Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.319
Filter
1.
Biomed Phys Eng Express ; 10(4)2024 May 14.
Article in English | MEDLINE | ID: mdl-38697045

ABSTRACT

Whole-body counters (WBC) are used in internal dosimetry forin vivomonitoring in radiation protection. The calibration processes of a WBC set-up include the measurement of a physical phantom filled with a certificate radioactive source that usually is referred to a standard set of individuals determined by the International Commission on Radiological Protection (ICRP). The aim of this study was to develop an anthropomorphic and anthropometric female physical phantom for the calibration of the WBC systems. The reference female computational phantom of the ICRP, now called RFPID (Reference Female Phantom for Internal Dosimetry) was printed using PLA filament and with an empty interior. The goal is to use the RFPID to reduce the uncertainties associated within vivomonitoring system. The images which generated the phantom were manipulated using ImageJ®, Amide®, GIMP®and the 3D Slicer®software. RFPID was split into several parts and printed using a 3D printer in order to print the whole-body phantom. The newly printed physical phantom RFPID was successfully fabricated, and it is suitable to mimic human tissue, anatomically similar to a human body i.e., size, shape, material composition, and density.


Subject(s)
Phantoms, Imaging , Printing, Three-Dimensional , Whole-Body Counting , Humans , Female , Whole-Body Counting/methods , Calibration , Radiation Protection/methods , Radiation Protection/instrumentation , Radiometry/methods , Radiometry/instrumentation , Anthropometry
2.
Sci Rep ; 14(1): 10637, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724569

ABSTRACT

Hadron therapy is an advanced radiation modality for treating cancer, which currently uses protons and carbon ions. Hadrons allow for a highly conformal dose distribution to the tumour, minimising the detrimental side-effects due to radiation received by healthy tissues. Treatment with hadrons requires sub-millimetre spatial resolution and high dosimetric accuracy. This paper discusses the design, fabrication and performance tests of a detector based on Gas Electron Multipliers (GEM) coupled to a matrix of thin-film transistors (TFT), with an active area of 60 × 80 mm2 and 200 ppi resolution. The experimental results show that this novel detector is able to detect low-energy (40 kVp X-rays), high-energy (6 MeV) photons used in conventional radiation therapy and protons and carbon ions of clinical energies used in hadron therapy. The GEM-TFT is a compact, fully scalable, radiation-hard detector that measures secondary electrons produced by the GEMs with sub-millimetre spatial resolution and a linear response for proton currents from 18 pA to 0.7 nA. Correcting known detector defects may aid in future studies on dose uniformity, LET dependence, and different gas mixture evaluation, improving the accuracy of QA in radiotherapy.


Subject(s)
Radiometry , Radiometry/instrumentation , Radiometry/methods , Humans , Radiotherapy/methods , Radiotherapy/standards , Radiotherapy/instrumentation , Quality Assurance, Health Care , Electrons , Radiotherapy Dosage , Neoplasms/radiotherapy , Equipment Design , Proton Therapy/instrumentation , Proton Therapy/methods
3.
Biomed Phys Eng Express ; 10(4)2024 May 22.
Article in English | MEDLINE | ID: mdl-38744248

ABSTRACT

Evaluating neutron output is important to ensure proper dose delivery for patients in boron neutron capture therapy (BNCT). It requires efficient quality assurance (QA) and quality control (QC) while maintaining measurement accuracy. This study investigated the optimal measurement conditions for QA/QC of activation measurements using a high-purity germanium (HP-Ge) detector in an accelerator-based boron neutron capture therapy (AB-BNCT) system employing a lithium target. The QA/QC uncertainty of the activation measurement was evaluated based on counts, reproducibility, and standard radiation source uncertainties. Measurements in a polymethyl methacrylate (PMMA) cylindrical phantom using aluminum-manganese (Al-Mn) foils and aluminum-gold (Al-Au) foils and measurements in a water phantom using gold wire with and without cadmium cover were performed to determine the optimal measurement conditions. The QA/QC uncertainties of the activation measurements were 4.5% for Au and 4.6% for Mn. The optimum irradiation proton charge and measurement time were determined to be 36 C and 900 s for measurements in a PMMA cylindrical phantom, 7.0 C and 900 s for gold wire measurements in a water phantom, and 54 C and 900 s at 0-2.2 cm depth and 3,600 s at deeper depths for gold wire measurements with cadmium cover. Our results serve as a reference for determining measurement conditions when performing QA/QC of activation measurements using HP-Ge detectors at an AB-BNCT employing a lithium target.


