Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.183
Filter
3.
Clin Respir J ; 18(5): e13759, 2024 May.
Article in English | MEDLINE | ID: mdl-38714529

ABSTRACT

INTRODUCTION: Chest radiograph and computed tomography (CT) scans can accidentally reveal pulmonary nodules. Malignant and benign pulmonary nodules can be difficult to distinguish without specific imaging features, such as calcification, necrosis, and contrast enhancement. However, these lesions may exhibit different image texture characteristics which cannot be assessed visually. Thus, a computer-assisted quantitative method like histogram analysis (HA) of Hounsfield unit (HU) values can improve diagnostic accuracy, reducing the need for invasive biopsy. METHODS: In this exploratory control study, nonenhanced chest CT images of 20 patients with benign (10) and cancerous (10) lesion were selected retrospectively. The appearances of benign and malignant lesions were very similar in chest CT images, and only pathology report was used to discriminate them. Free hand region of interest (ROI) was inserted inside the lesion for all slices of each lesion. Mean, minimum, maximum, and standard deviations of HU values were recorded and used to make HA. RESULTS: HA showed that the most malignant lesions have a mean HU value between 30 and 50, a maximum HU less than 150, and a minimum HU between -30 and 20. Lesions outside these ranges were mostly benign. CONCLUSION: Quantitative CT analysis may differentiate malignant from benign lesions without specific malignancy patterns on unenhanced chest CT image.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Retrospective Studies , Male , Female , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Middle Aged , Aged , Diagnosis, Differential , Adult , Radiography, Thoracic/methods , Lung/diagnostic imaging , Lung/pathology
4.
Narra J ; 4(1): e691, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798849

ABSTRACT

Radiological examinations such as chest X-rays (CXR) play a crucial role in the early diagnosis and determining disease severity in coronavirus disease 2019 (COVID-19). Various CXR scoring systems have been developed to quantitively assess lung abnormalities in COVID-19 patients, including CXR modified radiographic assessment of lung edema (mRALE). The aim of this study was to determine the relationship between mRALE scores and clinical outcome (mortality), as well as to identify the correlation between mRALE score and the severity of hypoxia (PaO2/FiO2 ratio). A retrospective cohort study was conducted among hospitalized COVID-19 patients at Dr. Soetomo General Academic Hospital Surabaya, Indonesia, from February to April 2022. All CXR data at initial admission were scored using the mRALE scoring system, and the clinical outcomes at the end of hospitalization were recorded. Of the total 178 COVID-19 patients, 62.9% survived after completing the treatment. Patients within non-survived had significantly higher quick sequential organ failure assessment (qSOFA) score (p<0.001), lower PaO2/FiO2 ratio (p=0.004), and higher blood urea nitrogen (p<0.001), serum creatinine (p<0.008) and serum glutamic oxaloacetic transaminase (p=0.001) levels. There was a significant relationship between mRALE score and clinical outcome (survived vs deceased) (p=0.024; contingency coefficient of 0.184); and mRALE score of ≥2.5 served as a risk factor for mortality among COVID-19 patients (relative risk of 1.624). There was a significant negative correlation between the mRALE score and PaO2/FiO2 ratio based on the Spearman correlation test (r=-0.346; p<0.001). The findings highlight that the initial mRALE score may serve as an independent predictor of mortality among hospitalized COVID-19 patients as well as proves its potential prognostic role in the management of COVID-19.


Subject(s)
COVID-19 , Radiography, Thoracic , Severity of Illness Index , Humans , COVID-19/diagnostic imaging , COVID-19/mortality , Indonesia , Male , Female , Retrospective Studies , Middle Aged , Radiography, Thoracic/methods , Adult , Pulmonary Edema/diagnostic imaging , Pulmonary Edema/mortality , SARS-CoV-2 , Aged , Prognosis
5.
Sci Rep ; 14(1): 11616, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773153

