Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.201
Filter
1.
New Phytol ; 243(3): 966-980, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38840557

ABSTRACT

Throughout their lifecycle, plants are subjected to DNA damage from various sources, both environmental and endogenous. Investigating the mechanisms of the DNA damage response (DDR) is essential to unravel how plants adapt to the changing environment, which can induce varying amounts of DNA damage. Using a combination of whole-mount single-molecule RNA fluorescence in situ hybridization (WM-smFISH) and plant cell cycle reporter lines, we investigated the transcriptional activation of a key homologous recombination (HR) gene, RAD51, in response to increasing amounts of DNA damage in Arabidopsis thaliana roots. The results uncover consistent variations in RAD51 transcriptional response and cell cycle arrest among distinct cell types and developmental zones. Furthermore, we demonstrate that DNA damage induced by genotoxic stress results in RAD51 transcription throughout the whole cell cycle, dissociating its traditional link with S/G2 phases. This work advances the current comprehension of DNA damage response in plants by demonstrating quantitative differences in DDR activation. In addition, it reveals new associations with the cell cycle and cell types, providing crucial insights for further studies of the broader response mechanisms in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Cycle , DNA Damage , Gene Expression Regulation, Plant , Plant Roots , Rad51 Recombinase , Transcription, Genetic , Arabidopsis/genetics , Plant Roots/genetics , Plant Roots/cytology , Cell Cycle/genetics , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
2.
Sci Rep ; 14(1): 14185, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902391

ABSTRACT

Helicobacter pylori (H. pylori), together with its CagA, has been implicated in causing DNA damage, cell cycle arrest, apoptosis, and the development of gastric cancer. Although lncRNA H19 is abundantly expressed in gastric cancer and functions as a pro-oncogene, it remains unclear whether lncRNA H19 contributes to the oncogenic process of H. pylori CagA. This study investigates the role of H19 in the DNA damage response and malignancy induced by H. pylori. It was observed that cells infected with CagA+ H. pylori strain (GZ7/cagA) showed significantly higher H19 expression, resulting in increased γH2A.X and p-ATM expression and decreased p53 and Rad51 expression. Faster cell migration and invasion was also observed, which was reversed by H19 knockdown in H. pylori. YWHAZ was identified as an H19 target protein, and its expression was increased in H19 knockdown cells. GZ7/cagA infection responded to the increased YWHAZ expression induced by H19 knockdown. In addition, H19 knockdown stimulated cells to enter the G2-phase and attenuated the effect of GZ7/cagA infection on the cellular S-phase barrier. The results suggest that H. pylori CagA can upregulate H19 expression, participate in the DNA damage response and promote cell migration and invasion, and possibly affect cell cycle arrest via regulation of YWHAZ.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Cell Movement , DNA Damage , Helicobacter pylori , RNA, Long Noncoding , Stomach Neoplasms , Humans , Antigens, Bacterial/metabolism , Antigens, Bacterial/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Helicobacter pylori/genetics , Stomach Neoplasms/microbiology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Cell Movement/genetics , Cell Line, Tumor , Helicobacter Infections/microbiology , Helicobacter Infections/genetics , Helicobacter Infections/metabolism , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Histones/metabolism
3.
Nucleic Acids Res ; 52(12): 7031-7048, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38828785

ABSTRACT

Homologous recombination (HR) is a template-based DNA double-strand break repair pathway that requires the selection of an appropriate DNA sequence to facilitate repair. Selection occurs during a homology search that must be executed rapidly and with high fidelity. Failure to efficiently perform the homology search can result in complex intermediates that generate genomic rearrangements, a hallmark of human cancers. Rad54 is an ATP dependent DNA motor protein that functions during the homology search by regulating the recombinase Rad51. How this regulation reduces genomic exchanges is currently unknown. To better understand how Rad54 can reduce these outcomes, we evaluated several amino acid mutations in Rad54 that were identified in the COSMIC database. COSMIC is a collection of amino acid mutations identified in human cancers. These substitutions led to reduced Rad54 function and the discovery of a conserved motif in Rad54. Through genetic, biochemical and single-molecule approaches, we show that disruption of this motif leads to failure in stabilizing early strand invasion intermediates, causing increased crossovers between homologous chromosomes. Our study also suggests that the translocation rate of Rad54 is a determinant in balancing genetic exchange. The latch domain's conservation implies an interaction likely fundamental to eukaryotic biology.