Subject(s)
Boron Neutron Capture Therapy , Lithium , Particle Accelerators , Phantoms, Imaging , Quality Control , Lithium/chemistry , Boron Neutron Capture Therapy/methods , Humans , Particle Accelerators/instrumentation , Reproducibility of Results , Polymethyl Methacrylate/chemistry , Neutrons , Gold/chemistry , Aluminum/chemistry , Water/chemistry , Radiometry/methods , Radiometry/instrumentation , Radiotherapy Dosage
4.
Phys Med Biol ; 69(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38718813

ABSTRACT

Objective.This study aims to characterize radiological properties of selected additive manufacturing (AM) materials utilizing both material extrusion and vat photopolymerization technologies. Monochromatic synchrotron x-ray images and synchrotron treatment beam dosimetry were acquired at the hutch 3B and 2B of the Australian Synchrotron-Imaging and Medical Beamline.Approach.Eight energies from 30 keV up to 65 keV were used to acquire the attenuation coefficients of the AM materials. Comparison of theoretical, and experimental attenuation data of AM materials and standard solid water for MV linac was performed. Broad-beam dosimetry experiment through attenuated dose measurement and a Geant4 Monte Carlo simulation were done for the studied materials to investigate its attenuation properties specific for a 4 tesla wiggler field with varying synchrotron radiation beam qualities.Main results.Polylactic acid (PLA) plus matches attenuation coefficients of both soft tissue and brain tissue, while acrylonitrile butadiene styrene, Acrylonitrile styrene acrylate, and Draft resin have close equivalence to adipose tissue. Lastly, PLA, co-polyester plus, thermoplastic polyurethane, and White resins are promising substitute materials for breast tissue. For broad-beam experiment and simulation, many of the studied materials were able to simulate RMI457 Solid Water and bolus within ±10% for the three synchrotron beam qualities. These results are useful in fabricating phantoms for synchrotron and other related medical radiation applications such as orthovoltage treatments.Significance and conclusion.These 3D printing materials were studied as potential substitutes for selected tissues such as breast tissue, adipose tissue, soft-tissue, and brain tissue useful in fabricating 3D printed phantoms for synchrotron imaging, therapy, and orthovoltage applications. Fabricating customizable heterogeneous anthropomorphic phantoms (e.g. breast, head, thorax) and pre-clinical animal phantoms (e.g. rodents, canine) for synchrotron imaging and radiotherapy using AM can be done based on the results of this study.


Subject(s)
Synchrotrons , Australia , Monte Carlo Method , Radiotherapy/instrumentation , Radiotherapy/methods , Radiometry/instrumentation , Radiometry/methods , Humans
5.
Biomed Phys Eng Express ; 10(4)2024 May 28.
Article in English | MEDLINE | ID: mdl-38768575

ABSTRACT

Background. Small field dosimetry presents unique challenges with source occlusion, lateral charged particle equilibrium and detector size. As detector volume decreases, signal strength declines while noise increases, deteriorating the signal-to-noise ratio (SNR). This issue may be compounded by triaxial cables connecting detectors to electrometers. However, effects of cables, critical for precision dosimetry, are often overlooked. There is a need to evaluate triaxial cable and detector impacts on SNR in small fields. The purpose of this study is to evaluate the influence of triaxial cables and microdetectors on signal-to-noise ratios in small-field dosimetry. This study also aims to establish the importance of cable quality assurance for measurement accuracy.Methods. Six 9.1 m length triaxial cables from different manufacturers were tested with six microdetectors (microDiamond, PinPoint, EDGE, Plastic scintillator, microSilicon, SRS-Diode). A 6 MV photon beam (TrueBeam) was used, with a water phantom at 5 cm depth with 0.5 × 0.5 cm2to 10 × 10 cm2fields at 600 MU min-1. Readings were acquired using cable-detector permutations with a dedicated electrometer (except the scintillator which has its own). Cables had differing connector types, conductor materials, insulation, and diameters. Detectors had various sensitive volumes, materials, typical signals, and bias voltages.Results. Normalized field output correction factors (FOFs) relative differences of 13.4% and 4.6% between the highest and lowest values across triaxial cables for 0.5 × 0.5 cm2and 1 × 1 cm2fields, respectively. The maximum difference in FOF between any cable-detector combinations was 0.2% for the smallest field size. No consistent FOF trend was observed across all detectors when increasing cable diameter. Additionally, the non-normalized FOF differences of 0.9% and 0.3% were observed between cables for 0.5 × 0.5 cm2and 1 × 1 cm2fields, respectively.Conclusions. Regular triaxial cable quality assurance is critical for precision small field dosimetry. A national protocol is needed to standardize cable evaluations/calibrations, particularly for small signals (

Subject(s)
Equipment Design , Phantoms, Imaging , Radiometry , Signal-To-Noise Ratio , Radiometry/instrumentation , Radiometry/methods , Photons , Humans
6.
Phys Med Biol ; 69(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38776951