ABSTRACT

Accurate and early detection of pneumoconiosis using chest X-rays (CXR) is important for preventing the progression of this incurable disease. It is also a challenging task due to large variations in appearance, size and location of lesions in the lung regions as well as inter-class similarity and intra-class variance. Compared to traditional methods, Convolutional Neural Networks-based methods have shown improved results; however, these methods are still not applicable in clinical practice due to limited performance. In some cases, limited computing resources make it impractical to develop a model using whole CXR images. To address this problem, the lung fields are divided into six zones, each zone is classified separately and the zone classification results are then aggregated into an image classification score, based on state-of-the-art. In this study, we propose a dual lesion attention network (DLA-Net) for the classification of pneumoconiosis that can extract features from affected regions in a lung. This network consists of two main components: feature extraction and feature refinement. Feature extraction uses the pre-trained Xception model as the backbone to extract semantic information. To emphasise the lesion regions and improve the feature representation capability, the feature refinement component uses a DLA module that consists of two sub modules: channel attention (CA) and spatial attention (SA). The CA module focuses on the most important channels in the feature maps extracted by the backbone model, and the SA module highlights the spatial details of the affected regions. Thus, both attention modules combine to extract discriminative and rich contextual features to improve classification performance on pneumoconiosis. Experimental results show that the proposed DLA-Net outperforms state-of-the-art methods for pneumoconiosis classification.


Subject(s)
Neural Networks, Computer , Pneumoconiosis , Radiography, Thoracic , Humans , Pneumoconiosis/diagnostic imaging , Pneumoconiosis/classification , Radiography, Thoracic/methods , Lung/diagnostic imaging
6.
Sci Rep ; 14(1): 11639, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773161

ABSTRACT

COVID-19 is a kind of coronavirus that appeared in China in the Province of Wuhan in December 2019. The most significant influence of this virus is its very highly contagious characteristic which may lead to death. The standard diagnosis of COVID-19 is based on swabs from the throat and nose, their sensitivity is not high enough and so they are prone to errors. Early diagnosis of COVID-19 disease is important to provide the chance of quick isolation of the suspected cases and to decrease the opportunity of infection in healthy people. In this research, a framework for chest X-ray image classification tasks based on deep learning is proposed to help in early diagnosis of COVID-19. The proposed framework contains two phases which are the pre-processing phase and classification phase which uses pre-trained convolution neural network models based on transfer learning. In the pre-processing phase, different image enhancements have been applied to full and segmented X-ray images to improve the classification performance of the CNN models. Two CNN pre-trained models have been used for classification which are VGG19 and EfficientNetB0. From experimental results, the best model achieved a sensitivity of 0.96, specificity of 0.94, precision of 0.9412, F1 score of 0.9505 and accuracy of 0.95 using enhanced full X-ray images for binary classification of chest X-ray images into COVID-19 or normal with VGG19. The proposed framework is promising and achieved a classification accuracy of 0.935 for 4-class classification.


Subject(s)
COVID-19 , Deep Learning , Neural Networks, Computer , SARS-CoV-2 , COVID-19/diagnostic imaging , COVID-19/virology , COVID-19/diagnosis , Humans , SARS-CoV-2/isolation & purification , Radiography, Thoracic/methods , Pandemics , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/virology , Pneumonia, Viral/diagnosis , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Betacoronavirus/isolation & purification , Sensitivity and Specificity , Tomography, X-Ray Computed/methods
7.
F1000Res ; 13: 274, 2024.
Article in English | MEDLINE | ID: mdl-38725640

ABSTRACT

Background: The most recent advances in Computed Tomography (CT) image reconstruction technology are Deep learning image reconstruction (DLIR) algorithms. Due to drawbacks in Iterative reconstruction (IR) techniques such as negative image texture and nonlinear spatial resolutions, DLIRs are gradually replacing them. However, the potential use of DLIR in Head and Chest CT has to be examined further. Hence, the purpose of the study is to review the influence of DLIR on Radiation dose (RD), Image noise (IN), and outcomes of the studies compared with IR and FBP in Head and Chest CT examinations. Methods: We performed a detailed search in PubMed, Scopus, Web of Science, Cochrane Library, and Embase to find the articles reported using DLIR for Head and Chest CT examinations between 2017 to 2023. Data were retrieved from the short-listed studies using Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. Results: Out of 196 articles searched, 15 articles were included. A total of 1292 sample size was included. 14 articles were rated as high and 1 article as moderate quality. All studies compared DLIR to IR techniques. 5 studies compared DLIR with IR and FBP. The review showed that DLIR improved IQ, and reduced RD and IN for CT Head and Chest examinations. Conclusions: DLIR algorithm have demonstrated a noted enhancement in IQ with reduced IN for CT Head and Chest examinations at lower dose compared with IR and FBP. DLIR showed potential for enhancing patient care by reducing radiation risks and increasing diagnostic accuracy.