Subject(s)
DNA Helicases , Homologous Recombination , Rad51 Recombinase , Saccharomyces cerevisiae , DNA Helicases/genetics , DNA Helicases/metabolism , Humans , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA Breaks, Double-Stranded , Crossing Over, Genetic , Mutation , Recombinational DNA Repair , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , DNA Repair Enzymes
4.
Nucleic Acids Res ; 52(12): 7337-7353, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38828772

ABSTRACT

In vertebrates, the BRCA2 protein is essential for meiotic and somatic homologous recombination due to its interaction with the RAD51 and DMC1 recombinases through FxxA and FxPP motifs (here named A- and P-motifs, respectively). The A-motifs present in the eight BRC repeats of BRCA2 compete with the A-motif of RAD51, which is responsible for its self-oligomerization. BRCs thus disrupt RAD51 nucleoprotein filaments in vitro. The role of the P-motifs is less studied. We recently found that deletion of Brca2 exons 12-14 encoding one of them (the prototypical 'PhePP' motif), disrupts DMC1 but not RAD51 function in mouse meiosis. Here we provide a mechanistic explanation for this phenotype by solving the crystal structure of the complex between a BRCA2 fragment containing the PhePP motif and DMC1. Our structure reveals that, despite sharing a conserved phenylalanine, the A- and P-motifs bind to distinct sites on the ATPase domain of the recombinases. The P-motif interacts with a site that is accessible in DMC1 octamers and nucleoprotein filaments. Moreover, we show that this interaction also involves the adjacent protomer and thus increases the stability of the DMC1 nucleoprotein filaments. We extend our analysis to other P-motifs from RAD51AP1 and FIGNL1.


Subject(s)
Amino Acid Motifs , BRCA2 Protein , Cell Cycle Proteins , DNA-Binding Proteins , Protein Binding , Rad51 Recombinase , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/chemistry , BRCA2 Protein/metabolism , BRCA2 Protein/chemistry , BRCA2 Protein/genetics , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Mice , Humans , Binding Sites , Models, Molecular , Crystallography, X-Ray , Homologous Recombination , Phosphate-Binding Proteins
5.
Mol Biol Rep ; 51(1): 745, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874758

ABSTRACT

BACKGROUND: Sn1-type alkylating agents methylate the oxygen atom on guanine bases thereby producing O6-methylguanine. This modified base could pair with thymine and cytosine, resulting in the formation of O6-methylguanine/thymine mismatch during DNA replication, recognized by the mismatch repair (MMR) complex, which then initiates the DNA damage response and subsequent apoptotic processes. In our investigation of the molecular mechanisms underlying MMR-dependent apoptosis, we observed FANCD2 modification upon the activity of alkylating agent N-methyl-N-nitrosourea (MNU). This observation led us to hypothesize a relevant role for FANCD2 in the apoptosis induction process. METHODS AND RESULTS: We generated FANCD2 knockout cells using the CRISPR/Cas9 method in the human cervical cancer cell line HeLa MR. FANCD2-deficient cells exhibited MNU hypersensitivity. Upon MNU exposure, FANCD2 colocalized with the MMR complex. MNU-treated FANCD2 knockout cells displayed severe S phase delay followed by increased G2/M arrest and MMR-dependent apoptotic cell death. Moreover, FANCD2 knockout cells exhibited impaired CtIP and RAD51 recruitment to the damaged chromatin and DNA double-strand break accumulation, indicated by simultaneously observed increased γH2AX signal and 53BP1 foci. CONCLUSIONS: Our data suggest that FANCD2 is crucial for recruiting homologous recombination factors to the sites of the MMR-dependent replication stress to resolve the arrested replication fork and counteract O6-methylguanine-triggered MMR-dependent apoptosis.


