Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.335
Filter
1.
World J Surg Oncol ; 22(1): 147, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831328

ABSTRACT

BACKGROUND: Radio(chemo)therapy is often required in pelvic malignancies (cancer of the anus, rectum, cervix). Direct irradiation adversely affects ovarian and endometrial function, compromising the fertility of women. While ovarian transposition is an established method to move the ovaries away from the radiation field, surgical procedures to displace the uterus are investigational. This study demonstrates the surgical options for uterine displacement in relation to the radiation dose received.  METHODS: The uterine displacement techniques were carried out sequentially in a human female cadaver to demonstrate each procedure step by step and assess the uterine positions with dosimetric CT scans in a hybrid operating room. Two treatment plans (anal and rectal cancer) were simulated on each of the four dosimetric scans (1. anatomical position, 2. uterine suspension of the round ligaments to the abdominal wall 3. ventrofixation of the uterine fundus at the umbilical level, 4. uterine transposition). Treatments were planned on Eclipse® System (Varian Medical Systems®,USA) using Volumetric Modulated Arc Therapy. Data about maximum (Dmax) and mean (Dmean) radiation dose received and the volume receiving 14 Gy (V14Gy) were collected. RESULTS: All procedures were completed without technical complications. In the rectal cancer simulation with delivery of 50 Gy to the tumor, Dmax, Dmean and V14Gy to the uterus were respectively 52,8 Gy, 34,3 Gy and 30,5cc (1), 31,8 Gy, 20,2 Gy and 22.0cc (2), 24,4 Gy, 6,8 Gy and 5,5cc (3), 1,8 Gy, 0,6 Gy and 0,0cc (4). For anal cancer, delivering 64 Gy to the tumor respectively 46,7 Gy, 34,8 Gy and 31,3cc (1), 34,3 Gy, 20,0 Gy and 21,5cc (2), 21,8 Gy, 5,9 Gy and 2,6cc (3), 1,4 Gy, 0,7 Gy and 0,0cc (4). CONCLUSIONS: The feasibility of several uterine displacement procedures was safely demonstrated. Increasing distance to the radiation field requires more complex surgical interventions to minimize radiation exposure. Surgical strategy needs to be tailored to the multidisciplinary treatment plan, and uterine transposition is the most technically complex with the least dose received.


Subject(s)
Cadaver , Fertility Preservation , Pelvic Neoplasms , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Uterus , Humans , Female , Radiotherapy Planning, Computer-Assisted/methods , Fertility Preservation/methods , Uterus/radiation effects , Uterus/surgery , Uterus/pathology , Pelvic Neoplasms/radiotherapy , Pelvic Neoplasms/surgery , Pelvic Neoplasms/pathology , Radiotherapy, Intensity-Modulated/methods , Organ Sparing Treatments/methods , Organs at Risk/radiation effects , Prognosis , Radiometry/methods
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 773-779, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708512

ABSTRACT

OBJECTIVE: To investigate the dosimetric difference between manual and inverse optimization in 3-dimensional (3D) brachytherapy for gynecologic tumors. METHODS: This retrospective study was conducted among a total of 110 patients with gynecologic tumors undergoing intracavitary combined with interstitial brachytherapy or interstitial brachytherapy. Based on the original images, the brachytherapy plans were optimized for each patient using Gro, IPSA1, IPSA2 (with increased volumetric dose limits on the basis of IPSA1) and HIPO algorithms. The dose-volume histogram (DVH) parameters of the clinical target volume (CTV) including V200, V150, V100, D90, D98 and CI, and the dosimetric parameters D2cc, D1cc, and D0.1cc for the bladder, rectum, and sigmoid colon were compared among the 4 plans. RESULTS: Among the 4 plans, Gro optimization took the longest time, followed by HIPO, IPSA2 and IPSA1 optimization. The mean D90, D98, and V100 of HIPO plans were significantly higher than those of Gro and IPSA plans, and D90 and V100 of IPSA1, IPSA2 and HIPO plans were higher than those of Gro plans (P < 0.05), but the CI of the 4 plans were similar (P > 0.05). For the organs at risk (OARs), the HIPO plan had the lowest D2cc of the bladder and rectum; the bladder absorbed dose of Gro plans were significantly greater than those of IPSA1 and HIPO (P < 0.05). The D2cc and D1cc of the rectum in IPSA1, IPSA2 and HIPO plans were better than Gro (P < 0.05). The D2cc and D1cc of the sigmoid colon did not differ significantly among the 4 plans. CONCLUSION: Among the 4 algorithms, the HIPO algorithm can better improve dose coverage of the target and lower the radiation dose of the OARs, and is thus recommended for the initial plan optimization. Clinically, the combination of manual optimization can achieve more individualized dose distribution of the plan.