ABSTRACT

Objective.In this work, we present and evaluate a technique for performing interface measurements of beta particle-emitting radiopharmaceutical therapy agents in solution.Approach.Unlaminated EBT3 film was calibrated for absorbed dose to water using a NIST matched x-ray beam. Custom acrylic source phantoms were constructed and placed above interfaces comprised of bone, lung, and water-equivalent materials. The film was placed perpendicular to these interfaces and measurements for absorbed dose to water using solutions of90Y and177Lu were performed and compared to Monte Carlo absorbed dose to water estimates simulated with EGSnrc. Surface and depth dose profile measurements were also performed.Main results.Surface absorbed dose to water measurements agreed with predicted results within 3.6% for177Lu and 2.2% for90Y. The agreement between predicted and measured absorbed dose to water was better for90Y than177Lu for depth dose and interface profiles. In general, agreement withink= 1 uncertainty bounds was observed for both radionuclides and all interfaces. An exception to this was found for the bone-to-water interface for177Lu due to the increased sensitivity of the measurements to imperfections in the material surfaces.Significance. This work demonstrates the feasibility and limitations of using radiochromic film for performing absorbed dose to water measurements on beta particle-emitting radiopharmaceutical therapy agents across material interfaces.


Subject(s)
Beta Particles , Monte Carlo Method , Radiopharmaceuticals , Beta Particles/therapeutic use , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/administration & dosage , Radiometry/instrumentation , Radiometry/methods , Phantoms, Imaging , Water/chemistry , Yttrium Radioisotopes/therapeutic use , Humans
7.
Radiat Prot Dosimetry ; 200(8): 721-738, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38690853

ABSTRACT

This paper describes a procedure for the estimation of 241Am and 239Pu activity present in the human tissue by measuring the depth of contaminant using a portable Planar High Purity Germanium detector (HPGe). The ratios of photopeak counts of X-rays or gammas obtained with the detector coupled to collimator are calculated for the estimation of depth of the contaminant and the optimum one is determined. Since Minimum Detectable Activities (MDA) for the detector coupled to a collimator are higher than that of bare detector, activity must be estimated using bare detector, after locating the contaminant. Two methods are described for the estimation of plutonium coexisting with 241Am: (i) Abundance and isotopic correction for 239Pu (ii) and 239Pu:241Am ratio. The procedure to estimate 239Pu when plutonium isotopes alone are present is also established. An optimum monitoring period to detect the minimum value of intake for both radionuclides corresponding to chelation therapy and excision is also derived.


Subject(s)
Americium , Germanium , Plutonium , Plutonium/analysis , Americium/analysis , Humans , Germanium/analysis , Radiation Monitoring/methods , Radiation Monitoring/instrumentation , Radiation Dosage , Radiometry/methods , Radiometry/instrumentation
8.
Med Phys ; 51(6): 4423-4433, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38695760

ABSTRACT

BACKGROUND: The newly available ZAP-X stereotactic radiosurgical system is designed for the treatment of intracranial lesions, with several unique features that include a self-shielding, gyroscopic gantry, wheel collimation, non-orthogonal kV imaging, short source-axis distance, and low-energy megavoltage beam. Systematic characterization of its radiation as well as other properties is imperative to ensure its safe and effective clinical application. PURPOSE: To accurately determine the radiation output of the ZAP-X with a special focus on the smaller diameter cones and an aim to provide useful recommendations on quantification of small field dosimetry. METHODS: Six different types of detectors were used to measure relative output factors at field sizes ranging from 4 to 25 mm, including the PTW microSilicon and microdiamond diodes, Exradin W2 plastic scintillator, Exradin A16 and A1SL ionization chambers, and the alanine dosimeter. The 25 mm cone served as the reference field size. Absolute dose was determined with both TG-51-based dosimetry using a calibrated PTW Semiflex ion chamber and measurements using alanine dosimeters. RESULTS: The average radiation output factors (maximum deviation from the average) measured with the microDiamond, microSilicon, and W2 detectors were: for the 4 mm cone, 0.741 (1.0%); for the 5 mm cone: 0.817 (1.0%); for the 7.5 mm cone: 0.908 (1.0%); for the 10 mm cone: 0.946 (0.4%); for the 12.5 mm cone: 0.964 (0.2%); for the 15 mm cone: 0.976 (0.1%); for the 20 mm cone: 0.990 (0.1%). For field sizes larger than 10 mm, the A1SL and A16 micro-chambers also yielded consistent output factors within 1.5% of those obtained using the microSilicon, microdiamond, and W2 detectors. The absolute dose measurement obtained with alanine was within 1.2%, consistent with combined uncertainties, compared to the PTW Semiflex chamber for the 25 mm reference cone. CONCLUSION: For field sizes less than 10 mm, the microSilicon diode, microDiamond detector, and W2 scintillator are suitable devices for accurate small field dosimetry of the ZAP-X system. For larger fields, the A1SL and A16 micro-chambers can also be used. Furthermore, alanine dosimetry can be an accurate verification of reference and absolute dose typically measured with ion chambers. Use of multiple suitable detectors and uncertainty analyses were recommended for reliable determination of small field radiation outputs.