Subject(s)
Apoptosis , DNA Mismatch Repair , Fanconi Anemia Complementation Group D2 Protein , Guanine , Humans , DNA Mismatch Repair/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group D2 Protein/genetics , Apoptosis/genetics , Apoptosis/drug effects , Guanine/metabolism , Guanine/analogs & derivatives , HeLa Cells , DNA Damage , Methylnitrosourea/toxicity , CRISPR-Cas Systems , Gene Knockout Techniques , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , DNA Replication/drug effects , DNA Replication/genetics
6.
Nat Commun ; 15(1): 5044, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890315

ABSTRACT

Homology-dependent targeted DNA integration, generally referred to as gene targeting, provides a powerful tool for precise genome modification; however, its fundamental mechanisms remain poorly understood in human cells. Here we reveal a noncanonical gene targeting mechanism that does not rely on the homologous recombination (HR) protein Rad51. This mechanism is suppressed by Rad52 inhibition, suggesting the involvement of single-strand annealing (SSA). The SSA-mediated gene targeting becomes prominent when DSB repair by HR or end-joining pathways is defective and does not require isogenic DNA, permitting 5% sequence divergence. Intriguingly, loss of Msh2, loss of BLM, and induction of a target-site DNA break all significantly and synergistically enhance SSA-mediated targeted integration. Most notably, SSA-mediated integration is cell cycle-independent, occurring in the G1 phase as well. Our findings provide unequivocal evidence for Rad51-independent targeted integration and unveil multiple mechanisms to regulate SSA-mediated targeted as well as random integration.


Subject(s)
Cell Cycle , Gene Targeting , MutS Homolog 2 Protein , Rad51 Recombinase , Rad52 DNA Repair and Recombination Protein , Humans , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Cell Cycle/genetics , MutS Homolog 2 Protein/metabolism , MutS Homolog 2 Protein/genetics , RecQ Helicases/metabolism , RecQ Helicases/genetics , Homologous Recombination , DNA Breaks, Double-Stranded , DNA Repair , DNA End-Joining Repair , G1 Phase/genetics
7.
J Biol Chem ; 300(6): 107342, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705392

ABSTRACT

Posttranslational modifications of Hsp90 are known to regulate its in vivo chaperone functions. Here, we demonstrate that the lysine acetylation-deacetylation dynamics of Hsp82 is a major determinant in DNA repair mediated by Rad51. We uncover that the deacetylated lysine 27 in Hsp82 dictates the formation of the Hsp82-Aha1-Rad51 complex, which is crucial for client maturation. Intriguingly, Aha1-Rad51 complex formation is not dependent on Hsp82 or its acetylation status; implying that Aha1-Rad51 association precedes the interaction with Hsp82. The DNA damage sensitivity of Hsp82 (K27Q/K27R) mutants are epistatic to the loss of the (de)acetylase hda1Δ; reinforcing the importance of the reversible acetylation of Hsp82 at the K27 position. These findings underscore the significance of the cross talk between a specific Hsp82 chaperone modification code and the cognate cochaperones in a client-specific manner. Given the pivotal role that Rad51 plays during DNA repair in eukaryotes and particularly in cancer cells, targeting the Hda1-Hsp90 axis could be explored as a new therapeutic approach against cancer.