Subject(s)
Algorithms , Brachytherapy , Genital Neoplasms, Female , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Brachytherapy/methods , Female , Retrospective Studies , Genital Neoplasms, Female/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiometry/methods
4.
Biomed Phys Eng Express ; 10(4)2024 May 28.
Article in English | MEDLINE | ID: mdl-38768575

ABSTRACT

Background. Small field dosimetry presents unique challenges with source occlusion, lateral charged particle equilibrium and detector size. As detector volume decreases, signal strength declines while noise increases, deteriorating the signal-to-noise ratio (SNR). This issue may be compounded by triaxial cables connecting detectors to electrometers. However, effects of cables, critical for precision dosimetry, are often overlooked. There is a need to evaluate triaxial cable and detector impacts on SNR in small fields. The purpose of this study is to evaluate the influence of triaxial cables and microdetectors on signal-to-noise ratios in small-field dosimetry. This study also aims to establish the importance of cable quality assurance for measurement accuracy.Methods. Six 9.1 m length triaxial cables from different manufacturers were tested with six microdetectors (microDiamond, PinPoint, EDGE, Plastic scintillator, microSilicon, SRS-Diode). A 6 MV photon beam (TrueBeam) was used, with a water phantom at 5 cm depth with 0.5 × 0.5 cm2to 10 × 10 cm2fields at 600 MU min-1. Readings were acquired using cable-detector permutations with a dedicated electrometer (except the scintillator which has its own). Cables had differing connector types, conductor materials, insulation, and diameters. Detectors had various sensitive volumes, materials, typical signals, and bias voltages.Results. Normalized field output correction factors (FOFs) relative differences of 13.4% and 4.6% between the highest and lowest values across triaxial cables for 0.5 × 0.5 cm2and 1 × 1 cm2fields, respectively. The maximum difference in FOF between any cable-detector combinations was 0.2% for the smallest field size. No consistent FOF trend was observed across all detectors when increasing cable diameter. Additionally, the non-normalized FOF differences of 0.9% and 0.3% were observed between cables for 0.5 × 0.5 cm2and 1 × 1 cm2fields, respectively.Conclusions. Regular triaxial cable quality assurance is critical for precision small field dosimetry. A national protocol is needed to standardize cable evaluations/calibrations, particularly for small signals (

Subject(s)
Equipment Design , Phantoms, Imaging , Radiometry , Signal-To-Noise Ratio , Radiometry/instrumentation , Radiometry/methods , Photons , Humans
5.
Biomed Phys Eng Express ; 10(4)2024 May 14.
Article in English | MEDLINE | ID: mdl-38697045

ABSTRACT

Whole-body counters (WBC) are used in internal dosimetry forin vivomonitoring in radiation protection. The calibration processes of a WBC set-up include the measurement of a physical phantom filled with a certificate radioactive source that usually is referred to a standard set of individuals determined by the International Commission on Radiological Protection (ICRP). The aim of this study was to develop an anthropomorphic and anthropometric female physical phantom for the calibration of the WBC systems. The reference female computational phantom of the ICRP, now called RFPID (Reference Female Phantom for Internal Dosimetry) was printed using PLA filament and with an empty interior. The goal is to use the RFPID to reduce the uncertainties associated within vivomonitoring system. The images which generated the phantom were manipulated using ImageJ®, Amide®, GIMP®and the 3D Slicer®software. RFPID was split into several parts and printed using a 3D printer in order to print the whole-body phantom. The newly printed physical phantom RFPID was successfully fabricated, and it is suitable to mimic human tissue, anatomically similar to a human body i.e., size, shape, material composition, and density.


Subject(s)
Phantoms, Imaging , Printing, Three-Dimensional , Whole-Body Counting , Humans , Female , Whole-Body Counting/methods , Calibration , Radiation Protection/methods , Radiation Protection/instrumentation , Radiometry/methods , Radiometry/instrumentation , Anthropometry
6.
Gulf J Oncolog ; 1(45): 69-74, 2024 May.
Article in English | MEDLINE | ID: mdl-38774935

