Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.513
Filter
1.
Radiat Oncol ; 19(1): 69, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822385

ABSTRACT

BACKGROUND: Multiple artificial intelligence (AI)-based autocontouring solutions have become available, each promising high accuracy and time savings compared with manual contouring. Before implementing AI-driven autocontouring into clinical practice, three commercially available CT-based solutions were evaluated. MATERIALS AND METHODS: The following solutions were evaluated in this work: MIM-ProtégéAI+ (MIM), Radformation-AutoContour (RAD), and Siemens-DirectORGANS (SIE). Sixteen organs were identified that could be contoured by all solutions. For each organ, ten patients that had manually generated contours approved by the treating physician (AP) were identified, totaling forty-seven different patients. CT scans in the supine position were acquired using a Siemens-SOMATOMgo 64-slice helical scanner and used to generate autocontours. Physician scoring of contour accuracy was performed by at least three physicians using a five-point Likert scale. Dice similarity coefficient (DSC), Hausdorff distance (HD) and mean distance to agreement (MDA) were calculated comparing AI contours to "ground truth" AP contours. RESULTS: The average physician score ranged from 1.00, indicating that all physicians reviewed the contour as clinically acceptable with no modifications necessary, to 3.70, indicating changes are required and that the time taken to modify the structures would likely take as long or longer than manually generating the contour. When averaged across all sixteen structures, the AP contours had a physician score of 2.02, MIM 2.07, RAD 1.96 and SIE 1.99. DSC ranged from 0.37 to 0.98, with 41/48 (85.4%) contours having an average DSC ≥ 0.7. Average HD ranged from 2.9 to 43.3 mm. Average MDA ranged from 0.6 to 26.1 mm. CONCLUSIONS: The results of our comparison demonstrate that each vendor's AI contouring solution exhibited capabilities similar to those of manual contouring. There were a small number of cases where unusual anatomy led to poor scores with one or more of the solutions. The consistency and comparable performance of all three vendors' solutions suggest that radiation oncology centers can confidently choose any of the evaluated solutions based on individual preferences, resource availability, and compatibility with their existing clinical workflows. Although AI-based contouring may result in high-quality contours for the majority of patients, a minority of patients require manual contouring and more in-depth physician review.


Subject(s)
Artificial Intelligence , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed , Humans , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk/radiation effects , Algorithms , Image Processing, Computer-Assisted/methods
2.
World J Surg Oncol ; 22(1): 147, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831328

ABSTRACT

BACKGROUND: Radio(chemo)therapy is often required in pelvic malignancies (cancer of the anus, rectum, cervix). Direct irradiation adversely affects ovarian and endometrial function, compromising the fertility of women. While ovarian transposition is an established method to move the ovaries away from the radiation field, surgical procedures to displace the uterus are investigational. This study demonstrates the surgical options for uterine displacement in relation to the radiation dose received.  METHODS: The uterine displacement techniques were carried out sequentially in a human female cadaver to demonstrate each procedure step by step and assess the uterine positions with dosimetric CT scans in a hybrid operating room. Two treatment plans (anal and rectal cancer) were simulated on each of the four dosimetric scans (1. anatomical position, 2. uterine suspension of the round ligaments to the abdominal wall 3. ventrofixation of the uterine fundus at the umbilical level, 4. uterine transposition). Treatments were planned on Eclipse® System (Varian Medical Systems®,USA) using Volumetric Modulated Arc Therapy. Data about maximum (Dmax) and mean (Dmean) radiation dose received and the volume receiving 14 Gy (V14Gy) were collected. RESULTS: All procedures were completed without technical complications. In the rectal cancer simulation with delivery of 50 Gy to the tumor, Dmax, Dmean and V14Gy to the uterus were respectively 52,8 Gy, 34,3 Gy and 30,5cc (1), 31,8 Gy, 20,2 Gy and 22.0cc (2), 24,4 Gy, 6,8 Gy and 5,5cc (3), 1,8 Gy, 0,6 Gy and 0,0cc (4). For anal cancer, delivering 64 Gy to the tumor respectively 46,7 Gy, 34,8 Gy and 31,3cc (1), 34,3 Gy, 20,0 Gy and 21,5cc (2), 21,8 Gy, 5,9 Gy and 2,6cc (3), 1,4 Gy, 0,7 Gy and 0,0cc (4). CONCLUSIONS: The feasibility of several uterine displacement procedures was safely demonstrated. Increasing distance to the radiation field requires more complex surgical interventions to minimize radiation exposure. Surgical strategy needs to be tailored to the multidisciplinary treatment plan, and uterine transposition is the most technically complex with the least dose received.


