-based RdRp assay employing purified recombinant nsp12/nsp7/nsp8 failed to corroborate this inhibitory activity. This suggests that BPR3P0128 may inhibit activity by targeting host-related RdRp-associated factors. Moreover, we discovered that a combination of BPR3P0128 and remdesivir had a synergistic effect-a result likely due to both drugs interacting with separate domains of the RdRp. This novel synergy between the two drugs reinforces the potential clinical value of the BPR3P0128-remdesivir combination in combating various SARS-CoV-2 variants of concern.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 , Pyrazoles , Quinolines , Humans , SARS-CoV-2/metabolism , RNA-Dependent RNA Polymerase/metabolism , Molecular Docking Simulation , COVID-19 Drug Treatment , Antiviral Agents/chemistry
18.
PLoS Pathog ; 20(3): e1012110, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38498560

ABSTRACT

The interaction between influenza A virus (IAV) and host proteins is an important process that greatly influences viral replication and pathogenicity. PB2 protein is a subunit of viral ribonucleoprotein (vRNP) complex playing distinct roles in viral transcription and replication. BAG6 (BCL2-associated athanogene 6) as a multifunctional host protein participates in physiological and pathological processes. Here, we identify BAG6 as a new restriction factor for IAV replication through targeting PB2. For both avian and human influenza viruses, overexpression of BAG6 reduced viral protein expression and virus titers, whereas deletion of BAG6 significantly enhanced virus replication. Moreover, BAG6-knockdown mice developed more severe clinical symptoms and higher viral loads upon IAV infection. Mechanistically, BAG6 restricted IAV transcription and replication by inhibiting the activity of viral RNA-dependent RNA polymerase (RdRp). The co-immunoprecipitation assays showed BAG6 specifically interacted with the N-terminus of PB2 and competed with PB1 for RdRp complex assembly. The ubiquitination assay indicated that BAG6 promoted PB2 ubiquitination at K189 residue and targeted PB2 for K48-linked ubiquitination degradation. The antiviral effect of BAG6 necessitated its N-terminal region containing a ubiquitin-like (UBL) domain (17-92aa) and a PB2-binding domain (124-186aa), which are synergistically responsible for viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. These findings unravel a novel antiviral mechanism via the interaction of viral PB2 and host protein BAG6 during avian or human influenza virus infection and highlight a potential application of BAG6 for antiviral drug development.


Subject(s)
Influenza A virus , Influenza, Human , Animals , Humans , Mice , Antiviral Agents/metabolism , Influenza A virus/genetics , Molecular Chaperones/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/genetics
19.
Molecules ; 29(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38474490

ABSTRACT

The Zika virus (ZIKV) is a mosquito-borne virus that already poses a danger to worldwide human health. Patients infected with ZIKV generally have mild symptoms like a low-grade fever and joint pain. However, severe symptoms can also occur, such as Guillain-Barré syndrome, neuropathy, and myelitis. Pregnant women infected with ZIKV may also cause microcephaly in newborns. To date, we still lack conventional antiviral drugs to treat ZIKV infections. Marine natural products have novel structures and diverse biological activities. They have been discovered to have antibacterial, antiviral, anticancer, and other therapeutic effects. Therefore, marine products are important resources for compounds for innovative medicines. In this study, we identified a marine natural product, harzianopyridone (HAR), that could inhibit ZIKV replication with EC50 values from 0.46 to 2.63 µM while not showing obvious cytotoxicity in multiple cellular models (CC50 > 45 µM). Further, it also reduced the expression of viral proteins and protected cells from viral infection. More importantly, we found that HAR directly bound to the ZIKV RNA-dependent RNA polymerase (RdRp) and suppressed its polymerase activity. Collectively, our findings provide HAR as an option for the development of anti-ZIKV drugs.


Subject(s)
Biological Products , Pyridones , Zika Virus Infection , Zika Virus , Animals , Humans , Female , Infant, Newborn , Pregnancy , Antiviral Agents/pharmacology , RNA-Dependent RNA Polymerase/metabolism , Biological Products/pharmacology , Virus Replication
20.
Mar Drugs ; 22(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38393063

ABSTRACT

The Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that primarily affects people in Asia and seriously threatens public health. Considering the rising occurrence rates and lack of targeted antiviral treatments, it is essential to comprehend and tackle obstacles related to JEV in order to lessen its influence on world health. This investigation explores compounds derived from marine brown algae (Phaeophyceae) as potential inhibitors of JEV RNA-dependent RNA polymerase (RdRp), a critical enzyme in the virus's replication cycle. Employing the computational virtual screen approach, four compounds, i.e., CMNPD16749, CMNPD2606, CMNPD27817, and CMNPD23662, with favorable binding energies ranging from -15.7 Kcal/mol to -13.9 kcal/mol were identified. Subsequently, through molecular docking analysis, the interactions responsible for the binding stability between the target protein and hit molecules compared to the reference molecule Galidesvir were studied. Further, through extensive molecular dynamic (MD) simulation studies at 200 ns, it was confirmed that each docked complex showed acceptable dynamic stability compared to the reference molecule. These findings were further validated using MM/PBSA free binding energy calculations, PCA analysis and free energy landscape construction. These computational findings suggested that the brown algae-derived compounds may act as an antiviral drug against JEV infection and lay a crucial foundation for future experimental studies against JEV.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Humans , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/metabolism , RNA-Dependent RNA Polymerase/metabolism , Molecular Docking Simulation , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...