ABSTRACT

BACKGROUND: In management of Carcinoma Cervix, Brachytherapy plays a crucial role. Most commonly used technique is Intracavitary Brachytherapy (ICBT). In cases where ICBT is not technically feasible or it may result in suboptimal dose distribution, Interstitial Brachytherapy (ISBT) is recommended. With this study we wanted to study the clinical outcome and dosimetric details of interstitial brachytherapy in gynecological cancers. MATERIALS & METHODS: We analysed clinicaloutcome and dosimetric details of interstitial brachytherapy (ISBT) done for gynecological malignancies in our institute during the period 1st January 2013 to 31st December 2020. RESULTS: Total of 42 interstitial brachytherapy (ISBT) details were analysed.37 patients had Carcinoma Cervix and 5 patients had Carcinoma Vagina. In the majority of the patients, ISBT dosage schedule was three fractions 7Gy each. D2cc to rectum, bladder, sigmoid and bowel were 4.88 Gy, 5.62 Gy, 3.57 Gy and 2.47 Gy respectively. Mean CTV volume was 129.89 cc. EQD2 dose to CTV combining EBRT and ISBT dose was 85.88 Gy. D90 and D100 to CTV from ISBT were 111.96% and 68.21 % of prescribed dose respectively. Grade III/IV toxicities were seen in 5 (12%) patients. Local control rates at 1year &2 years were 88% & 85.7% respectively. DFS at 1 year, 2 years and 3 years were 80.7%, 72.3% and 65.7% respectively. OS at 1year, 2 years, 4 years and 5 years were 92.5%, 65.5%, 59.5% and 42.3% respectively. CONCLUSION: 3D imagebased dosimetry with CT based planning using MUPIT implant is a feasible option for gynecological malignancies warranting interstitial brachytherapy. In view of good clinical outcomes in terms of toxicity profile, Local control, DFS and OS with acceptable GEC-ESTRO dosimetric data, we recommend routine use interstitial brachytherapy if facilities are available and in clinical situations were ISBT is indicated.


Subject(s)
Brachytherapy , Genital Neoplasms, Female , Humans , Female , Brachytherapy/methods , Genital Neoplasms, Female/radiotherapy , Middle Aged , Radiotherapy Dosage , Adult , Aged , Radiometry/methods , Uterine Cervical Neoplasms/radiotherapy , Treatment Outcome
7.
Sci Rep ; 14(1): 11524, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773212

ABSTRACT

The biological mechanisms triggered by low-dose exposure still need to be explored in depth. In this study, the potential mechanisms of low-dose radiation when irradiating the BEAS-2B cell lines with a Cs-137 gamma-ray source were investigated through simulations and experiments. Monolayer cell population models were constructed for simulating and analyzing distributions of nucleus-specific energy within cell populations combined with the Monte Carlo method and microdosimetric analysis. Furthermore, the 10 × Genomics single-cell sequencing technology was employed to capture the heterogeneity of individual cell responses to low-dose radiation in the same irradiated sample. The numerical uncertainties can be found both in the specific energy distribution in microdosimetry and in differential gene expressions in radiation cytogenetics. Subsequently, the distribution of nucleus-specific energy was compared with the distribution of differential gene expressions to guide the selection of differential genes bioinformatics analysis. Dose inhomogeneity is pronounced at low doses, where an increase in dose corresponds to a decrease in the dispersion of cellular-specific energy distribution. Multiple screening of differential genes by microdosimetric features and statistical analysis indicate a number of potential pathways induced by low-dose exposure. It also provides a novel perspective on the selection of sensitive biomarkers that respond to low-dose radiation.


Subject(s)
Dose-Response Relationship, Radiation , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Monte Carlo Method , Radiometry/methods , Cell Line , Gamma Rays/adverse effects
8.
Biomed Phys Eng Express ; 10(4)2024 May 22.
Article in English | MEDLINE | ID: mdl-38744248

ABSTRACT

Evaluating neutron output is important to ensure proper dose delivery for patients in boron neutron capture therapy (BNCT). It requires efficient quality assurance (QA) and quality control (QC) while maintaining measurement accuracy. This study investigated the optimal measurement conditions for QA/QC of activation measurements using a high-purity germanium (HP-Ge) detector in an accelerator-based boron neutron capture therapy (AB-BNCT) system employing a lithium target. The QA/QC uncertainty of the activation measurement was evaluated based on counts, reproducibility, and standard radiation source uncertainties. Measurements in a polymethyl methacrylate (PMMA) cylindrical phantom using aluminum-manganese (Al-Mn) foils and aluminum-gold (Al-Au) foils and measurements in a water phantom using gold wire with and without cadmium cover were performed to determine the optimal measurement conditions. The QA/QC uncertainties of the activation measurements were 4.5% for Au and 4.6% for Mn. The optimum irradiation proton charge and measurement time were determined to be 36 C and 900 s for measurements in a PMMA cylindrical phantom, 7.0 C and 900 s for gold wire measurements in a water phantom, and 54 C and 900 s at 0-2.2 cm depth and 3,600 s at deeper depths for gold wire measurements with cadmium cover. Our results serve as a reference for determining measurement conditions when performing QA/QC of activation measurements using HP-Ge detectors at an AB-BNCT employing a lithium target.