Subject(s)
Cadaver , Fertility Preservation , Pelvic Neoplasms , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Uterus , Humans , Female , Radiotherapy Planning, Computer-Assisted/methods , Fertility Preservation/methods , Uterus/radiation effects , Uterus/surgery , Uterus/pathology , Pelvic Neoplasms/radiotherapy , Pelvic Neoplasms/surgery , Pelvic Neoplasms/pathology , Radiotherapy, Intensity-Modulated/methods , Organ Sparing Treatments/methods , Organs at Risk/radiation effects , Prognosis , Radiometry/methods
3.
Sci Rep ; 14(1): 12589, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824238

ABSTRACT

In order to study how to use pulmonary functional imaging obtained through 4D-CT fusion for radiotherapy planning, and transform traditional dose volume parameters into functional dose volume parameters, a functional dose volume parameter model that may reduce level 2 and above radiation pneumonia was obtained. 41 pulmonary tumor patients who underwent 4D-CT in our department from 2020 to 2023 were included. MIM Software (MIM 7.0.7; MIM Software Inc., Cleveland, OH, USA) was used to register adjacent phase CT images in the 4D-CT series. The three-dimensional displacement vector of CT pixels was obtained when changing from one respiratory state to another respiratory state, and this three-dimensional vector was quantitatively analyzed. Thus, a color schematic diagram reflecting the degree of changes in lung CT pixels during the breathing process, namely the distribution of ventilation function strength, is obtained. Finally, this diagram is fused with the localization CT image. Select areas with Jacobi > 1.2 as high lung function areas and outline them as fLung. Import the patient's DVH image again, fuse the lung ventilation image with the localization CT image, and obtain the volume of fLung different doses (V60, V55, V50, V45, V40, V35, V30, V25, V20, V15, V10, V5). Analyze the functional dose volume parameters related to the risk of level 2 and above radiation pneumonia using R language and create a predictive model. By using stepwise regression and optimal subset method to screen for independent variables V35, V30, V25, V20, V15, and V10, the prediction formula was obtained as follows: Risk = 0.23656-0.13784 * V35 + 0.37445 * V30-0.38317 * V25 + 0.21341 * V20-0.10209 * V15 + 0.03815 * V10. These six independent variables were analyzed using a column chart, and a calibration curve was drawn using the calibrate function. It was found that the Bias corrected line and the Apparent line were very close to the Ideal line, The consistency between the predicted value and the actual value is very good. By using the ROC function to plot the ROC curve and calculating the area under the curve: 0.8475, 95% CI 0.7237-0.9713, it can also be determined that the accuracy of the model is very high. In addition, we also used Lasso method and random forest method to filter out independent variables with different results, but the calibration curve drawn by the calibration function confirmed poor prediction performance. The function dose volume parameters V35, V30, V25, V20, V15, and V10 obtained through 4D-CT are key factors affecting radiation pneumonia. Establishing a predictive model can provide more accurate lung restriction basis for clinical radiotherapy planning.


Subject(s)
Four-Dimensional Computed Tomography , Lung Neoplasms , Radiation Pneumonitis , Humans , Radiation Pneumonitis/diagnostic imaging , Four-Dimensional Computed Tomography/methods , Female , Lung Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging , Male , Middle Aged , Aged , Lung/diagnostic imaging , Lung/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Adult
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 773-779, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708512

ABSTRACT

OBJECTIVE: To investigate the dosimetric difference between manual and inverse optimization in 3-dimensional (3D) brachytherapy for gynecologic tumors. METHODS: This retrospective study was conducted among a total of 110 patients with gynecologic tumors undergoing intracavitary combined with interstitial brachytherapy or interstitial brachytherapy. Based on the original images, the brachytherapy plans were optimized for each patient using Gro, IPSA1, IPSA2 (with increased volumetric dose limits on the basis of IPSA1) and HIPO algorithms. The dose-volume histogram (DVH) parameters of the clinical target volume (CTV) including V200, V150, V100, D90, D98 and CI, and the dosimetric parameters D2cc, D1cc, and D0.1cc for the bladder, rectum, and sigmoid colon were compared among the 4 plans. RESULTS: Among the 4 plans, Gro optimization took the longest time, followed by HIPO, IPSA2 and IPSA1 optimization. The mean D90, D98, and V100 of HIPO plans were significantly higher than those of Gro and IPSA plans, and D90 and V100 of IPSA1, IPSA2 and HIPO plans were higher than those of Gro plans (P < 0.05), but the CI of the 4 plans were similar (P > 0.05). For the organs at risk (OARs), the HIPO plan had the lowest D2cc of the bladder and rectum; the bladder absorbed dose of Gro plans were significantly greater than those of IPSA1 and HIPO (P < 0.05). The D2cc and D1cc of the rectum in IPSA1, IPSA2 and HIPO plans were better than Gro (P < 0.05). The D2cc and D1cc of the sigmoid colon did not differ significantly among the 4 plans. CONCLUSION: Among the 4 algorithms, the HIPO algorithm can better improve dose coverage of the target and lower the radiation dose of the OARs, and is thus recommended for the initial plan optimization. Clinically, the combination of manual optimization can achieve more individualized dose distribution of the plan.