Subject(s)
Algorithms , Deep Learning , Head , Radiation Dosage , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Head/diagnostic imaging , Image Processing, Computer-Assisted/methods , Thorax/diagnostic imaging , Radiography, Thoracic/methods , Signal-To-Noise Ratio
9.
Clin Radiol ; 79(7): e957-e962, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38693034

ABSTRACT

AIM: The comparison between chest x-ray (CXR) and computed tomography (CT) images is commonly required in clinical practice to assess the evolution of chest pathological manifestations. Intrinsic differences between the two techniques, however, limit reader confidence in such a comparison. CT average intensity projection (AIP) reconstruction allows obtaining "synthetic" CXR (s-CXR) images, which are thought to have the potential to increase the accuracy of comparison between CXR and CT imaging. We aim at assessing the diagnostic performance of s-CXR imaging in detecting common pleuro-parenchymal abnormalities. MATERIALS AND METHODS: 142 patients who underwent chest CT examination and CXR within 24 hours were enrolled. CT was the standard of reference. Both conventional CXR (c-CXR) and s-CXR images were retrospectively reviewed for the presence of consolidation, nodule/mass, linear opacities, reticular opacities, and pleural effusion by 3 readers in two separate sessions. Sensitivity, specificity, accuracy and their 95% confidence interval were calculated for each reader and setting and tested by McNemar test. Inter-observer agreement was tested by Cohen's K test and its 95%CI. RESULTS: Overall, s-CXR sensitivity ranged 45-67% for consolidation, 12-28% for nodule/mass, 17-33% for linear opacities, 2-61% for reticular opacities, and 33-58% for pleural effusion; specificity 65-83%, 83-94%, 94-98%, 93-100% and 79-86%; accuracy 66-68%, 74-79%, 89-91%, 61-65% and 68-72%, respectively. K values ranged 0.38-0.50, 0.05-0.25, -0.05-0.11, -0.01-0.15, and 0.40-0.66 for consolidation, nodule/mass, linear opacities, reticular opacities, and pleural effusion, respectively. CONCLUSION: S-CXR images, reconstructed with AIP technique, can be compared with conventional images in clinical practice and for educational purposes.


Subject(s)
Radiography, Thoracic , Sensitivity and Specificity , Tomography, X-Ray Computed , Humans , Male , Female , Tomography, X-Ray Computed/methods , Middle Aged , Retrospective Studies , Aged , Radiography, Thoracic/methods , Adult , Aged, 80 and over , Radiographic Image Interpretation, Computer-Assisted/methods , Pleural Diseases/diagnostic imaging , Reproducibility of Results , Observer Variation
10.
Sci Rep ; 14(1): 11865, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789592

ABSTRACT

Chest X-ray (CXR) is an extensively utilized radiological modality for supporting the diagnosis of chest diseases. However, existing research approaches suffer from limitations in effectively integrating multi-scale CXR image features and are also hindered by imbalanced datasets. Therefore, there is a pressing need for further advancement in computer-aided diagnosis (CAD) of thoracic diseases. To tackle these challenges, we propose a multi-branch residual attention network (MBRANet) for thoracic disease diagnosis. MBRANet comprises three components. Firstly, to address the issue of inadequate extraction of spatial and positional information by the convolutional layer, a novel residual structure incorporating a coordinate attention (CA) module is proposed to extract features at multiple scales. Next, based on the concept of a Feature Pyramid Network (FPN), we perform multi-scale feature fusion in the following manner. Thirdly, we propose a novel Multi-Branch Feature Classifier (MFC) approach, which leverages the class-specific residual attention (CSRA) module for classification instead of relying solely on the fully connected layer. In addition, the designed BCEWithLabelSmoothing loss function improves the generalization ability and mitigates the problem of class imbalance by introducing a smoothing factor. We evaluated MBRANet on the ChestX-Ray14, CheXpert, MIMIC-CXR, and IU X-Ray datasets and achieved average AUCs of 0.841, 0.895, 0.805, and 0.745, respectively. Our method outperformed state-of-the-art baselines on these benchmark datasets.