Subject(s)
Boron Neutron Capture Therapy , Lithium , Particle Accelerators , Phantoms, Imaging , Quality Control , Lithium/chemistry , Boron Neutron Capture Therapy/methods , Humans , Particle Accelerators/instrumentation , Reproducibility of Results , Polymethyl Methacrylate/chemistry , Neutrons , Gold/chemistry , Aluminum/chemistry , Water/chemistry , Radiometry/methods , Radiometry/instrumentation , Radiotherapy Dosage
9.
Sci Rep ; 14(1): 10637, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724569

ABSTRACT

Hadron therapy is an advanced radiation modality for treating cancer, which currently uses protons and carbon ions. Hadrons allow for a highly conformal dose distribution to the tumour, minimising the detrimental side-effects due to radiation received by healthy tissues. Treatment with hadrons requires sub-millimetre spatial resolution and high dosimetric accuracy. This paper discusses the design, fabrication and performance tests of a detector based on Gas Electron Multipliers (GEM) coupled to a matrix of thin-film transistors (TFT), with an active area of 60 × 80 mm2 and 200 ppi resolution. The experimental results show that this novel detector is able to detect low-energy (40 kVp X-rays), high-energy (6 MeV) photons used in conventional radiation therapy and protons and carbon ions of clinical energies used in hadron therapy. The GEM-TFT is a compact, fully scalable, radiation-hard detector that measures secondary electrons produced by the GEMs with sub-millimetre spatial resolution and a linear response for proton currents from 18 pA to 0.7 nA. Correcting known detector defects may aid in future studies on dose uniformity, LET dependence, and different gas mixture evaluation, improving the accuracy of QA in radiotherapy.


Subject(s)
Radiometry , Radiometry/instrumentation , Radiometry/methods , Humans , Radiotherapy/methods , Radiotherapy/standards , Radiotherapy/instrumentation , Quality Assurance, Health Care , Electrons , Radiotherapy Dosage , Neoplasms/radiotherapy , Equipment Design , Proton Therapy/instrumentation , Proton Therapy/methods
10.
Technol Cancer Res Treat ; 23: 15330338241256594, 2024.
Article in English | MEDLINE | ID: mdl-38808514

ABSTRACT

Purpose: Intensity-modulated radiotherapy (IMRT) is currently the most important treatment method for nasopharyngeal carcinoma (NPC). This study aimed to enhance prediction accuracy by incorporating dose information into a deep convolutional neural network (CNN) using a multichannel input method. Methods: A target conformal plan (TCP) was created based on the maximum planning target volume (PTV). Input data included TCP dose distribution, images, target structures, and organ-at-risk (OAR) information. The role of target conformal plan dose (TCPD) was assessed by comparing the TCPD-CNN (with dose information) and NonTCPD-CNN models (without dose information) using statistical analyses with the ranked Wilcoxon test (P < .05 considered significant). Results: The TCPD-CNN model showed no statistical differences in predicted target indices, except for PTV60, where differences in the D98% indicator were < 0.5%. For OARs, there were no significant differences in predicted results, except for some small-volume or closely located OARs. On comparing TCPD-CNN and NonTCPD-CNN models, TCPD-CNN's dose-volume histograms closely resembled clinical plans with higher similarity index. Mean dose differences for target structures (predicted TCPD-CNN and NonTCPD-CNN results) were within 3% of the maximum prescription dose for both models. TCPD-CNN and NonTCPD-CNN outcomes were 67.9% and 54.2%, respectively. 3D gamma pass rates of the target structures and the entire body were higher in TCPD-CNN than in the NonTCPD-CNN models (P < .05). Additional evaluation on previously unseen volumetric modulated arc therapy plans revealed that average 3D gamma pass rates of the target structures were larger than 90%. Conclusions: This study presents a novel framework for dose distribution prediction using deep learning and multichannel input, specifically incorporating TCPD information, enhancing prediction accuracy for IMRT in NPC treatment.


Subject(s)
Deep Learning , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Nasopharyngeal Carcinoma/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Nasopharyngeal Neoplasms/radiotherapy , Organs at Risk/radiation effects , Radiometry/methods , Neural Networks, Computer
11.
Radiat Prot Dosimetry ; 200(8): 721-738, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38690853

ABSTRACT

This paper describes a procedure for the estimation of 241Am and 239Pu activity present in the human tissue by measuring the depth of contaminant using a portable Planar High Purity Germanium detector (HPGe). The ratios of photopeak counts of X-rays or gammas obtained with the detector coupled to collimator are calculated for the estimation of depth of the contaminant and the optimum one is determined. Since Minimum Detectable Activities (MDA) for the detector coupled to a collimator are higher than that of bare detector, activity must be estimated using bare detector, after locating the contaminant. Two methods are described for the estimation of plutonium coexisting with 241Am: (i) Abundance and isotopic correction for 239Pu (ii) and 239Pu:241Am ratio. The procedure to estimate 239Pu when plutonium isotopes alone are present is also established. An optimum monitoring period to detect the minimum value of intake for both radionuclides corresponding to chelation therapy and excision is also derived.