Subject(s)
Radiometry , Radiosurgery , Radiosurgery/instrumentation , Radiometry/instrumentation , Radiation Protection/instrumentation , Reference Standards
9.
Phys Med ; 121: 103360, 2024 May.
Article in English | MEDLINE | ID: mdl-38692114

ABSTRACT

This paper reports the development of dosimeters based on plastic scintillating fibers imaged by a charge-coupled device camera, and their performance evaluation through irradiations with the electron Flash research accelerator located at the Centro Pisano Flash Radiotherapy. The dosimeter prototypes were composed of a piece of plastic scintillating fiber optically coupled to a clear optical fiber which transported the scintillation signal to the readout systems (an imaging system and a photodiode). The following properties were tested: linearity, capability to reconstruct the percentage depth dose curve in solid water and to sample in time the single beam pulse. The stem effect contribution was evaluated with three methods, and a proof-of-concept one-dimensional array was developed and tested for online beam profiling. Results show linearity up to 10 Gy per pulse, and good capability to reconstruct both the timing and spatial profiles of the beam, thus suggesting that plastic scintillating fibers may be good candidates for low-energy electron Flash dosimetry.


Subject(s)
Electrons , Plastics , Radiation Dosimeters , Radiotherapy Dosage , Scintillation Counting , Electrons/therapeutic use , Scintillation Counting/instrumentation , Radiometry/instrumentation
10.
Sci Rep ; 14(1): 9557, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664481

ABSTRACT

Breakthrough multi-response miniature dosimetry/spectrometry of electroneutrons (EN) was made on surface and in-depths of whole-body polyethylene phantom under 10 cm × 10 cm electron beam of 20 MV Varian Clinac 2100C electron medical accelerator commonly applied for prostate treatment. While dosimetry/spectrometry of photoneutrons (PN) has been well characterized for decades, those of ENs lagged behind due to very low EN reaction cross section and lack of sensitive neutron dosimeters/spectrometers meeting neutron dosimetry requirements. Recently, Sohrabi "miniature neutron dosimeter/spectrometer" and "Stripe polycarbonate dosimeter" have broken this barrier and determined seven EN ambient dose equivalent (ENDE) (µSv.Gy-1) responses from electron beam and from albedo ENs including beam thermal (21 ± 2.63), albedo thermal (43 ± 3.70), total thermal (64 ± 6.33), total epithermal (32 ± 3.90), total fast (112.00), total thermal + epithermal (l96 ± 10), and total thermal + epithermal + fast (208 ± 10.23) ENs. Having seven ENDE responses of this study and seven PNDE responses of previous study with the same accelerator obtained at identical conditions by the same principle author provided the opportunity to compare the two sets of responses. The PNDE (µSv.Gy-1) responses have comparatively higher values and 22.60 times at isocenter which provide for the first time breakthrough ENDE responses not yet reported in any studies before worldwide.


Subject(s)
Particle Accelerators , Radiometry , Particle Accelerators/instrumentation , Radiometry/instrumentation , Radiometry/methods , Neutrons , Humans , Electrons , Phantoms, Imaging
11.
J Appl Clin Med Phys ; 25(5): e14343, 2024 May.
Article in English | MEDLINE | ID: mdl-38569013

ABSTRACT

PURPOSE: Single-isocenter multi-target intracranial stereotactic radiotherapy (SIMT) is an effective treatment for brain metastases with complex treatment plans and delivery optimization necessitating rigorous quality assurance. This work aims to assess five methods for quality assurance of SIMT treatment plans in terms of their suitability and sensitivity to delivery errors. METHODS: Sun Nuclear ArcCHECK and SRS MapCHECK, GafChromic EBT Radiochromic Film, machine log files, and Varian Portal Dosimetry were all used to measure 15 variations of a single SIMT plan. Variations of the original plan were created with Python. They comprised various degrees of systematic MLC offsets per leaf up to 2 mm, random per-leaf variations with differing minimum and maximum magnitudes, simulated collimator, and dose miscalibrations (MU scaling). The erroneous plans were re-imported into Eclipse and plan-quality degradation was assessed by comparing each plan variation to the original clinical plan in terms of the percentage of clinical goals passing relative to the original plan. Each erroneous plan could be then ranked by the plan-quality degradation percentage following recalculation in the TPS so that the effects of each variation could be correlated with γ pass rates and detector suitability. RESULTS & CONCLUSIONS: It was found that 2%/1 mm is a good starting point for the ArcCHECK, Portal Dosimetry, and the SRS MapCHECK methods, respectively, and provides clinically relevant error detection sensitivity. Looser dose criteria of 5%/1 mm or 5%/1.5 mm are suitable for film dosimetry and log-file-based methods. The statistical methods explored can be expanded to other areas of patient-specific QA and detector assessment.