Subject(s)
DNA Repair , HSP90 Heat-Shock Proteins , Molecular Chaperones , Rad51 Recombinase , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Acetylation , DNA Damage , Protein Processing, Post-Translational , Lysine/metabolism
8.
Cell Death Dis ; 15(5): 329, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740757

ABSTRACT

Iron is crucial for cell DNA synthesis and repair, but an excess of free iron can lead to oxidative stress and subsequent cell death. Although several studies suggest that cancer cells display characteristics of 'Iron addiction', an ongoing debate surrounds the question of whether iron can influence the malignant properties of ovarian cancer. In the current study, we initially found iron levels increase during spheroid formation. Furthermore, iron supplementation can promote cancer cell survival, cancer spheroid growth, and migration; vice versa, iron chelators inhibit this process. Notably, iron reduces the sensitivity of ovarian cancer cells to platinum as well. Mechanistically, iron downregulates DNA homologous recombination (HR) inhibitor polymerase theta (POLQ) and relieves its antagonism against the HR repair enzyme RAD51, thereby promoting DNA damage repair to resist chemotherapy-induced damage. Additionally, iron tightly regulated by ferritin (FTH1/FTL) which is indispensable for iron-triggered DNA repair. Finally, we discovered that iron chelators combined with platinum exhibit a synergistic inhibitory effect on ovarian cancer in vitro and in vivo. Our findings affirm the pro-cancer role of iron in ovarian cancer and reveal that iron advances platinum resistance by promoting DNA damage repair through FTH1/FTL/POLQ/RAD51 pathway. Our findings highlight the significance of iron depletion therapy, revealing a promising avenue for advancing ovarian cancer treatment.


Subject(s)
DNA Repair , Drug Resistance, Neoplasm , Iron , Ovarian Neoplasms , Rad51 Recombinase , Animals , Female , Humans , Mice , Cell Line, Tumor , DNA Repair/drug effects , Drug Resistance, Neoplasm/drug effects , Ferritins/drug effects , Ferritins/metabolism , Iron/metabolism , Mice, Nude , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Oxidoreductases/metabolism , Platinum/pharmacology , Platinum/therapeutic use , Rad51 Recombinase/metabolism , DNA Polymerase theta/drug effects , DNA Polymerase theta/metabolism , Apoferritins/drug effects , Apoferritins/metabolism
9.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38803223

ABSTRACT

Homologous recombination is a major pathway for the repair of DNA double strand breaks, essential both to maintain genomic integrity and to generate genetic diversity. Mechanistically, homologous recombination involves the use of a homologous DNA molecule as a template to repair the break. In eukaryotes, the search for and invasion of the homologous DNA molecule is carried out by two recombinases, RAD51 in somatic cells and RAD51 and DMC1 in meiotic cells. During recombination, the recombinases bind overhanging single-stranded DNA ends to form a nucleoprotein filament, which is the active species in promoting DNA invasion and strand exchange. RAD51 and DMC1 carry two major DNA-binding sites-essential for nucleofilament formation and DNA strand exchange, respectively. Here, we show that the function of RAD51 DNA-binding site II is conserved in the plant, Arabidopsis. Mutation of three key amino acids in site II does not affect RAD51 nucleofilament formation but inhibits its recombinogenic activity, analogous to results from studies of the yeast and human proteins. We further confirm that recombinogenic function of RAD51 DNA-binding site II is not required for meiotic double-strand break repair when DMC1 is present. The Arabidopsis AtRAD51-II3A separation of function mutant shows a dominant negative phenotype, pointing to distinct biochemical properties of eukaryotic RAD51 proteins.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Homologous Recombination , Rad51 Recombinase , Arabidopsis/metabolism , Arabidopsis/genetics , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Binding Sites , Mutation , DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Meiosis/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA Repair
10.
Nat Commun ; 15(1): 4430, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789420

ABSTRACT

Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs). In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA1. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours, we identify a function for γH2AX in orchestrating drug-induced replication fork degradation. Mechanistically, γH2AX-driven replication fork degradation is elicited by suppressing CtIP-mediated fork protection. As a result, H2AX loss restores replication fork stability and increases chemoresistance in BRCA1/2-deficient tumour cells without restoring homology-directed DNA repair, as highlighted by the lack of DNA damage-induced RAD51 foci. Furthermore, in the attempt to discover acquired genetic vulnerabilities, we find that ATM but not ATR inhibition overcomes PARP inhibitor (PARPi) resistance in H2AX-deficient tumours by interfering with CtIP-mediated fork protection. In summary, our results demonstrate a role for H2AX in replication fork biology in BRCA-deficient tumours and establish a function of H2AX separable from its classical role in DNA damage signalling and DSB repair.