Subject(s)
Americium , Germanium , Plutonium , Plutonium/analysis , Americium/analysis , Humans , Germanium/analysis , Radiation Monitoring/methods , Radiation Monitoring/instrumentation , Radiation Dosage , Radiometry/methods , Radiometry/instrumentation
12.
Med Phys ; 51(6): 4007-4027, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703394

ABSTRACT

BACKGROUND: Yttrium-90 ( 90 Y $^{90}{\rm {Y}}$ ) represents the primary radioisotope used in radioembolization procedures, while holmium-166 ( 166 Ho $^{166}{\rm {Ho}}$ ) is hypothesized to serve as a viable substitute for 90 Y $^{90}{\rm {Y}}$ due to its comparable therapeutic potential and improved quantitative imaging. Voxel-based dosimetry for these radioisotopes relies on activity images obtained through PET or SPECT and dosimetry methods, including the voxel S-value (VSV) and the local deposition method (LDM). However, the evaluation of the accuracy of absorbed dose calculations has been limited by the use of non-ideal reference standards and investigations restricted to the liver. The objective of this study was to expand upon these dosimetry characterizations by investigating the impact of image resolutions, voxel sizes, target volumes, and tissue materials on the accuracy of 90 Y $^{90}{\rm {Y}}$ and 166 Ho $^{166}{\rm {Ho}}$ dosimetry techniques. METHODS: A specialized radiopharmaceutical dosimetry software called reDoseMC was developed using the Geant4 Monte Carlo toolkit and validated by benchmarking the generated 90 Y $^{90}{\rm {Y}}$ kernels with published data. The decay spectra of both 90 Y $^{90}{\rm {Y}}$ and 166 Ho $^{166}{\rm {Ho}}$ were also compared. Multiple VSV kernels were generated for the liver, lungs, soft tissue, and bone for isotropic voxel sizes of 1 mm, 2 mm, and 4 mm. Three theoretical phantom setups were created with 20 or 40 mm activity and mass density inserts for the same three voxel sizes. To replicate the limited spatial resolutions present in PET and SPECT images, image resolutions were modeled using a 3D Gaussian kernel with a Full Width at Half Maximum (FWHM) ranging from 0 to 16 mm and with no added noise. The VSV and LDM dosimetry methods were evaluated by characterizing their respective kernels and analyzing their absorbed dose estimates calculated on theoretical phantoms. The ground truth for these estimations was calculated using reDoseMC. RESULTS: The decay spectra obtained through reDoseMC showed less than a 1% difference when compared to previously published experimental data for energies below 1.9 MeV in the case of 90 Y $^{90}{\rm {Y}}$ and less than 1% for energies below 1.5 MeV for 166 Ho $^{166}{\rm {Ho}}$ . Additionally, the validation kernels for 90 Y $^{90}{\rm {Y}}$ VSV exhibited results similar to those found in published Monte Carlo codes, with source dose depositions having less than a 3% error margin. Resolution thresholds ( FWHM thresh s ${\rm {FWHM}}_\mathrm{thresh}{\rm {s}}$ ), defined as resolutions that resulted in similar dose estimates between the LDM and VSV methods, were observed for 90 Y $^{90}{\rm {Y}}$ . They were 1.5 mm for bone, 2.5 mm for soft tissue and liver, and 8.5 mm for lungs. For 166 Ho $^{166}{\rm {Ho}}$ , the accuracy of absorbed dose deposition was found to be dependent on the contributions of absorbed dose from photons. Volume errors due to variations in voxel size impacted the final dose estimates. Larger target volumes yielded more accurate mean doses than smaller volumes. For both radioisotopes, the radial dose profiles for the VSV and LDM approximated but never matched the reference standard. CONCLUSIONS: reDoseMC was developed and validated for radiopharmaceutical dosimetry. The accuracy of voxel-based dosimetry was found to vary widely with changes in image resolutions, voxel sizes, chosen target volumes, and tissue material; hence, the standardization of dosimetry protocols was found to be of great importance for comparable dosimetry analysis.


Subject(s)
Embolization, Therapeutic , Holmium , Monte Carlo Method , Radioisotopes , Radiometry , Yttrium Radioisotopes , Radiometry/methods , Yttrium Radioisotopes/therapeutic use , Yttrium Radioisotopes/chemistry , Holmium/therapeutic use , Radioisotopes/therapeutic use , Humans , Phantoms, Imaging
13.
Radiat Prot Dosimetry ; 200(8): 779-790, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38767288

ABSTRACT

Photon energy is higher than the (γ,n) threshold, allowing it to interact with the nuclei of materials with high z properties and liberate fast neutrons. This represents a potentially harmful source of radiation for humans and the environment. This study validated the Monte Carlo simulation, using the particle and heavy-ion transport code system (PHITS) on a TrueBeam 10-MV linear particle accelerator's head shielding model and then used this PHITS code to simulate a photo-neutron spectrum for the transport of the beam. The results showed that, when comparing the simulated to measured PDD and crosslines, 100% of the γ-indexes were <1 (γ3%/3mm) for both simulations, for both phase-space data source and a mono energy source. Neutron spectra were recorded in all parts of the TrueBeam's head, as well as photon neutron spectra at three points on the beamline.