Subject(s)
Brain Neoplasms , Quality Assurance, Health Care , Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Brain Neoplasms/radiotherapy , Radiosurgery/methods , Radiosurgery/instrumentation , Quality Assurance, Health Care/standards , Radiotherapy, Intensity-Modulated/methods , Particle Accelerators/instrumentation , Radiometry/methods , Radiometry/instrumentation , Algorithms
12.
Phys Med Biol ; 69(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38640918

ABSTRACT

Objective. In this experimental work we compared the determination of absorbed dose to water using four ionization chambers (ICs), a PTW-34045 Advanced Markus, a PTW-34001 Roos, an IBA-PPC05 and a PTW-30012 Farmer, irradiated under the same conditions in one continuous- and in two pulsed-scanned proton beams.Approach. The ICs were positioned at 2 cm depth in a water phantom in four square-field single-energy scanned-proton beams with nominal energies between 80 and 220 MeV and in the middle of 10 × 10 × 10 cm3dose cubes centered at 10 cm or 12.5 cm depth in water. The water-equivalent thickness (WET) of the entrance window and the effective point of measurement was considered when positioning the plane parallel (PP) ICs and the cylindrical ICs, respectively. To reduce uncertainties, all ICs were calibrated at the same primary standards laboratory. We used the beam quality (kQ) correction factors for the ICs under investigation from IAEA TRS-398, the newly calculated Monte Carlo (MC) values and the anticipated IAEA TRS-398 updated recommendations.Main results. Dose differences among the four ICs ranged between 1.5% and 3.7% using both the TRS-398 and the newly recommendedkQvalues. The spread among the chambers is reduced with the newlykQvalues. The largest differences were observed between the rest of the ICs and the IBA-PPC05 IC, obtaining lower dose with the IBA-PPC05.Significance. We provide experimental data comparing different types of chambers in different proton beam qualities. The observed dose differences between the ICs appear to be related to inconsistencies in the determination of thekQvalues. For PP ICs, MC studies account for the physical thickness of the entrance window rather than the WET. The additional energy loss that the wall material invokes is not negligible for the IBA-PPC05 and might partially explain the lowkQvalues determined for this IC. To resolve this inconsistency and to benchmark MC values,kQvalues measured using calorimetry are needed.


Subject(s)
Radiometry , Radiometry/instrumentation , Radiometry/methods , Monte Carlo Method , Proton Therapy/instrumentation , Protons , Phantoms, Imaging , Reference Standards , Uncertainty , Water , Calibration
13.
Phys Med ; 121: 103363, 2024 May.
Article in English | MEDLINE | ID: mdl-38653119

ABSTRACT

Dosimetry audits for passive motion management require dynamically-acquired measurements in a moving phantom to be compared to statically calculated planned doses. This study aimed to characterise the relationship between planning and delivery errors, and the measured dose in the Imaging and Radiation Oncology Core (IROC) thorax phantom, to assess different audit scoring approaches. Treatment plans were created using a 4DCT scan of the IROC phantom, equipped with film and thermoluminescent dosimeters (TLDs). Plans were created on the average intensity projection from all bins. Three levels of aperture complexity were explored: dynamic conformal arcs (DCAT), low-, and high-complexity volumetric modulated arcs (VMATLo, VMATHi). Simulated-measured doses were generated by modelling motion using isocenter shifts. Various errors were introduced including incorrect setup position and target delineation. Simulated-measured film doses were scored using gamma analysis and compared within specific regions of interest (ROIs) as well as the entire film plane. Positional offsets were estimated based on isodoses on the film planes, and point doses within TLD contours were compared. Motion-induced differences between planned and simulated-measured doses were evident even without introduced errors Gamma passing rates within target-centred ROIs correlated well with error-induced dose differences, while whole film passing rates did not. Isodose-based setup position measurements demonstrated high sensitivity to errors. Simulated point doses at TLD locations yielded erratic responses to introduced errors. ROI gamma analysis demonstrated enhanced sensitivity to simulated errors compared to whole film analysis. Gamma results may be further contextualized by other metrics such as setup position or maximum gamma.