Subject(s)
Algorithms , Brachytherapy , Genital Neoplasms, Female , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Brachytherapy/methods , Female , Retrospective Studies , Genital Neoplasms, Female/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiometry/methods
5.
Phys Med ; 121: 103367, 2024 May.
Article in English | MEDLINE | ID: mdl-38701625

ABSTRACT

PURPOSE: Diffusing alpha-emitters radiation therapy (DaRT) is a brachytherapy technique using α-particles to treat solid tumours. The high linear energy transfer (LET) and short range of α-particles make them good candidates for the targeted treatment of cancer. Treatment planning of DaRT requires a good understanding of the dose from α-particles and the other particles released in the 224Ra decay chain. METHODS: The Geant4 Monte Carlo toolkit has been used to simulate a DaRT seed to better understand the dose contribution from all particles and simulate the DNA damage due to this treatment. RESULTS: Close to the seed α-particles deliver the majority of dose, however at radial distances greater than 4 mm, the contribution of ß-particles is greater. The RBE has been estimated as a function of number of double strand breaks (DSBs) and complex DSBs. A maximum seed spacing of 5.5 mm and 6.5 mm was found to deliver at least 20 Gy RBE weighted dose between the seeds for RBEDSB and RBEcDSB respectively. CONCLUSIONS: The DNA damage changes with radial distance from the seed and has been found to become less complex with distance, which is potentially easier for the cell to repair. Close to the seed α-particles contribute the majority of dose, however the contribution from other particles cannot be neglected and may influence the choice of seed spacing.


Subject(s)
Alpha Particles , DNA Damage , Monte Carlo Method , Alpha Particles/therapeutic use , Radiotherapy Dosage , Radiation Dosage , Relative Biological Effectiveness , Diffusion , Brachytherapy/methods , Humans , Linear Energy Transfer , Radiotherapy Planning, Computer-Assisted/methods , DNA Breaks, Double-Stranded/radiation effects
6.
Phys Med ; 121: 103364, 2024 May.
Article in English | MEDLINE | ID: mdl-38701626

ABSTRACT

PURPOSE: Test whether a well-grounded KBP model trained on moderately hypo-fractionated prostate treatments can be used to satisfactorily drive the optimization of SBRT prostate treatments. MATERIALS AND METHODS: A KBP model (SBRT-model) was developed, trained and validated using the first forty-seven clinically treated VMAT SBRT prostate plans (42.7 Gy/7fx or 36.25 Gy/5fx). The performance and robustness of this model were compared against a high-quality KBP-model (ST-model) that was already clinically adopted for hypo-fractionated (70 Gy/28fx and 60 Gy/20fx) prostate treatments. The two models were compared in terms of their predictions robustness, and the quality of their outcomes were evaluated against a set of reference clinical SBRT plans. Plan quality was assessed using DVH metrics, blinded clinical ranking, and a dedicated Plan Quality Metric algorithm. RESULTS: The plan libraries of the two models were found to share a high degree of anatomical similarity. The overall quality (APQM%) of the plans obtained both with the ST- and SBRT-models was compatible with that of the original clinical plans, namely (93.7 ± 4.1)% and (91.6 ± 3.9)% vs (92.8.9 ± 3.6)%. Plans obtained with the ST-model showed significantly higher target coverage (PTV V95%): (97.9 ± 0.8)% vs (97.1 ± 0.9)% (p < 0.05). Conversely, plans optimized following the SBRT-model showed a small but not-clinically relevant increase in OAR sparing. ST-model generally provided more reliable predictions than SBRT-model. Two radiation oncologists judged as equivalent the plans based on the KBP prediction, which was also judged better that reference clinical plans. CONCLUSION: A KBP model trained on moderately fractionated prostate treatment plans provided optimal SBRT prostate plans, with similar or larger plan quality than an embryonic SBRT-model based on a limited number of cases.


Subject(s)
Prostatic Neoplasms , Radiosurgery , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiosurgery/methods , Male , Prostatic Neoplasms/radiotherapy , Knowledge Bases , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage
7.
World J Surg Oncol ; 22(1): 125, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720338

ABSTRACT

BACKGROUND: To investigate the correlation between microinvasion and various features of hepatocellular carcinoma (HCC), and to clarify the microinvasion distance from visible HCC lesions to subclinical lesions, so as to provide clinical basis for the expandable boundary of clinical target volume (CTV) from gross tumor volume (GTV) in the radiotherapy of HCC. METHODS: HCC patients underwent hepatectomy of liver cancer in our hospital between July 2019 and November 2021 were enrolled. Data on various features and tumor microinvasion distance were collected. The distribution characteristics of microinvasion distance were analyzed to investigate its potential correlation with various features. Tumor size compared between radiographic and pathologic samples was analyzed to clarify the application of pathologic microinvasion to identify subclinical lesions of radiographic imaging. RESULTS: The average microinvasion distance was 0.6 mm, with 95% patients exhibiting microinvasion distance less than 3.0 mm, and the maximum microinvasion distance was 4.0 mm. A significant correlation was found between microinvasion and liver cirrhosis (P = 0.036), serum albumin level (P = 0.049). Multivariate logistic regression analysis revealed that HCC patients with cirrhosis had a significantly lower risk of microinvasion (OR = 0.09, 95%CI = 0.02 ~ 0.50, P = 0.006). Tumor size was overestimated by 1.6 mm (95%CI=-12.8 ~ 16.0 mm) on radiographic size compared to pathologic size, with a mean %Δsize of 2.96% (95%CI=-0.57%~6.50%). The %Δsize ranged from - 29.03% to 34.78%. CONCLUSIONS: CTV expanding by 5.4 mm from radiographic GTV could include all pathologic microinvasive lesions in the radiotherapy of HCC. Liver cirrhosis was correlated with microinvasion and were independent predictive factor of microinvasion in HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatectomy , Liver Neoplasms , Neoplasm Invasiveness , Tumor Burden , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/radiotherapy , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/pathology , Liver Neoplasms/radiotherapy , Liver Neoplasms/diagnostic imaging , Male , Female , Middle Aged , Prognosis , Hepatectomy/methods , Aged , Follow-Up Studies , Retrospective Studies , Adult , Radiotherapy Planning, Computer-Assisted/methods , Liver Cirrhosis/pathology
8.
Biomed Phys Eng Express ; 10(4)2024 May 10.
Article in English | MEDLINE | ID: mdl-38697044