Subject(s)
Computer Simulation , Monte Carlo Method , Neutrons , Particle Accelerators , Photons , Particle Accelerators/instrumentation , Humans , Radiation Protection/methods , Heavy Ions , Radiation Dosage , Head/radiation effects , Radiometry/methods
14.
Asian Pac J Cancer Prev ; 25(5): 1515-1528, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809623

ABSTRACT

PURPOSE: The current research compared radiobiological and dosimetric results for simultaneous integrated boost (SIB) plans employing RapidArc and IMRT planning procedures in oropharyngeal cancer from head-and-neck cancer (HNC) patients. MATERIALS AND METHODS: The indigenously developed Python-based software was used in this study for generation and analysis. Twelve patients with forty-eight total plans with SIB were planned using Rapid arc (2 and 3 arcs) and IMRT (7 and 9 fields) and compared with radiobiological models Lyman, Kutcher, Burman (LKB) and EUD (Equivalent Uniform Dose) along with physical index such as homogeneity index(HI), conformity index(CI) of target volumes. RESULTS: These models' inputs are the dose-volume histograms (DVHs) calculated by the treatment planning system (TPS). The values obtained vary from one model to the other for the same technique and patient. The maximum dose to the brainstem and spinal cord and the mean dose to the parotids were analysed both dosimetrically and radiobiologically, such as the LKB model effective volume, equivalent uniform dose, EUD-based normal tissue complication probability, and normal tissue integral dose. The mean and max dose to target volume with conformity, homogeneity index, tumor control probability compared with treatment times, and monitor units. CONCLUSION: Rapid arc (3 arcs) resulted in significantly better OAR sparing, dose homogeneity, and conformity. The findings indicate that the rapid arc plan has improved dose distribution in the target volume compared with IMRT, but the tumor control probability obtained for the two planning methods, Rapid arc (3 arcs) and IMRT (7 fields), are similar. The treatment time and monitor units for the Rapid arc (3 arcs) were superior to other planning methods and considered to be standard in head & neck radiotherapy.


Subject(s)
Organs at Risk , Oropharyngeal Neoplasms , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Oropharyngeal Neoplasms/radiotherapy , Oropharyngeal Neoplasms/pathology , Organs at Risk/radiation effects , Prognosis , Radiometry/methods , Radiobiology
15.
Asian Pac J Cancer Prev ; 25(5): 1715-1723, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809644

ABSTRACT

AIM: To assess the precision of dose calculations for Volumetric Modulated Arc Therapy (VMAT) using megavoltage (MV) photon beams, we validated the accuracy of two algorithms: AUROS XB and Analytical Anisotropic Algorithm (AAA). This validation will encompass both flattening filter (FF) and flattening filter-free beam (FFF) modes, using AAPM Medical Physics Practice Guideline (MPPG 5b). MATERIALS AND METHODS: VMAT validation tests were generated for 6 MV FF and 6 MV FFF beams using the AAA and AXB algorithms in the Eclipse V.15.1 treatment planning system (TPS). Corresponding measurements were performed on a linear accelerator using a diode detector and a radiation field analyzer. Point dose (PD) and in-vivo measurements were conducted using an A1SL ion chamber and (TLD) from Thermofisher, respectively. The Rando Phantom was employed for end-to-end (E2E) tests. RESULTS: The mean difference (MD) between the TPS-calculated values and the measured values for the PDD and output factors were within 1% and 0.5%, respectively, for both 6 MV FF and 6 MV FFF. In the TG 119 sets, the MD for PD with both AAA and AXB was <0.9%. For the TG 244 sets, the minimum, maximum, and mean deviations in PD for both 6 MV FF and 6 MV FFF beams were 0.3%, 1.4% and 0.8% respectively. In the E2E test, using the Rando Phantom, the MD between the TLD dose and the TPS dose was within 0.08% for both 6 MV FF (p=1.0) and 6 MV FFF (0.018) beams. CONCLUSION: The accuracy of the TPS and its algorithms (AAA and AXB) has been successfully validated. The recommended tests included in the VMAT/IMRT validation section proved invaluable for verifying the PDD, output factors, and the feasibility of complex clinical cases. E2E tests were instrumental in validating the entire workflow from CT simulation to treatment delivery.