Subject(s)
Movement , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted , Thorax , Thorax/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Humans , Radiometry/instrumentation , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated , Four-Dimensional Computed Tomography , Motion
14.
Phys Med ; 121: 103370, 2024 May.
Article in English | MEDLINE | ID: mdl-38677196

ABSTRACT

The Leksell Gamma Knife® Perfexion™ and Icon™ have a unique geometry, containing 192 60Co sources with collimation for field sizes of 4 mm, 8 mm, and 16 mm. 4 mm and 8 mm collimated fields lack lateral charged particle equilibrium, so accurate field output factors are essential. This study performs field output factor measurements for the microDiamond, microSilicon, and RAZOR™ Nano detectors. 3D printed inserts for the spherical Solid Water® Phantom were fabricated for microDiamond detector, the microSilicon unshielded diode and the RAZOR™ Nano micro-ionisation chamber. Detectors were moved iteratively to identify the peak detector signal for each collimator, representing the effective point of measurement of the chamber. In addition, field output correction factors were calculated for each detector relative to vendor supplied Monte Carlo simulated field output factors and field output factors measured with a W2 scintillator. All field output factors where within 1.1 % for the 4 mm collimator and within 2.3 % for the 8 mm collimator. The 3D printed phantom inserts were suitable for routine measurements if the user identifies the effective point of measurement, and ensures a reproducible setup by marking the rotational alignment of the cylindrical print. Measurements with the microDiamond and microSilicon can be performed faster compared to the RAZOR™ Nano due to differences in the signal to noise ratio. All detectors are suitable for field output factor measurements for the Leksell Gamma Knife® Perfexion™ and Icon™.


Subject(s)
Phantoms, Imaging , Printing, Three-Dimensional , Radiometry , Radiosurgery , Radiosurgery/instrumentation , Radiometry/instrumentation , Monte Carlo Method
15.
Radiat Prot Dosimetry ; 200(7): 670-676, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38665036

ABSTRACT

Silicon has been developed as a microdosemeter, as it can provide sensitive volumes at submicrometric levels, does not need a gas supply, has a fast response, and has low power consumption. However, since the energy response in silicon is not the same as that in tissue, a spectral conversion from silicon to tissue is necessary to obtain the probability distribution of energy deposition in tissue. In this work, we present a method for microdosimetric spectra conversion from silicon to tissue based on the scaled Fourier transformation and the geometric scaling factor, which shows relatively good results in the spectral conversion from diamond to tissue. The results illustrate that the method can convert the energy deposition spectra from silicon to tissue with proper accuracy. Meanwhile, the inconsistency between the converted and actual spectra due to the inherent difference was also observed. Whereas, the reasons for the disagreement are different. For the plateau part of the Bragg curve, the discrepancy between the converted and actual spectra is due to the poor tissue equivalent of silicon. For the proximal part of the Bragg curve, the spectral difference is attributed to the different shapes of the energy deposition spectra obtained in silicon and water, which is the same as that in the diamond. In summary, this method can be employed in the tissue equivalent conversion of silicon microdosemeter, but the poor tissue equivalent of silicon limited the accuracy of this method. In addition, the correction for the deviation between the converted and calculated spectra due to the difference in spectral shapes is required to improve the practicality of this mod.


Subject(s)
Silicon , Silicon/chemistry , Humans , Heavy Ion Radiotherapy , Phantoms, Imaging , Radiotherapy Dosage , Radiometry/methods , Radiometry/instrumentation , Equipment Design , Fourier Analysis
16.
Appl Radiat Isot ; 209: 111323, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38631246

ABSTRACT

This work investigates the feasibility of yeast-based impedance measurements for retrospective dosimetry applications. The local environment around yeast cells in a previously developed film-badge was modeled using Geant4. A greater dose response was observed when yeast cells were surrounded by an aluminum-polymer structure, which acted as a conversion layer. Bench-top experiments were conducted using a jar-based dosimeter design that directly combined a finely-ground aluminum conversion medium with yeast powder. It was shown when irradiated in the presence of aluminum grains, yeast cells yielded a higher impedance signal, thereby indicating greater radiation-induced damage. Finally, in separate irradiation experiments, lead and aluminum sheets were placed behind yeast samples and the dosimeters were irradiated to 1 Gy. A 2-fold increase in the impedance signal was shown when samples were positioned in close contact with the lead sheet compared to the aluminum sheet. In all experiments, it was shown that the local environment significantly influences radiative energy deposition in yeast cells.