Subject(s)
BRCA1 Protein , BRCA2 Protein , DNA Replication , Drug Resistance, Neoplasm , Histones , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Female , Humans , Mice , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , BRCA1 Protein/metabolism , BRCA1 Protein/deficiency , BRCA1 Protein/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Carrier Proteins/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Damage , DNA Repair , DNA Replication/drug effects , Drug Resistance, Neoplasm/genetics , Histones/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Mice, Nude
11.
Cell Death Dis ; 15(5): 321, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719812

ABSTRACT

RAD18, an important ubiquitin E3 ligase, plays a dual role in translesion DNA synthesis (TLS) and homologous recombination (HR) repair. However, whether and how the regulatory mechanism of O-linked N-acetylglucosamine (O-GlcNAc) modification governing RAD18 and its function during these processes remains unknown. Here, we report that human RAD18, can undergo O-GlcNAcylation at Ser130/Ser164/Thr468, which is important for optimal RAD18 accumulation at DNA damage sites. Mechanistically, abrogation of RAD18 O-GlcNAcylation limits CDC7-dependent RAD18 Ser434 phosphorylation, which in turn significantly reduces damage-induced PCNA monoubiquitination, impairs Polη focus formation and enhances UV sensitivity. Moreover, the ubiquitin and RAD51C binding ability of RAD18 at DNA double-strand breaks (DSBs) is O-GlcNAcylation-dependent. O-GlcNAcylated RAD18 promotes the binding of RAD51 to damaged DNA during HR and decreases CPT hypersensitivity. Our findings demonstrate a novel role of RAD18 O-GlcNAcylation in TLS and HR regulation, establishing a new rationale to improve chemotherapeutic treatment.


Subject(s)
Acetylglucosamine , DNA-Binding Proteins , Proliferating Cell Nuclear Antigen , Rad51 Recombinase , Recombinational DNA Repair , Ubiquitin-Protein Ligases , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Acetylglucosamine/metabolism , Rad51 Recombinase/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Phosphorylation , DNA Replication , Ubiquitination , DNA Breaks, Double-Stranded , DNA-Directed DNA Polymerase/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA Damage , DNA/metabolism , HEK293 Cells , Ultraviolet Rays , Protein Binding , Glycosylation , Translesion DNA Synthesis
12.
Cell Rep ; 43(5): 114205, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753485

ABSTRACT

The advent of PARP inhibitors (PARPis) has profoundly changed the treatment landscape of BRCA1/BRCA2-mutated cancers. Despite this, the development of resistance to these compounds has become a major challenge. Hence, a detailed understanding of the mechanisms underlying PARPi sensitivity is crucially needed. Here, we show that loss of the POLE3-POLE4 subunits of DNA polymerase epsilon (Polε) strongly sensitizes cancer cells to PARPis in a Polε level-independent manner. Loss of POLE3-POLE4 is not associated with defective RAD51 foci formation, excluding a major defect in homologous recombination. On the contrary, treatment with PARPis triggers replicative gap accumulation in POLE3-POLE4 knockout (KO) cells in a PRIMPOL-dependent manner. In addition to this, the loss of POLE3-POLE4 further sensitizes BRCA1-silenced cells to PARPis. Importantly, the knockdown of 53BP1 does not rescue PARPi sensitivity in POLE3-POLE4 KO cells, bypassing a common PARPi resistance mechanism and outlining a potential strategy to sensitize cancer cells to PARPis.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , DNA Replication/drug effects , Cell Line, Tumor , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , DNA Polymerase II/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , Rad51 Recombinase/metabolism
13.
Nucleic Acids Res ; 52(10): 5774-5791, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38597669