Subject(s)
Algorithms , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy, Intensity-Modulated/standards , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/standards , Particle Accelerators , Practice Guidelines as Topic/standards , Radiometry/methods , Neoplasms/radiotherapy , Health Physics
16.
Phys Med Biol ; 69(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38722574

ABSTRACT

Objective. The primary goal of this research is to demonstrate the feasibility of radiation-induced acoustic imaging (RAI) as a volumetric dosimetry tool for ultra-high dose rate FLASH electron radiotherapy (FLASH-RT) in real time. This technology aims to improve patient outcomes by accurate measurements ofin vivodose delivery to target tumor volumes.Approach. The study utilized the FLASH-capable eRT6 LINAC to deliver electron beams under various doses (1.2 Gy pulse-1to 4.95 Gy pulse-1) and instantaneous dose rates (1.55 × 105Gy s-1to 2.75 × 106Gy s-1), for imaging the beam in water and in a rabbit cadaver with RAI. A custom 256-element matrix ultrasound array was employed for real-time, volumetric (4D) imaging of individual pulses. This allowed for the exploration of dose linearity by varying the dose per pulse and analyzing the results through signal processing and image reconstruction in RAI.Main Results. By varying the dose per pulse through changes in source-to-surface distance, a direct correlation was established between the peak-to-peak amplitudes of pressure waves captured by the RAI system and the radiochromic film dose measurements. This correlation demonstrated dose rate linearity, including in the FLASH regime, without any saturation even at an instantaneous dose rate up to 2.75 × 106Gy s-1. Further, the use of the 2D matrix array enabled 4D tracking of FLASH electron beam dose distributions on animal tissue for the first time.Significance. This research successfully shows that 4Din vivodosimetry is feasible during FLASH-RT using a RAI system. It allows for precise spatial (∼mm) and temporal (25 frames s-1) monitoring of individual FLASH beamlets during delivery. This advancement is crucial for the clinical translation of FLASH-RT as enhancing the accuracy of dose delivery to the target volume the safety and efficacy of radiotherapeutic procedures will be improved.


Subject(s)
Electrons , Animals , Rabbits , Radiotherapy Dosage , Radiometry/methods , Acoustics , In Vivo Dosimetry/methods
17.
J Cancer Res Clin Oncol ; 150(5): 280, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802664

ABSTRACT

PROPOSE: To evaluate the advantage of the manual adaptive plans comparing to the scheduled plans, and explored clinical factors predicting patients suitable for adaptive strategy. METHODS AND MATERIALS: Eighty two patients with weekly online cone-beam computed tomography (CBCT) were enrolled. The re-CT simulation was performed after 15 fractions and a manual adaptive plan was developed if a significant deviation of the planning target volume (PTV) was found. To evaluate the dosimetric benefit, D98, homogeneity index (HI) and conformity index (CI) for the planning target volume (PTV), as well as D2cc of the bowel, bladder, sigmoid and rectum were compared between manual adaptive plans and scheduled ones. The clinical factors influencing target motion during radiotherapy were analyzed by chi-square test and logistic regression analysis. RESULTS: The CI and HI of the manual adaptive plans were significantly superior to the scheduled ones (P = 0.0002, 0.003, respectively), demonstrating a better dose coverage of the target volume. Compared to the scheduled plans, D98 of the manual adaptive plans increased by 3.3% (P = 0.0002), the average of D2cc to the rectum, bladder decreased 0.358 Gy (P = 0.000034) and 0.240 Gy (P = 0.03), respectively. In addition, the chi-square test demonstrated that age, primary tumor volume, and parametrial infiltration were the clinical factors influencing target motion during radiotherapy. Multivariate analysis further identified the large tumor volume (≥ 50cm3, OR = 3.254, P = 0.039) and parametrial infiltration (OR = 3.376, P = 0.018) as the independent risk factors. CONCLUSION: We found the most significant organ motion happened after 15 fractions during treatment. The manual adaptive plans improved the dose coverage and decreased the OAR doses. Patients with bulky mass or with parametrial infiltration were highly suggested to adaptive strategy during definitive radiotherapy due to the significant organ motion.


Subject(s)
Cone-Beam Computed Tomography , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Uterine Cervical Neoplasms , Humans , Female , Radiotherapy Planning, Computer-Assisted/methods , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/pathology , Middle Aged , Aged , Adult , Cone-Beam Computed Tomography/methods , Radiometry/methods , Organs at Risk/radiation effects , Aged, 80 and over
18.
Phys Med Biol ; 69(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38718813