ABSTRACT

Objective.The aim of this work was to develop a Phase I control chart framework for the recently proposed multivariate risk-adjusted Hotelling'sT2chart. Although this control chart alone can identify most patients receiving extreme organ-at-risk (OAR) dose, it is restricted by underlying distributional assumptions, making it sensitive to extreme observations in the sample, as is typically found in radiotherapy plan quality data such as dose-volume histogram (DVH) points. This can lead to slightly poor-quality plans that should have been identified as out-of-control (OC) to be signaled in-control (IC).Approach. We develop a robust iterative control chart framework to identify all OC patients with abnormally high OAR dose and improve them via re-optimization to achieve an IC sample prior to establishing the Phase I control chart, which can be used to monitor future treatment plans.Main Results. Eighty head-and-neck patients were used in this study. After the first iteration, P14, P67, and P68 were detected as OC for high brainstem dose, warranting re-optimization aimed to reduce brainstem dose without worsening other planning criteria. The DVH and control chart were updated after re-optimization. On the second iteration, P14, P67, and P68 were IC, but P40 was identified as OC. After re-optimizing P40's plan and updating the DVH and control chart, P40 was IC, but P14* (P14's re-optimized plan) and P62 were flagged as OC. P14* could not be re-optimized without worsening target coverage, so only P62 was re-optimized. Ultimately, a fully IC sample was achieved. Multiple iterations were needed to identify and improve all OC patients, and to establish a more robust control limit to monitor future treatment plans.Significance. The iterative procedure resulted in a fully IC sample of patients. With this sample, a more robust Phase I control chart that can monitor OAR doses of new plans was established.


Subject(s)
Organs at Risk , Quality Control , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Organs at Risk/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Head and Neck Neoplasms/radiotherapy , Algorithms
9.
Biomed Phys Eng Express ; 10(4)2024 May 14.
Article in English | MEDLINE | ID: mdl-38697028

ABSTRACT

Background and purpose. To investigate models developed using radiomic and dosiomic (multi-omics) features from planning and treatment imaging for late patient-reported dysphagia in head and neck radiotherapy.Materials and methods. Training (n = 64) and testing (n = 23) cohorts of head and neck cancer patients treated with curative intent chemo-radiotherapy with a follow-up time greater than 12 months were retrospectively examined. Patients completed the MD Anderson Dysphagia Inventory and a composite score ≤60 was interpreted as patient-reported dysphagia. A chart review collected baseline dysphagia and clinical factors. Multi-omic features were extracted from planning and last synthetic CT images using the pharyngeal constrictor muscle contours as a region of interest. Late patient-reported dysphagia models were developed using a random forest backbone, with feature selection and up-sampling methods to account for the imbalanced data. Models were developed and validated for multi-omic feature combinations for both timepoints.Results. A clinical and radiomic feature model developed using the planning CT achieved good performance (validation: sensitivity = 80 ± 27% / balanced accuracy = 71 ± 23%, testing: sensitivity = 80 ± 10% / balanced accuracy = 73 ± 11%). The synthetic CT models did not show improvement over the plan CT multi-omics models, with poor reliability of the radiomic features on these images. Dosiomic features extracted from the synthetic CT showed promise in predicting late patient-reported dysphagia.Conclusion. Multi-omics models can predict late patient-reported dysphagia in head and neck radiotherapy patients. Synthetic CT dosiomic features show promise in developing successful models to account for changes in delivered dose distribution. Multi-center or prospective studies are required prior to clinical implementation of these models.


Subject(s)
Deglutition Disorders , Head and Neck Neoplasms , Humans , Deglutition Disorders/etiology , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/complications , Male , Middle Aged , Female , Aged , Retrospective Studies , Tomography, X-Ray Computed/methods , Radiotherapy Planning, Computer-Assisted/methods , Adult , Reproducibility of Results , Radiotherapy Dosage , Patient Reported Outcome Measures , Multiomics
10.
Radiat Environ Biophys ; 63(2): 297-306, 2024 May.
Article in English | MEDLINE | ID: mdl-38722389