Subject(s)
Radiography, Thoracic , Humans , Radiography, Thoracic/methods , Neural Networks, Computer , Thoracic Diseases/diagnostic imaging , Thoracic Diseases/diagnosis , Algorithms , Diagnosis, Computer-Assisted/methods
11.
Radiology ; 311(2): e233270, 2024 May.
Article in English | MEDLINE | ID: mdl-38713028

ABSTRACT

Background Generating radiologic findings from chest radiographs is pivotal in medical image analysis. The emergence of OpenAI's generative pretrained transformer, GPT-4 with vision (GPT-4V), has opened new perspectives on the potential for automated image-text pair generation. However, the application of GPT-4V to real-world chest radiography is yet to be thoroughly examined. Purpose To investigate the capability of GPT-4V to generate radiologic findings from real-world chest radiographs. Materials and Methods In this retrospective study, 100 chest radiographs with free-text radiology reports were annotated by a cohort of radiologists, two attending physicians and three residents, to establish a reference standard. Of 100 chest radiographs, 50 were randomly selected from the National Institutes of Health (NIH) chest radiographic data set, and 50 were randomly selected from the Medical Imaging and Data Resource Center (MIDRC). The performance of GPT-4V at detecting imaging findings from each chest radiograph was assessed in the zero-shot setting (where it operates without prior examples) and few-shot setting (where it operates with two examples). Its outcomes were compared with the reference standard with regards to clinical conditions and their corresponding codes in the International Statistical Classification of Diseases, Tenth Revision (ICD-10), including the anatomic location (hereafter, laterality). Results In the zero-shot setting, in the task of detecting ICD-10 codes alone, GPT-4V attained an average positive predictive value (PPV) of 12.3%, average true-positive rate (TPR) of 5.8%, and average F1 score of 7.3% on the NIH data set, and an average PPV of 25.0%, average TPR of 16.8%, and average F1 score of 18.2% on the MIDRC data set. When both the ICD-10 codes and their corresponding laterality were considered, GPT-4V produced an average PPV of 7.8%, average TPR of 3.5%, and average F1 score of 4.5% on the NIH data set, and an average PPV of 10.9%, average TPR of 4.9%, and average F1 score of 6.4% on the MIDRC data set. With few-shot learning, GPT-4V showed improved performance on both data sets. When contrasting zero-shot and few-shot learning, there were improved average TPRs and F1 scores in the few-shot setting, but there was not a substantial increase in the average PPV. Conclusion Although GPT-4V has shown promise in understanding natural images, it had limited effectiveness in interpreting real-world chest radiographs. © RSNA, 2024 Supplemental material is available for this article.


Subject(s)
Radiography, Thoracic , Humans , Radiography, Thoracic/methods , Retrospective Studies , Female , Male , Middle Aged , Radiographic Image Interpretation, Computer-Assisted/methods , Aged , Adult
12.
Medicine (Baltimore) ; 103(19): e38161, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728453

ABSTRACT

Chest radiography (CR) has been used as a screening tool for lung cancer and the use of low-dose computed tomography (LDCT) is not recommended in Japan. We need to reconsider whether CR really contributes to the early detection of lung cancer. In addition, we have not well discussed about other major thoracic disease detection by CR and LDCT compared with lung cancer despite of its high frequency. We review the usefulness of CR and LDCT as veridical screening tools for lung cancer and other thoracic diseases. In the case of lung cancer, many studies showed that LDCT has capability of early detection and improving outcomes compared with CR. Recent large randomized trial also supports former results. In the case of chronic obstructive pulmonary disease (COPD), LDCT contributes to early detection and leads to the implementation of smoking cessation treatments. In the case of pulmonary infections, LDCT can reveal tiny inflammatory changes that are not observed on CR, though many of these cases improve spontaneously. Therefore, LDCT screening for pulmonary infections may be less useful. CR screening is more suitable for the detection of pulmonary infections. In the case of cardiovascular disease (CVD), CR may be a better screening tool for detecting cardiomegaly, whereas LDCT may be a more useful tool for detecting vascular changes. Therefore, the current status of thoracic disease screening is that LDCT may be a better screening tool for detecting lung cancer, COPD, and vascular changes. CR may be a suitable screening tool for pulmonary infections and cardiomegaly.