ABSTRACT

RAD51 filament is crucial for the homology-dependent repair of DNA double-strand breaks and stalled DNA replication fork protection. Positive and negative regulators control RAD51 filament assembly and disassembly. RAD51 is vital for genome integrity but excessive accumulation of RAD51 on chromatin causes genome instability and growth defects. However, the detailed mechanism underlying RAD51 disassembly by negative regulators and the physiological consequence of abnormal RAD51 persistence remain largely unknown. Here, we report the role of the human AAA+ ATPase FIGNL1 in suppressing a novel type of RAD51-mediated genome instability. FIGNL1 knockout human cells were defective in RAD51 dissociation after replication fork restart and accumulated ultra-fine chromosome bridges (UFBs), whose formation depends on RAD51 rather than replication fork stalling. FIGNL1 suppresses homologous recombination intermediate-like UFBs generated between sister chromatids at genomic loci with repeated sequences such as telomeres and centromeres. These data suggest that RAD51 persistence per se induces the formation of unresolved linkage between sister chromatids resulting in catastrophic genome instability. FIGNL1 facilitates post-replicative disassembly of RAD51 filament to suppress abnormal recombination intermediates and UFBs. These findings implicate FIGNL1 as a key factor required for active RAD51 removal after processing of stalled replication forks, which is essential to maintain genome stability.


Subject(s)
Genomic Instability , Rad51 Recombinase , Humans , Chromatids/metabolism , Chromatids/genetics , DNA Replication/genetics , Genomic Instability/genetics , Homologous Recombination/genetics , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Cell Line , Gene Knockout Techniques
14.
Cell Cycle ; 23(4): 369-384, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38571319

ABSTRACT

Acetaldehyde, a chemical that can cause DNA damage and contribute to cancer, is prevalently present in our environment, e.g. in alcohol, tobacco, and food. Although aldehyde potentially promotes crosslinking reactions among biological substances including DNA, RNA, and protein, it remains unclear what types of DNA damage are caused by acetaldehyde and how they are repaired. In this study, we explored mechanisms involved in the repair of acetaldehyde-induced DNA damage by examining the cellular sensitivity to acetaldehyde in the collection of human TK6 mutant deficient in each genome maintenance system. Among the mutants, mismatch repair mutants did not show hypersensitivity to acetaldehyde, while mutants deficient in base and nucleotide excision repair pathways or homologous recombination (HR) exhibited higher sensitivity to acetaldehyde than did wild-type cells. We found that acetaldehyde-induced RAD51 foci representing HR intermediates were prolonged in HR-deficient cells. These results indicate a pivotal role of HR in the repair of acetaldehyde-induced DNA damage. These results suggest that acetaldehyde causes complex DNA damages that require various types of repair pathways. Mutants deficient in the removal of protein adducts from DNA ends such as TDP1-/- and TDP2-/- cells exhibited hypersensitivity to acetaldehyde. Strikingly, the double mutant deficient in both TDP1 and RAD54 showed similar sensitivity to each single mutant. This epistatic relationship between TDP1-/- and RAD54-/- suggests that the protein-DNA adducts generated by acetaldehyde need to be removed for efficient repair by HR. Our study would help understand the molecular mechanism of the genotoxic and mutagenic effects of acetaldehyde.


Subject(s)
Acetaldehyde , DNA Damage , DNA Repair , Homologous Recombination , Acetaldehyde/toxicity , Humans , Homologous Recombination/drug effects , Homologous Recombination/genetics , DNA Repair/drug effects , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Mutation/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line
15.
Chirality ; 36(4): e23664, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561319

ABSTRACT

Linear dichroism spectroscopy is used to investigate the structure of RecA family recombinase filaments (RecA and Rad51 proteins) with DNA for clarifying the molecular mechanism of DNA strand exchange promoted by these proteins and its activation. The measurements show that the recombinases promote the perpendicular base orientation of single-stranded DNA only in the presence of activators, indicating the importance of base orientation in the reaction. We summarize the results and discuss the role of DNA base orientation.