ABSTRACT

For locally advanced cervical cancer, the standard therapeutic approach involves concomitant chemoradiation therapy, supplemented by a brachytherapy boost. Moreover, an external beam radiotherapy (RT) boost should be considered for treating gross lymph node (LN) volumes. Two boost approaches exist with Volumetric Intensity Modulated Arc Therapy (VMAT): Sequential (SEQ) and Simultaneous Integrated Boost (SIB). This study undertakes a comprehensive dosimetric and radiobiological comparison between these two boost strategies. The study encompassed ten patients who underwent RT for cervical cancer with node-positive disease. Two sets of treatment plans were generated for each patient: SIB-VMAT and SEQ-VMAT. Dosimetric as well as radiobiological parameters including tumour control probability (TCP) and normal tissue complication probability (NTCP) were compared. Both techniques were analyzed for two different levels of LN involvement - only pelvic LNs and pelvic with para-aortic LNs. Statistical analysis was performed using SPSS software version 25.0. SIB-VMAT exhibited superior target coverage, yielding improved doses to the planning target volume (PTV) and gross tumour volume (GTV). Notably, SIB-VMAT plans displayed markedly superior dose conformity. While SEQ-VMAT displayed favorable organ sparing for femoral heads, SIB-VMAT appeared as the more efficient approach for mitigating bladder and bowel doses. TCP was significantly higher with SIB-VMAT, suggesting a higher likelihood of successful tumour control. Conversely, no statistically significant difference in NTCP was observed between the two techniques. This study's findings underscore the advantages of SIB-VMAT over SEQ-VMAT in terms of improved target coverage, dose conformity, and tumour control probability. In particular, SIB-VMAT demonstrated potential benefits for cases involving para-aortic nodes. It is concluded that SIB-VMAT should be the preferred approach in all cases of locally advanced cervical cancer.


Subject(s)
Radiotherapy Dosage , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/pathology , Female , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiometry , Middle Aged , Organs at Risk/radiation effects , Lymphatic Metastasis/radiotherapy
11.
Sci Rep ; 14(1): 11120, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750131

ABSTRACT

Very High Energy Electron (VHEE) beams are a promising alternative to conventional radiotherapy due to their highly penetrating nature and their applicability as a modality for FLASH (ultra-high dose-rate) radiotherapy. The dose distributions due to VHEE need to be optimised; one option is through the use of quadrupole magnets to focus the beam, reducing the dose to healthy tissue and allowing for targeted dose delivery at conventional or FLASH dose-rates. This paper presents an in depth exploration of the focusing achievable at the current CLEAR (CERN Linear Electron Accelerator for Research) facility, for beam energies >200 MeV. A shorter, more optimal quadrupole setup was also investigated using the TOPAS code in Monte Carlo simulations, with dimensions and beam parameters more appropriate to a clinical situation. This work provides insight into how a focused VHEE radiotherapy beam delivery system might be achieved.


Subject(s)
Electrons , Monte Carlo Method , Radiotherapy Dosage , Humans , Particle Accelerators/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy/methods , Radiotherapy, High-Energy/methods , Radiotherapy, High-Energy/instrumentation
12.
Gulf J Oncolog ; 1(45): 7-14, 2024 May.
Article in English | MEDLINE | ID: mdl-38774928

ABSTRACT

INTRODUCTION: Technical innovations in radiation therapy treatment planning and delivery over the last two decades have changed the practice of radiation therapy dramatically. The benefit of improved dose homogeneity and better sparing of critical structures in helical tomotherapy compared with conventional linac-based IMRT has been reported. This study was conducted to compare acute toxicities (skin, mucous membrane, salivary gland and hematological) during treatment and overall treatment time in Head and Neck Cancer patients treated with IMRT and Helical Tomotherapy and to assess the quality of life of patients during treatment between two groups. MATERIALS AND METHODS: The study involved thirty patients with histologically proven Squamous cell carcinomas of Head and Neck. They were treated with concurrent chemoradiotherapy, to a dose of 60-70 Gray in 30-35 fractions. The study consists of 2 arms which are standard IMRT and Tomotherapy arm. Fifteen consecutive patients were treated under IMRT and 15 patients were treated under Helical tomotherapy, along with concurrent chemotherapy. After completion of planning, plans were evaluated and dose to the targets, organs at risk were tabulated. Patients were assessed weekly for acute toxicities (skin reactions, mucositis, xerostomia, haematological toxicities) during the course of the treatment as per RTOG criteria. Quality of life of patients were assessed using FACT/ NCCN HNSI questionnaire in local language at day 1, day 21 and at completion of radiotherapy. RESULTS: Grade 2-3 skin reactions, mucositis, anemia, leukopenia and thrombocytopenia were predominant in both arms. Treatment time from start of radiotherapy to completion of radiotherapy varied from 39 days to 68 days. Majority of patients completed radiotherapy within 50-56 days. Mean quality of life score did not show much difference between IMRT and tomotherapy arms. CONCLUSION: The study did not show any statistically significant difference in overall treatment time, acute toxicities- skin reactions, xerostomia, mucositis& hematological toxicities and quality of life of patients during radiotherapy between IMRT and Helical Tomotherapy. Dosimetric benefits of Tomotherapy over IMRT do not translate into clinical benefit in terms of reduced acute toxicities, lesser overall treatment time and better quality of life of patients. KEY WORDS: Head and Neck Carcinoma, IMRT, Tomotherapy, RTOG, toxicity, FACT/ NCCN HNSI, quality of life.