Subject(s)
Early Detection of Cancer , Lung Neoplasms , Radiography, Thoracic , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Japan/epidemiology , Radiography, Thoracic/methods , Early Detection of Cancer/methods , Radiation Dosage , Thoracic Diseases/diagnostic imaging , Mass Screening/methods , Pulmonary Disease, Chronic Obstructive/diagnostic imaging
13.
Article in Chinese | MEDLINE | ID: mdl-38802310

ABSTRACT

Objective: To select chest CT image patterns for the diagnosis of pneumoconiosis and establish a method for determining the profusion of circular small shadows in chest CT. Methods: In April 2021, 66 cases of occupational pneumoconiosis patients with digital radiography (DR) chest radiographs and chest CT imaging data with circular small shadow as the main manifestations were selected as the study objects. 1.5 mm and 5 mm chest CT axial images, 1 mm and 5 mm chest CT coronal multi-plane recombination (MPR) images, and 5 mm chest CT coronal maximum intensity projection (MIP) images were used to observe the different characteristics of pneumoconiosis patients, and were compared and analyzed with DR chest radiographs to establish the experimental chest CT standards. The consistency of the profusion results between the experimental chest CT standards and GBZ 70-2015 Diagnosis of Occupational Pneumoconiosis was verified. Results: All the 66 objects were male, including 33 cases of stage Ⅰ pneumoconiosis, 17 cases of stage Ⅱ pneumoconiosis and 16 cases of stage Ⅲ pneumoconiosis. By observing five chest CT images of 66 objects, we found that chest CT images of different modes could clearly display and identify abnormal images such as small circular shadow, large shadow, small shadow aggregation, honeycomb glass shadow, flake glass shadow, uniform low-profusion glass shadow, mesh glass shadow, cable shadow, linear shadow, subpleural spinous shadow, subpleural nodules, various kinds of emphysema and lung texture distortion and fracture. Small shadow aggregation was usually accompanied by the appearance of large shadow. The vascular shadows in 5 mm CT images had good ductility, and small nodules were easy to distinguish. The coronal MIP image of 5 mm chest CT used edge enhancement technology, which was prone to small shadow fusion and fibrotic shadow fusion. The coronal MPR image of 5 mm chest CT was highly consistent with the DR chest radiographs in terms of the integrity of film reading. GBZ 70-2015 standard was used to compare the profusion of DR chest radiographs and 5 mm chest CT coronal MPR images of 66 objects, and the consistency test Kappa=0.64. GBZ 70-2015 standard and experimental chest CT standard were used to compare the profusion results of DR chest radiographs and 5 mm chest CT coronal MPR images of 66 objects, respectively, and the consistency test Kappa=0.80, with high consistency. Conclusion: 5 mm coronal MPR image is suitable for chest CT imaging in the diagnosis of pneumoconiosis. Following the selection path and method of GBZ 70-2015 profusion criterion, the established experimental chest CT standard in determining the profusion of small circular shadows in 5 mm coronal MPR images of chest CT with pneumoconiosis has a high consistency with GBZ 70-2015 standard.


Subject(s)
Pneumoconiosis , Radiography, Thoracic , Tomography, X-Ray Computed , Humans , Pneumoconiosis/diagnostic imaging , Male , Tomography, X-Ray Computed/methods , Radiography, Thoracic/methods , Middle Aged , Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Aged
14.
Sci Rep ; 14(1): 12380, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811599

ABSTRACT

Chest Radiography is a non-invasive imaging modality for diagnosing and managing chronic lung disorders, encompassing conditions such as pneumonia, tuberculosis, and COVID-19. While it is crucial for disease localization and severity assessment, existing computer-aided diagnosis (CAD) systems primarily focus on classification tasks, often overlooking these aspects. Additionally, prevalent approaches rely on class activation or saliency maps, providing only a rough localization. This research endeavors to address these limitations by proposing a comprehensive multi-stage framework. Initially, the framework identifies relevant lung areas by filtering out extraneous regions. Subsequently, an advanced fuzzy-based ensemble approach is employed to categorize images into specific classes. In the final stage, the framework identifies infected areas and quantifies the extent of infection in COVID-19 cases, assigning severity scores ranging from 0 to 3 based on the infection's severity. Specifically, COVID-19 images are classified into distinct severity levels, such as mild, moderate, severe, and critical, determined by the modified RALE scoring system. The study utilizes publicly available datasets, surpassing previous state-of-the-art works. Incorporating lung segmentation into the proposed ensemble-based classification approach enhances the overall classification process. This solution can be a valuable alternative for clinicians and radiologists, serving as a secondary reader for chest X-rays, reducing reporting turnaround times, aiding clinical decision-making, and alleviating the workload on hospital staff.