Subject(s)
DNA , Rad51 Recombinase , Rad51 Recombinase/chemistry , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Stereoisomerism , DNA/chemistry , DNA, Single-Stranded
16.
Cancer Immunol Immunother ; 73(5): 95, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607586

ABSTRACT

BACKGROUND: Homologous recombination deficiency (HRD), though largely uncharacterized in clear cell renal cell carcinoma (ccRCC), was found associated with RAD51 loss of expression. PBRM1 is the second most common mutated genes in ccRCC. Here, we introduce a HRD function-based PBRM1-RAD51 ccRCC classification endowed with diverse immune checkpoint blockade (ICB) responses. METHODS: Totally 1542 patients from four independent cohorts were enrolled, including our localized Zhongshan hospital (ZSHS) cohort and Zhongshan hospital metastatic RCC (ZSHS-mRCC) cohort, The Cancer Genome Atlas (TCGA) cohort and CheckMate cohort. The genomic profile and immune microenvironment were depicted by genomic, transcriptome data and immunohistochemistry. RESULTS: We observed that PBRM1-loss ccRCC harbored enriched HRD-associated mutational signature 3 and loss of RAD51. Dual-loss of PBRM1 and RAD51 identified patients hyper-sensitive to immunotherapy. This dual-loss subtype was featured by M1 macrophage infiltration. Dual-loss was, albeit homologous recombination defective, with high chromosomal stability. CONCLUSIONS: PBRM1 and RAD51 dual-loss ccRCC indicates superior responses to immunotherapy. Dual-loss ccRCC harbors an immune-desert microenvironment but enriched with M1 macrophages. Dual-loss ccRCC is susceptible to defective homologous recombination but possesses high chromosomal stability.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Immunotherapy , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Chromosomal Instability , Tumor Microenvironment , Rad51 Recombinase , DNA-Binding Proteins/genetics , Transcription Factors/genetics
17.
Health Phys ; 126(6): 397-404, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38568172

ABSTRACT

ABSTRACT: Experiments that examine the impacts of subnatural background radiation exposure provide a unique approach to studying the biological effects of low-dose radiation. These experiments often need to be conducted in deep underground laboratories in order to filter surface-level cosmic radiation. This presents some logistical challenges in experimental design and necessitates a model organism with minimal maintenance. As such, desiccated yeast ( Saccharomyces cerevisiae ) is an ideal model system for these investigations. This study aimed to determine the impact of prolonged sub-background radiation exposure in anhydrobiotic (desiccated) yeast at SNOLAB in Sudbury, Ontario, Canada. Two yeast strains were used: a normal wild type and an isogenic recombinational repair-deficient rad51 knockout strain ( rad51 Δ). Desiccated yeast samples were stored in the normal background surface control laboratory (68.0 nGy h -1 ) and in the sub-background environment within SNOLAB (10.1 nGy h -1 ) for up to 48 wk. Post-rehydration survival, growth rate, and metabolic activity were assessed at multiple time points. Survival in the sub-background environment was significantly reduced by a factor of 1.39 and 2.67 in the wild type and rad51 ∆ strains, respectively. Post-rehydration metabolic activity measured via alamarBlue reduction remained unchanged in the wild type strain but was 26% lower in the sub-background rad51 ∆ strain. These results demonstrate that removing natural background radiation negatively impacts the survival and metabolism of desiccated yeast, highlighting the potential importance of natural radiation exposure in maintaining homeostasis of living organisms.


Subject(s)
Desiccation , Saccharomyces cerevisiae , Saccharomyces cerevisiae/radiation effects , Rad51 Recombinase/metabolism , Radiation Exposure/adverse effects , Radiation Exposure/analysis , Radiation Dosage
18.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675528

ABSTRACT

Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways. We report here for the first time that AdoMet selectively inhibited the viability and proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1. Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis, and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be considered a potential adjuvant in GBM therapy.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Glioblastoma , S-Adenosylmethionine , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , S-Adenosylmethionine/pharmacology , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , DNA Repair/drug effects , Aurora Kinase B/metabolism , Aurora Kinase B/antagonists & inhibitors , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Rad51 Recombinase/metabolism , Cell Cycle Checkpoints/drug effects , Mitosis/drug effects
19.
Sci Rep ; 14(1): 9906, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38689033