Subject(s)
Head and Neck Neoplasms , Quality of Life , Radiotherapy, Intensity-Modulated , Humans , Head and Neck Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Radiotherapy, Intensity-Modulated/adverse effects , Male , Female , Middle Aged , Aged , Adult , Carcinoma, Squamous Cell/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiation Injuries/etiology
13.
Gulf J Oncolog ; 1(45): 94-99, 2024 May.
Article in English | MEDLINE | ID: mdl-38774938

ABSTRACT

PURPOSE: We report the use of online adaptive radiotherapy (OART) aiming to improve dosimetric parameters in the prostate cancer patient who had lower urinary tract symptoms that caused him not to adhere to the standard bladder filling protocol. METHODS AND MATERIALS: The reference treatment plan for adaptive radiotherapy plan was generated for the pelvis and the solitary bony lesion using the Ethos treatment planning system. For each treatment session, high-quality iterative reconstructed cone beam CT (CBCT) images were acquired, and the system automatically generated an optimal adaptive plan after verification of contours. Image-guided RT (IGRT) plans were also created using the reference plan recalculated on the CBCT scan and were compared with adaptive plans. RESULTS: The reference bladder volume in the planning CT scan was 173 cc, and the mean bladder volume difference over the course was 25.4% ± 16.6%. The ART offered superior target coverage for PTV 70 Gy over online IGRT (V95: 90.5 ± 3.2 % Vs 97.3 ± 0.4%; p=0.000) and the bladder was also better spared from the high dose (V65 Gy: 17.9 ± 9.1% vs 14.8 ± 3.6%; p=0.03). However, the mean rectum V65 doses were very similar in both plans. CONCLUSION: Managing the inconsistent bladder volume was feasible in the prostate cancer patient using the CBCT-guided OART and our analysis confirmed that adaptive plans offered better target coverage while sparing the bladder from high radiation doses in comparison to online IGRT plans. KEY WORDS: radiotherapy, CBCT, online adaptive radiotherapy, image-guided RT.


Subject(s)
Prostatic Neoplasms , Radiotherapy Planning, Computer-Assisted , Urinary Bladder , Humans , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted/methods , Urinary Bladder/pathology , Radiotherapy, Image-Guided/methods , Cone-Beam Computed Tomography/methods , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Aged
14.
Med Eng Phys ; 128: 104177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789214

ABSTRACT

Prostate cancer patients with an enlarged prostate and/or excessive pubic arch interference (PAI) are generally considered non-eligible for high-dose-rate (HDR) brachytherapy (BT). Steerable needles have been developed to make these patients eligible again. This study aims to validate the dosimetric impact and performance of steerable needles within the conventional clinical setting. HDR BT treatment plans were generated, needle implantations were performed in a prostate phantom, with prostate volume > 55 cm3 and excessive PAI of 10 mm, and pre- and post-implant dosimetry were compared considering the dosimetric constraints: prostate V100 > 95 % (13.50 Gy), urethra D0.1cm3 < 115 % (15.53 Gy) and rectum D1cm3 < 75 % (10.13 Gy). The inclusion of steerable needles resulted in a notable enhancement of the dose distribution and prostate V100 compared to treatment plans exclusively employing rigid needles to address PAI. Furthermore, the steerable needle plan demonstrated better agreement between pre- and post-implant dosimetry (prostate V100: 96.24 % vs. 93.74 %) compared to the rigid needle plans (79.13 % vs. 72.86 % and 87.70 % vs. 81.76 %), with no major changes in the clinical workflow and no changes in the clinical set-up. The steerable needle approach allows for more flexibility in needle positioning, ensuring a highly conformal dose distribution, and hence, HDR BT is a feasible treatment option again for prostate cancer patients with an enlarged prostate and/or excessive PAI.


Subject(s)
Brachytherapy , Needles , Prostatic Neoplasms , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Male , Brachytherapy/instrumentation , Humans , Prostatic Neoplasms/radiotherapy , Phantoms, Imaging , Prostate/radiation effects
15.
J Radiat Res ; 65(3): 393-401, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38739893

ABSTRACT

Hyaluronate gel injection (HGI) in the rectovaginal septum and vesicovaginal septum is effective in the setting of high-dose-rate image-guided adaptive brachytherapy (IGABT) for cervical cancer. We aimed to retrospectively investigate optimal conditions for HGI to achieve optimal dose distribution with a minimum number of HGI. We classified 50 IGABT plans of 13 patients with cervical cancer who received IGABT both with and without HGI in the rectovaginal septum and vesicovaginal septum into the following two groups: plan with (number of plans = 32) and plan without (number of plans = 18) HGI. The irradiation dose parameters of high-risk clinical target volume (CTVHR) and organs at risk per fraction were compared between these groups. We also developed the adjusted dose score (ADS), reflecting the overall irradiation dose status for four organs at risk and CTVHR in one IGABT plan and investigated its utility in determining the application of HGI. HGI reduced the maximum dose to the most exposed 2.0 cm3 (D2.0 cm3) of the bladder while increasing the minimum dose covering 90% of CTVHR and the percentage of CTVHR receiving 100% of the prescription dose in one IGABT plan without causing any associated complications. An ADS of ≥2.60 was the optimum cut-off value to decide whether to perform HGI. In conclusion, HGI is a useful procedure for improving target dose distribution while reducing D2.0 cm3 in the bladder in a single IGABT plan. The ADS can serve as a useful indicator for the implementation of HGI.