Subject(s)
COVID-19 , Radiography, Thoracic , Severity of Illness Index , Humans , COVID-19/diagnostic imaging , COVID-19/diagnosis , Radiography, Thoracic/methods , SARS-CoV-2/isolation & purification , Lung/diagnostic imaging , Lung/pathology , Diagnosis, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms
15.
Biomed Phys Eng Express ; 10(4)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38788700

ABSTRACT

Objective.In myeloablative total body irradiation (TBI), lung shielding blocks are used to reduce the dose to the lungs and hence decrease the risk of radiation pneumonitis. Some centers are still using mega-Volt (MV) imaging with dedicated silver halide-based films during simulation and treatment for lung delineation and position verification. However, the availability of these films has recently become an issue. This study examines the clinical performance of a computed radiography (CR) solution in comparison to radiographic films and potential improvement of image quality by filtering and post-processing.Approach.We compared BaFBrI-based CR plates to radiographic films. First, images of an aluminum block were analyzed to assess filter impact on scatter reduction. Secondly, a dedicated image quality phantom was used to assess signal linearity, signal-to-noise ratio (SNR), contrast and spatial resolution. Ultimately, a clinical performance study involving two impartial observers was conducted on an anthropomorphic chest phantom, employing visual grading analysis (VGA). Various filter materials and positions as well as post-processing were examined, and the workflow between CR and film was compared.Main results.CR images exhibited high SNR and linearity but demonstrated lower spatial and contrast resolution when compared to film. However, filtering improved contrast resolution and SNR, while positioning filters inside the cassette additionally enhanced sharpness. Image processing improved VGA scores, while additional filtering also resulted in higher spine visibility scores. CR shortened TBI simulation by over 10 minutes for one patient, alongside a dose reduction by order of 0.1 Gy.Significance.This study highlights potential advantages of shifting from conventional radiographic film to CR for TBI. Overall, CR with the incorporation of processing and filtering proves to be suitable for TBI chest imaging. When compared to radiographic film, CR offers advantages such as reduced simulation time and dose delivery, re-usability of image plates and digital workflow integration.


Subject(s)
Feasibility Studies , Phantoms, Imaging , Radiography, Thoracic , Signal-To-Noise Ratio , Whole-Body Irradiation , Humans , Whole-Body Irradiation/methods , Radiography, Thoracic/methods , Lung/diagnostic imaging , Lung/radiation effects , Tomography, X-Ray Computed/methods , Image Processing, Computer-Assisted/methods
16.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38631317

ABSTRACT

Introduction. The currently available dosimetry techniques in computed tomography can be inaccurate which overestimate the absorbed dose. Therefore, we aimed to provide an automated and fast methodology to more accurately calculate the SSDE usingDwobtained by using CNN from thorax and abdominal CT study images.Methods. The SSDE was determined from the 200 records files. For that purpose, patients' size was measured in two ways: (a) by developing an algorithm following the AAPM Report No. 204 methodology; and (b) using a CNN according to AAPM Report No. 220.Results. The patient's size measured by the in-house software in the region of thorax and abdomen was 27.63 ± 3.23 cm and 28.66 ± 3.37 cm, while CNN was 18.90 ± 2.6 cm and 21.77 ± 2.45 cm. The SSDE in thorax according to 204 and 220 reports were 17.26 ± 2.81 mGy and 23.70 ± 2.96 mGy for women and 17.08 ± 2.09 mGy and 23.47 ± 2.34 mGy for men. In abdomen was 18.54 ± 2.25 mGy and 23.40 ± 1.88 mGy in women and 18.37 ± 2.31 mGy and 23.84 ± 2.36 mGy in men.Conclusions. Implementing CNN-based automated methodologies can contribute to fast and accurate dose calculations, thereby improving patient-specific radiation safety in clinical practice.


Subject(s)
Algorithms , Radiation Dosage , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Male , Female , Body Size , Neural Networks, Computer , Software , Automation , Thorax/diagnostic imaging , Adult , Abdomen/diagnostic imaging , Radiometry/methods , Radiography, Thoracic/methods , Middle Aged , Image Processing, Computer-Assisted/methods , Radiography, Abdominal/methods , Aged
17.
Radiat Prot Dosimetry ; 200(7): 677-686, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38678314