ABSTRACT

CUL4B, a crucial scaffolding protein in the largest E3 ubiquitin ligase complex CRL4B, is involved in a broad range of physiological and pathological processes. While previous research has shown that CUL4B participates in maintaining intestinal homeostasis and function, its involvement in facilitating intestinal recovery following ionizing radiation (IR) damage has not been fully elucidated. Here, we utilized in vivo and in vitro models to decipher the role of CUL4B in intestinal repair after IR-injury. Our findings demonstrated that prior to radiation exposure, CUL4B inhibited the ubiquitination modification of PSME3, which led to the accumulation of PSME3 and subsequent negative regulation of p53-mediated apoptosis. In contrast, after radiation, CUL4B dissociated from PSME3 and translocated into the nucleus at phosphorylated histones H2A (γH2AX) foci, thereby impeding DNA damage repair and augmenting p53-mediated apoptosis through inhibition of BRCA1 phosphorylation and RAD51. Our study elucidated the dynamic role of CUL4B in the repair of radiation-induced intestinal damage and uncovered novel molecular mechanisms underlying the repair process, suggesting a potential therapeutic strategy of intestinal damage after radiation therapy for cancers.


Subject(s)
Apoptosis , Cullin Proteins , Intestines , Regeneration , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Apoptosis/radiation effects , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Cullin Proteins/metabolism , Cullin Proteins/genetics , DNA Damage , DNA Repair , Histones/metabolism , Intestines/radiation effects , Intestines/pathology , Mice, Inbred C57BL , Phosphorylation/radiation effects , Rad51 Recombinase/metabolism , Radiation, Ionizing , Regeneration/radiation effects , Tumor Suppressor Protein p53/metabolism , Ubiquitination
20.
Mol Med ; 30(1): 54, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649802

ABSTRACT

BACKGROUND: Bleomycin, a potent antitumor agent, is limited in clinical use due to the potential for fatal pulmonary toxicity. The accelerated DNA damage and senescence in alveolar epithelial cells (AECs) is considered a key factor in the development of lung pathology. Understanding the mechanisms for bleomycin-induced lung injury is crucial for mitigating its adverse effects. METHODS: Human lung epithelial (A549) cells were exposed to bleomycin and subsequently assessed for cellular senescence, DNA damage, and double-strand break (DSB) repair. The impact of Rad51 overexpression on DSB repair and senescence in AECs was evaluated in vitro. Additionally, bleomycin was intratracheally administered in C57BL/6 mice to establish a pulmonary fibrosis model. RESULTS: Bleomycin exposure induced dose- and time-dependent accumulation of senescence hallmarks and DNA lesions in AECs. These effects are probably due to the inhibition of Rad51 expression, consequently suppressing homologous recombination (HR) repair. Mechanistic studies revealed that bleomycin-mediated transcriptional inhibition of Rad51 might primarily result from E2F1 depletion. Furthermore, the genetic supplement of Rad51 substantially mitigated bleomycin-mediated effects on DSB repair and senescence in AECs. Notably, decreased Rad51 expression was also observed in the bleomycin-induced mouse pulmonary fibrosis model. CONCLUSIONS: Our works suggest that the inhibition of Rad51 plays a pivotal role in bleomycin-induced AECs senescence and lung injury, offering potential strategies to alleviate the pulmonary toxicity of bleomycin.


Subject(s)
Bleomycin , Cellular Senescence , DNA Repair , Rad51 Recombinase , Bleomycin/adverse effects , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Animals , Cellular Senescence/drug effects , Cellular Senescence/genetics , Humans , Mice , DNA Repair/drug effects , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Disease Models, Animal , Down-Regulation/drug effects , A549 Cells , DNA Damage/drug effects , DNA Breaks, Double-Stranded/drug effects , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...