ABSTRACT

Objective.This study aims to characterize radiological properties of selected additive manufacturing (AM) materials utilizing both material extrusion and vat photopolymerization technologies. Monochromatic synchrotron x-ray images and synchrotron treatment beam dosimetry were acquired at the hutch 3B and 2B of the Australian Synchrotron-Imaging and Medical Beamline.Approach.Eight energies from 30 keV up to 65 keV were used to acquire the attenuation coefficients of the AM materials. Comparison of theoretical, and experimental attenuation data of AM materials and standard solid water for MV linac was performed. Broad-beam dosimetry experiment through attenuated dose measurement and a Geant4 Monte Carlo simulation were done for the studied materials to investigate its attenuation properties specific for a 4 tesla wiggler field with varying synchrotron radiation beam qualities.Main results.Polylactic acid (PLA) plus matches attenuation coefficients of both soft tissue and brain tissue, while acrylonitrile butadiene styrene, Acrylonitrile styrene acrylate, and Draft resin have close equivalence to adipose tissue. Lastly, PLA, co-polyester plus, thermoplastic polyurethane, and White resins are promising substitute materials for breast tissue. For broad-beam experiment and simulation, many of the studied materials were able to simulate RMI457 Solid Water and bolus within ±10% for the three synchrotron beam qualities. These results are useful in fabricating phantoms for synchrotron and other related medical radiation applications such as orthovoltage treatments.Significance and conclusion.These 3D printing materials were studied as potential substitutes for selected tissues such as breast tissue, adipose tissue, soft-tissue, and brain tissue useful in fabricating 3D printed phantoms for synchrotron imaging, therapy, and orthovoltage applications. Fabricating customizable heterogeneous anthropomorphic phantoms (e.g. breast, head, thorax) and pre-clinical animal phantoms (e.g. rodents, canine) for synchrotron imaging and radiotherapy using AM can be done based on the results of this study.


Subject(s)
Synchrotrons , Australia , Monte Carlo Method , Radiotherapy/instrumentation , Radiotherapy/methods , Radiometry/instrumentation , Radiometry/methods , Humans
19.
Radiat Res ; 201(5): 440-448, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38714319

ABSTRACT

The development of effective uses of biodosimetry in large-scale events has been hampered by residual, i.e., "legacy" thinking based on strategies that scale up from biodosimetry in small accidents. Consequently, there remain vestiges of unrealistic assumptions about the likely magnitude of victims in "large" radiation events and incomplete analyses of the logistics for making biodosimetry measurements/assessments in the field for primary triage. Elements remain from an unrealistic focus on developing methods to use biodosimetry in the initial stage of triage for a million or more victims. Based on recent events and concomitant increased awareness of the potential for large-scale events as well as increased sophistication in planning and experience in the development of biodosimetry, a more realistic assessment of the most effective roles of biodosimetry in large-scale events is urgently needed. We argue this leads to a conclusion that the most effective utilization of biodosimetry in very large events would occur in a second stage of triage, after initially winnowing the population by identifying those most in need of acute medical attention, based on calculations of geographic sites where significant exposures could have occurred. Understanding the potential roles and limitations of biodosimetry in large-scale events involving significant radiation exposure should lead to development of the most effective and useful biodosimetric techniques for each stage of triage for acute radiation syndrome injuries, i.e., based on more realistic assumptions about the underlying event and the logistics for carrying out biodosimetry for large populations.


Subject(s)
Acute Radiation Syndrome , Radioactive Hazard Release , Triage , Humans , Acute Radiation Syndrome/etiology , Risk Assessment , Triage/methods , Radiometry/methods
20.
Biomed Phys Eng Express ; 10(3)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38652667

ABSTRACT

Utilising Machine Learning (ML) models to predict dosimetric parameters in pencil beam scanning proton therapy presents a promising and practical approach. The study developed Artificial Neural Network (ANN) models to predict proton beam spot size and relative positional errors using 9000 proton spot data. The irradiation log files as input variables and corresponding scintillation detector measurements as the label values. The ANN models were developed to predict six variables: spot size in thex-axis,y-axis, major axis, minor axis, and relative positional errors in thex-axis andy-axis. All ANN models used a Multi-layer perception (MLP) network using one input layer, three hidden layers, and one output layer. Model performance was validated using various statistical tools. The log file recorded spot size and relative positional errors, which were compared with scintillator-measured data. The Root Mean Squared Error (RMSE) values for the x-spot and y-spot sizes were 0.356 mm and 0.362 mm, respectively. Additionally, the maximum variation for the x-spot relative positional error was 0.910 mm, while for the y-spot, it was 1.610 mm. The ANN models exhibit lower prediction errors. Specifically, the RMSE values for spot size prediction in the x, y, major, and minor axes are 0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm, respectively. Additionally, the relative spot positional error prediction model for the x and y axes yielded maximum errors of 0.160 mm and 0.170 mm, respectively. The normality of models was validated using the residual histogram and Q-Q plot. The data over fit, and bias were tested using K (k = 5) fold cross-validation, and the maximum RMSE value of the K fold cross-validation among all the six ML models was less than 0.150 mm (R-Square 0.960). All the models showed excellent prediction accuracy. Accurately predicting beam spot size and positional errors enhances efficiency in routine dosimetric checks.


Subject(s)
Neural Networks, Computer , Proton Therapy , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Proton Therapy/methods , Radiometry/methods , Humans , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Machine Learning , Reproducibility of Results , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...