ABSTRACT

The objective of this paper is to compare the differences between volumetric CT dose index (CTDIVOL) and size-specific dose estimate (SSDEWED) based on water equivalent diameter (WED) in radiation dose measurement, and explore a new method for fast calculation of SSDEWED. The imaging data of 1238 cases of head, 1152 cases of chest and 976 cases of abdominopelvic were analyzed retrospectively, and they were divided into five age groups: ≤ 0.5, 0.5 ~ ≤ 1, 1 ~ ≤ 5, 5 ~ ≤ 10 and 10 ~ ≤ 15 years according to age. The area of interest (AR), CT value (CTR), lateral diameter (LAT) and anteroposterior diameter (AP) of the median cross-sectional image of the standard scanning range and the SSDEWED were manually calculated, and a t-test was used to compare the differences between CTDIVOL and SSDEWED in different age groups. Pearson analyzed the correlations between DE and age, DE and WED, f and age, and counted the means of conversion factors in each age group, and analyze the error ratios between SSDE calculated based on the mean age group conversion factors and actual measured SSDE. The CTDIVOL in head was (9.41 ± 1.42) mGy and the SSDEWED was (8.25 ± 0.70) mGy: the difference was statistically significant (t = 55.04, P < 0.001); the CTDIVOL of chest was (2.68 ± 0.91) mGy and the SSDEWED was (5.16 ± 1.16) mGy, with a statistically significant difference (t = -218.78, P < 0.001); the CTDIVOL of abdominopelvic was (3.09 ± 1.58) mGy and the SSDEWED was (5.89 ± 2.19) mGy: the difference was also statistically significant (t = -112.28, P < 0.001). The CTDIVOL was larger than the SSDEWED in the head except for the ≤ 0.5 year subgroup, and CTDIVOL was smaller than SSDEWED within each subgroup in chest and abdominopelvic. There were strong negative correlations between f and age (head: r = -0.81; chest: r = -0.89; abdominopelvic: r = -0.86; P < 0.001). The mean values of f at each examination region were 0.81 ~ 1.01 for head, 1.65 ~ 2.34 for chest and 1.71 ~ 2.35 for abdominopelvic region. The SSDEWED could be accurately estimated using the mean f of each age subgroup. SSDEWED can more accurately measure the radiation dose of children. For children of different ages and examination regions, the SSDEWED conversion factors based on age subgroup can be quickly adjusted and improve the accuracy of radiation dose estimation.


Subject(s)
Radiation Dosage , Tomography, X-Ray Computed , Humans , Child , Tomography, X-Ray Computed/methods , Child, Preschool , Adolescent , Infant , Female , Male , Retrospective Studies , Infant, Newborn , Head/diagnostic imaging , Head/radiation effects , Radiography, Thoracic/methods
18.
Radiol Phys Technol ; 17(2): 467-475, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38668939

ABSTRACT

The objective is to evaluate the performance of blood test results, radiomics, and a combination of the two data types on the prediction of the 24-h oxygenation support need for the Coronavirus disease 2019 (COVID-19) patients. In this retrospective cohort study, COVID-19 patients with confirmed real-time reverse transcription-polymerase chain reaction assay (RT-PCR) test results between February 2020 and August 2021 were investigated. Initial blood cell counts, chest radiograph, and the status of oxygenation support used within 24 h were collected (n = 290; mean age, 45 ± 19 years; 125 men). Radiomics features from six lung zones were extracted. Logistic regression and random forest models were developed using the clinical-only, radiomics-only, and combined data. Ten repeats of fivefold cross-validation with bootstrapping were used to identify the input features and models with the highest area under the receiver operating characteristic curve (AUC). Higher AUCs were achieved when using only radiomics features compared to using only clinical features (0.94 ± 0.03 vs. 0.88 ± 0.04). The best combined model using both radiomics and clinical features achieved highest in the cross-validation (0.95 ± 0.02) and test sets (0.96 ± 0.02). In comparison, the best clinical-only model yielded AUCs of 0.88 ± 0.04 in cross-validation and 0.89 ± 0.03 in test set. Both radiomics and clinical data can be used to predict 24-h oxygenation support need for COVID-19 patients with AUC > 0.88. Moreover, the combination of both data types further improved the performance.