Subject(s)
Electric Impedance , Saccharomyces cerevisiae , Saccharomyces cerevisiae/radiation effects , Aluminum/chemistry , Radiometry/methods , Radiometry/instrumentation , Radiation Dosage , Radiation Dosimeters
17.
Phys Med Biol ; 69(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38684165

ABSTRACT

Objective. This work introduces a novel approach to performing active and passive dosimetry for beta-emitting radionuclides in solution using common dosimeters. The measurements are compared to absorbed dose to water (Dw) estimates from Monte Carlo (MC) simulations. We present a method for obtaining absorbed dose to water, measured with dosimeters, from beta-emitting radiopharmaceutical agents using a custom SPECT/CT compatible phantom for validation of Monte Carlo based absorbed dose to water estimates.Approach. A cylindrical, acrylic SPECT/CT compatible phantom capable of housing an IBA EFD diode, Exradin A20-375 parallel plate ion chamber, unlaminated EBT3 film, and thin TLD100 microcubes was constructed for the purpose of measuring absorbed dose to water from solutions of common beta-emitting radiopharmaceutical therapy agents. The phantom is equipped with removable detector inserts that allow for multiple configurations and is designed to be used for validation of image-based absorbed dose estimates with detector measurements. Two experiments with131I and one experiment with177Lu were conducted over extended measurement intervals with starting activities of approximately 150-350 MBq. Measurement data was compared to Monte Carlo simulations using the egs_chamber user code in EGSnrc 2019.Main results. Agreement withink= 1 uncertainty between measured and MC predictedDwwas observed for all dosimeters, except the A20-375 ion chamber during the second131I experiment. Despite the agreement, the measured values were generally lower than predicted values by 5%-15%. The uncertainties atk = 1 remain large (5%-30% depending on the dosimeter) relative to other forms of radiation therapy.Significance. Despite high uncertainties, the overall agreement between measured and simulated absorbed doses is promising for the use of dosimeter-based RPT measurements in the validation of MC predictedDw.


Subject(s)
Beta Particles , Monte Carlo Method , Phantoms, Imaging , Radiometry , Radiopharmaceuticals , Single Photon Emission Computed Tomography Computed Tomography , Single Photon Emission Computed Tomography Computed Tomography/instrumentation , Radiometry/instrumentation , Beta Particles/therapeutic use , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/chemistry , Iodine Radioisotopes/therapeutic use , Lutetium/chemistry , Water/chemistry , Radioisotopes
18.
Med Phys ; 51(6): 4536-4545, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38639653

ABSTRACT

BACKGROUND: Plane-parallel ionization chambers are the recommended secondary standard systems for clinical reference dosimetry of electrons. Dosimetry in high dose rate and dose-per-pulse (DPP) is challenging as ionization chambers are subject to ion recombination, especially when dose rate and/or DPP is increased beyond the range of conventional radiotherapy. The lack of universally accepted models for correction of ion recombination in UDHR is still an issue as it is, especially in FLASH-RT research, which is crucial in order to be able to accurately measure the dose for a wide range of dose rates and DPPs. PURPOSE: The objective of this study was to show the feasibility of developing an Artificial Intelligence model to predict the ion-recombination factor-ksat for a plane-parallel Advanced Markus ionization chamber for conventional and ultra-high dose rate electron beams based on machine parameters. In addition, the predicted ksat of the AI model was compared with the current applied analytical models for this correction factor. METHODS: A total number of 425 measurements was collected with a balanced variety in machine parameter settings. The specific ksat values were determined by dividing the output of the reference dosimeter (optically stimulated luminescence [OSL]) by the output of the AM chamber. Subsequently, a XGBoost regression model was trained, which used the different machine parameters as input features and the corresponding ksat value as output. The prediction accuracy of this regression model was characterized by R2-coefficient of determination, mean absolute error and root mean squared error. In addition, the model was compared with the Two-Voltage (TVA) method and empirical Petersson model for 19 different dose-per-pulse values ranging from conventional to UDHR regimes. The Akiake Information criterion (AIC) was calculated for the three different models. RESULTS: The XGBoost regression model reached a R2-score of 0.94 on the independent test set with a MAE of 0.067 and RMSE of 0.106. For the additional 19 random data points, the ksat values predicted by the XGBoost model showed to be in agreement, within the uncertainties, with the ones determined by the Petersson model and better than the TVA method for doses per pulse >3.5 Gy with a maximum deviation from the ground truth of 14.2%, 16.7%, and -36.0%, respectively, for DPP >4 Gy. CONCLUSION: The proposed method of using AI for ksat determination displays efficiency. For the investigated DPPs, the ksat values obtained with the XGBoost model were in concurrence with the ones obtained with the current available analytical models within the boundaries of uncertainty, certainly for the DPP characterizing UDHR. But the overall performance of the AI model, taking the number of free parameters into account, lacked efficiency. Future research should optimize the determination of the experimental ksat, and investigate the determination the ksat for DPPs higher than the ones investigated in this study, while also evaluating the prediction of the proposed XGBoost model for UDHR machines of different centers.