Subject(s)
Brachytherapy , Gels , Hyaluronic Acid , Radiotherapy Dosage , Uterine Cervical Neoplasms , Humans , Female , Hyaluronic Acid/administration & dosage , Brachytherapy/methods , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/diagnostic imaging , Middle Aged , Aged , Radiotherapy, Image-Guided/methods , Injections , Adult , Organs at Risk/radiation effects , Dose-Response Relationship, Radiation , Radiotherapy Planning, Computer-Assisted/methods , Time Factors , Retrospective Studies
16.
Cancer Med ; 13(10): e7322, 2024 May.
Article in English | MEDLINE | ID: mdl-38785309

ABSTRACT

BACKGROUND AND PURPOSE: Respiratory movement has an important impact on the radiotherapy for lung tumor. Respiratory gating technology is helpful to improve the accuracy of target delineation. This study investigated the value of prospective and retrospective respiratory gating simulations in target delineation and radiotherapy plan design for solitary pulmonary tumors (SPTs) in radiotherapy. METHODS: The enrolled patients underwent CT simulation with three-dimensional (3D) CT non gating, prospective respiratory gating, and retrospective respiratory gating simulation. The target volumes were delineated on three sets of CT images, and radiotherapy plans were prepared accordingly. Tumor displacements and movement information obtained using the two respiratory gating approaches, as well as the target volumes and dosimetry parameters in the radiotherapy plan were compared. RESULTS: No significant difference was observed in tumor displacement measured using the two gating methods (p > 0.05). However, the internal gross tumor volumes (IGTVs), internal target volumes (ITVs), and planning target volumes (PTVs) based on the retrospective respiratory gating simulation were larger than those obtained using prospective gating (group A: pIGTV = 0.041, pITV = 0.003, pPTV = 0.008; group B: pIGTV = 0.025, pITV = 0.039, pPTV = 0.004). The two-gating PTVs were both smaller than those delineated on 3D non gating images (p < 0.001). V5Gy, V10Gy, V20Gy, V30Gy, and mean lung dose in the two gated radiotherapy plans were lower than those in the 3D non gating plan (p < 0.001); however, no significant difference was observed between the two gating plans (p > 0.05). CONCLUSIONS: The application of respiratory gating could reduce the target volume and the radiation dose that the normal lung tissue received. Compared to prospective respiratory gating, the retrospective gating provides more information about tumor movement in PTV.


Subject(s)
Lung Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Male , Female , Lung Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Middle Aged , Aged , Tomography, X-Ray Computed/methods , Respiratory-Gated Imaging Techniques/methods , Radiotherapy Dosage , Tumor Burden , Adult , Retrospective Studies , Solitary Pulmonary Nodule/radiotherapy , Solitary Pulmonary Nodule/diagnostic imaging , Prospective Studies , Respiration
17.
Radiol Phys Technol ; 17(2): 504-517, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691309

ABSTRACT

A few reports have discussed the influence of inter-fractional position error and intra-fractional motion on dose distribution, particularly regarding a spread-out Bragg peak. We investigated inter-fractional and intra-fractional prostate position error by monitoring fiducial marker positions. In 2020, data from 15 patients with prostate cancer who received carbon-ion beam radiotherapy (CIRT) with gold markers were investigated. We checked marker positions before and during irradiation to calculate the inter-fractional positioning and intra-fractional movement and evaluated the CIRT dose distribution by adjusting the planning beam isocenter and clinical target volume (CTV) position. We compared the CTV dose coverages (CTV receiving 95% [V95%] or 98% [V98%] of the prescribed dose) between skeletal and fiducial matching irradiation on the treatment planning system. For inter-fractional error, the mean distance between the marker position in the planning images and that in a patient starting irradiation with skeletal matching was 1.49 ± 1.11 mm (95th percentile = 1.85 mm). The 95th percentile (maximum) values of the intra-fractional movement were 0.79 mm (2.31 mm), 1.17 mm (2.48 mm), 1.88 mm (4.01 mm), 1.23 mm (3.00 mm), and 2.09 mm (8.46 mm) along the lateral, inferior, superior, dorsal, and ventral axes, respectively. The mean V95% and V98% were 98.2% and 96.2% for the skeletal matching plan and 99.5% and 96.8% for the fiducial matching plan, respectively. Fiducial matching irradiation improved the CTV dose coverage compared with skeletal matching irradiation for CIRT for prostate cancer.


Subject(s)
Fiducial Markers , Heavy Ion Radiotherapy , Movement , Patient Positioning , Prostatic Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiometry , Radiotherapy Dosage , Prostate/radiation effects , Prostate/diagnostic imaging , Aged , Motion , Dose Fractionation, Radiation
18.
Technol Cancer Res Treat ; 23: 15330338241255283, 2024.
Article in English | MEDLINE | ID: mdl-38752234

ABSTRACT

Background: The objective of this investigation is to evaluate the superiority of dose-volume parameters relying on magnetic resonance imaging (MRI)-defined active bone marrow (ABM) over those based on total bone marrow (TBM) contoured via CT in the prediction of hematologic toxicity (HT) occurrence among patients with pelvic malignancies undergoing radiotherapy. Methods: The clinical data of 116 patients with pelvic malignancies treated with pelvic radiotherapy were analyzed retrospectively. The ABM areas on T1-weighted MRI were contoured. The statistical significance between TBM and ABM dose-volume measures was assessed through the utilization of either Student's t-test or Wilcoxon signed rank test. Logistic and linear regression models were employed to analyze the correlation between dose-volume parameters (V5-V50) and HT occurrence in pelvic ABM and TBM. Receiver operating characteristic (ROC) curves were used to compare predictors of HT2+. Results: There were significant differences in dosimetric parameters between ABM and TBM. Logistic regression analysis showed that ABM V5, ABM V10, ABM V15, ABM V20, and TBM V5 were significantly associated with the occurrence of HT2+ in pelvic malignancies. Linear regression analysis showed that ABM V5, ABM V10, and ABM V15 were significantly associated with white blood cell (WBC), absolute neutrophil count (ANC), hemoglobin (Hb), and lymphocyte (Lym) nadir. ABM V5, ABM V10, ABM V15, and ABM V30 were predictive of HT2+. Conclusions: More accurate prediction of HT in patients receiving pelvic radiotherapy may be achieved by relying on dose-volume parameters of MRI-based ABM. Further prospective studies are needed to confirm this.