Subject(s)
COVID-19 , Oxygen , Radiography, Thoracic , Humans , COVID-19/diagnostic imaging , Middle Aged , Male , Female , Retrospective Studies , Adult , Oxygen/metabolism , Radiography, Thoracic/methods , Aged , Lung/diagnostic imaging , Radiomics
19.
Eur J Radiol ; 175: 111448, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574510

ABSTRACT

PURPOSE: Aim of the recent study is to point out a method to optimize quality of CT scans in oncological patients with port systems. This study investigates the potential of photon counting computed tomography (PCCT) for reduction of beam hardening artifacts caused by port-implants in chest imaging by means of spectral reconstructions. METHOD: In this retrospective single-center study, 8 ROIs for 19 spectral reconstructions (polyenergetic imaging, monoenergetic reconstructions from 40 to 190 keV as well as iodine maps and virtual non contrast (VNC)) of 49 patients with pectoral port systems undergoing PCCT of the chest for staging of oncologic disease were measured. Mean values and standard deviation (SD) Hounsfield unit measurements of port-chamber associated hypo- and hyperdense artifacts, bilateral muscles and vessels has been carried out. Also, a structured assessment of artifacts and imaging findings was performed by two radiologists. RESULTS: A significant association of keV with iodine contrast as well as artifact intensity was noted (all p < 0.001). In qualitative assessment, utilization of 120 keV monoenergetic reconstructions could reduce severe and pronounced artifacts completely, as compared to lower keV reconstructions (p < 0.001). Regarding imaging findings, no significant difference between monoenergetic reconstructions was noted (all p > 0.05). In cases with very high iodine concentrations in the subclavian vein, image distortions were noted at 40 keV images (p < 0.01). CONCLUSIONS: The present study demonstrates that PCCT derived spectral reconstructions can be used in oncological imaging of the thorax to reduce port-derived beam-hardening artefacts. When evaluating image data sets within a staging, it can be particularly helpful to consider the 120 keV VMIs, in which the artefacts are comparatively low.


Subject(s)
Artifacts , Radiography, Thoracic , Tomography, X-Ray Computed , Humans , Male , Female , Middle Aged , Aged , Tomography, X-Ray Computed/methods , Radiography, Thoracic/methods , Retrospective Studies , Adult , Aged, 80 and over , Radiographic Image Interpretation, Computer-Assisted/methods , Photons , Reproducibility of Results
20.
J Xray Sci Technol ; 32(3): 623-649, 2024.
Article in English | MEDLINE | ID: mdl-38607728

ABSTRACT

BACKGROUND: COVID-19 needs to be diagnosed and staged to be treated accurately. However, prior studies' diagnostic and staging abilities for COVID-19 infection needed to be improved. Therefore, new deep learning-based approaches are required to aid radiologists in detecting and quantifying COVID-19-related lung infections. OBJECTIVE: To develop deep learning-based models to classify and quantify COVID-19-related lung infections. METHODS: Initially, Dual Decoder Attention-based Semantic Segmentation Networks (DDA-SSNets) such as Dual Decoder Attention-UNet (DDA-UNet) and Dual Decoder Attention-SegNet (DDA-SegNet) are proposed to facilitate the dual segmentation tasks such as lung lobes and infection segmentation in chest X-ray (CXR) images. The lung lobe and infection segmentations are mapped to grade the severity of COVID-19 infection in both the lungs of CXRs. Later, a Genetic algorithm-based Deep Convolutional Neural Network classifier with the optimum number of layers, namely GADCNet, is proposed to classify the extracted regions of interest (ROI) from the CXR lung lobes into COVID-19 and non-COVID-19. RESULTS: The DDA-SegNet shows better segmentation with an average BCSSDC of 99.53% and 99.97% for lung lobes and infection segmentations, respectively, compared with DDA-UNet with an average BCSSDC of 99.14% and 99.92%. The proposed DDA-SegNet with GADCNet classifier offered excellent classification results with an average BCCAC of 99.98%, followed by the GADCNet with DDA-UNet with an average BCCAC of 99.92% after extensive testing and analysis. CONCLUSIONS: The results show that the proposed DDA-SegNet has superior performance in the segmentation of lung lobes and COVID-19-infected regions in CXRs, along with improved severity grading compared to the DDA-UNet and improved accuracy of the GADCNet classifier in classifying the CXRs into COVID-19, and non-COVID-19.


Subject(s)
COVID-19 , Deep Learning , Lung , Radiography, Thoracic , SARS-CoV-2 , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Radiography, Thoracic/methods , Pneumonia, Viral/diagnostic imaging , Algorithms , Coronavirus Infections/diagnostic imaging , Pandemics , Neural Networks, Computer , Betacoronavirus , Semantics
SELECTION OF CITATIONS
SEARCH DETAIL
...