Subject(s)
Electrons , Radiometry , Radiotherapy Dosage , Electrons/therapeutic use , Radiometry/instrumentation , Radiometry/methods , Automation , Radiation Dosage , Artificial Intelligence
19.
Med Phys ; 51(6): 4513-4523, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669346

ABSTRACT

BACKGROUND: Ionization chambers play an essential role in dosimetry measurements for kilovoltage (kV) x-ray beams. Despite their widespread use, there is limited data on the absolute values for the polarity correction factors across a range of commonly employed ionization chambers. PURPOSE: This study aimed to investigate the polarity effects for five different ionization chambers in kV x-ray beams. METHODS: Two plane-parallel chambers being the Advanced Markus and Roos and three cylindrical chambers; 3D PinPoint, Semiflex and Farmer chamber (PTW, Freiburg, Germany), were employed to measure the polarity correction factors. The kV x-ray beams were produced from an Xstrahl 300 unit (Xstrahl Ltd., UK). All measurements were acquired at 2 cm depth in a PTW-MP1 water tank for beams between 60 kVp (HVL 1.29 mm Al) and 300 kVp (HVL 3.08 mm Cu), and field sizes of 2-10 cm diameter for 30 cm focus-source distance (FSD) and 4 × 4 cm2 - 20 × 20 cm2 for 50 cm FSD. The ionization chambers were connected to a PTW-UNIDOS electrometer, and the polarity effect was determined using the AAPM TG-61 code of practice methodology. RESULTS: The study revealed significant polarity effects in ionization chambers, especially in those with smaller volumes. For the plane-parallel chambers, the Advanced Markus chamber exhibited a maximum polarity effect of 2.5%, whereas the Roos chamber showed 0.3% at 150 KVp with the 10 cm circular diameter open-ended applicator. Among the cylindrical chambers at the same beam energy and applicator, the Pinpoint chamber exhibited a 3% polarity effect, followed by Semiflex with 1.7%, and Farmer with 0.4%. However, as the beam energy increased to 300 kVp, the polarity effect significantly increased reaching 8.5% for the Advanced Markus chamber and 13.5% for the PinPoint chamber at a 20 × 20 cm2 field size. Notably, the magnitude of the polarity effect increased with both the field size and beam energy, and was significantly influenced by the size of the chamber's sensitive volume. CONCLUSIONS: The findings demonstrate that ionization chambers can exhibit substantial polarity effects in kV x-ray beams, particularly for those chambers with smaller volumes. Therefore, it is important to account for polarity corrections when conducting relative dose measurements in kV x-ray beams to enhance the dosimetry accuracy and improve patient dose calculations.


Subject(s)
Radiometry , X-Rays , Radiometry/instrumentation
20.
Phys Med Biol ; 69(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38537296

ABSTRACT

Objective. To use automation to facilitate the monitoring of each treatment fraction using an electronic portal imaging device (EPID) basedin vivodosimetry (IVD) system, allowing optimisation of breast radiotherapy delivery for individual patients and cohorts.Approach. A suite of in-house software was developed to reduce the number of manual interactions with the commercial IVD system, dosimetry check. An EPID specific pixel sensitivity map facilitated use of the EPID panel away from the central axis. Point dose difference and the change in standard deviation in dose were identified as useful dose metrics, with standard deviation used in preference to gamma in the presence of a systematic dose offset. Automated IVD was completed for 3261 fractions across 704 patients receiving breast radiotherapy.Main results. Multiple opportunities for treatment optimisation were identified for individual patients and across patient cohorts as a result of successful implementation of automated IVD. 5.1% of analysed fractions were out of tolerance with 27.1% of these considered true positives. True positive results were obtained on any fraction of treatment and if IVD had only been completed on the first fraction, 84.4% of true positive results would have been missed. This was made possible due to the automation that saved over 800 h of manual intervention and stored data in an accessible database.Significance. An improved EPID calibration to allow off-axis measurement maximises the number of patients eligible for IVD (36.8% of patients in this study). We also demonstrate the importance in selecting context-specific assessment metrics and how these can lead to a managable false positive rate. We have shown that the use of fully automated IVD facilitates use on every fraction of treatment. This leads to identification of areas for treatment improvement for both individuals and across a patient cohort, expanding the uses of IVD from simply gross error detection towards treatment optimisation.


Subject(s)
Automation , Breast Neoplasms , Humans , Breast Neoplasms/radiotherapy , Radiometry/instrumentation , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...