Subject(s)
Bone Marrow , Magnetic Resonance Imaging , Pelvic Neoplasms , Radiotherapy Dosage , Humans , Female , Bone Marrow/radiation effects , Bone Marrow/pathology , Bone Marrow/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Middle Aged , Pelvic Neoplasms/radiotherapy , Pelvic Neoplasms/diagnostic imaging , Aged , Adult , Retrospective Studies , Radiotherapy Planning, Computer-Assisted , Radiation Injuries/etiology , Radiation Injuries/pathology , Radiation Injuries/diagnosis , ROC Curve , Aged, 80 and over , Hematologic Diseases/etiology , Hematologic Diseases/diagnostic imaging
19.
Technol Cancer Res Treat ; 23: 15330338241256594, 2024.
Article in English | MEDLINE | ID: mdl-38808514

ABSTRACT

Purpose: Intensity-modulated radiotherapy (IMRT) is currently the most important treatment method for nasopharyngeal carcinoma (NPC). This study aimed to enhance prediction accuracy by incorporating dose information into a deep convolutional neural network (CNN) using a multichannel input method. Methods: A target conformal plan (TCP) was created based on the maximum planning target volume (PTV). Input data included TCP dose distribution, images, target structures, and organ-at-risk (OAR) information. The role of target conformal plan dose (TCPD) was assessed by comparing the TCPD-CNN (with dose information) and NonTCPD-CNN models (without dose information) using statistical analyses with the ranked Wilcoxon test (P < .05 considered significant). Results: The TCPD-CNN model showed no statistical differences in predicted target indices, except for PTV60, where differences in the D98% indicator were < 0.5%. For OARs, there were no significant differences in predicted results, except for some small-volume or closely located OARs. On comparing TCPD-CNN and NonTCPD-CNN models, TCPD-CNN's dose-volume histograms closely resembled clinical plans with higher similarity index. Mean dose differences for target structures (predicted TCPD-CNN and NonTCPD-CNN results) were within 3% of the maximum prescription dose for both models. TCPD-CNN and NonTCPD-CNN outcomes were 67.9% and 54.2%, respectively. 3D gamma pass rates of the target structures and the entire body were higher in TCPD-CNN than in the NonTCPD-CNN models (P < .05). Additional evaluation on previously unseen volumetric modulated arc therapy plans revealed that average 3D gamma pass rates of the target structures were larger than 90%. Conclusions: This study presents a novel framework for dose distribution prediction using deep learning and multichannel input, specifically incorporating TCPD information, enhancing prediction accuracy for IMRT in NPC treatment.


Subject(s)
Deep Learning , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Nasopharyngeal Carcinoma/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Nasopharyngeal Neoplasms/radiotherapy , Organs at Risk/radiation effects , Radiometry/methods , Neural Networks, Computer
20.
Phys Med Biol ; 69(12)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38729194

ABSTRACT

Objective. Propose a highly automated treatment plan re-optimization strategy suitable for online adaptive proton therapy. The strategy includes a rapid re-optimization method that generates quality replans and a novel solution that efficiently addresses the planning constraint infeasibility issue that can significantly prolong the re-optimization process.Approach. We propose a systematic reference point method (RPM) model that minimizes the l-infinity norm from the initial treatment plan in the daily objective space for online re-optimization. This model minimizes the largest objective value deviation among the objectives of the daily replan from their reference values, leading to a daily replan similar to the initial plan. Whether a set of planning constraints is feasible with respect to the daily anatomy cannot be known before solving the corresponding optimization problem. The conventional trial-and-error-based relaxation process can cost a significant amount of time. To that end, we propose an optimization problem that first estimates the magnitude of daily violation of each planning constraint. Guided by the violation magnitude and clinical importance of the constraints, the constraints are then iteratively converted into objectives based on their priority until the infeasibility issue is solved.Main results.The proposed RPM-based strategy generated replans similar to the offline manual replans within the online time requirement for six head and neck and four breast patients. The average targetD95and relevant organ at risk sparing parameter differences between the RPM replans and clinical offline replans were -0.23, -1.62 Gy for head and neck cases and 0.29, -0.39 Gy for breast cases. The proposed constraint relaxation solution made the RPM problem feasible after one round of relaxation for all four patients who encountered the infeasibility issue.Significance. We proposed a novel RPM-based re-optimization strategy and demonstrated its effectiveness on complex cases, regardless of whether constraint infeasibility is encountered.


Subject(s)
Proton Therapy , Radiotherapy Planning, Computer-Assisted , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Head and Neck Neoplasms/radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...