Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.588
Filter
1.
J Oleo Sci ; 73(5): 751-760, 2024.
Article in English | MEDLINE | ID: mdl-38692897

ABSTRACT

A double-blind, placebo-controlled, crossover trial was performed to analyze the effects of a small amount of lysolecithin and canola oil on blood glucose levels after consuming japonica rice. Overall, 17 Japanese adult men were assigned to consume 150 g of normally cooked japonica rice (placebo group) and 150 g of japonica rice cooked with 18 mg of lysolecithin and 1.8 g of canola oil (treatment group); these lipids were added as emulsified formulation (EMF) for stability and uniformity. Subsequently, blood samples were collected before and 30, 45, 60, 90, and 120 min after consuming test foods. There was no significant difference in blood glucose, insulin, and triglyceride levels between the groups. However, a stratified analysis of 11 subjects with body mass index (BMI) ≥ 22 revealed that blood glucose levels were significantly lower after 30 min in the treatment group than in the placebo group (p = 0.041). Through in vitro digestibility test, the rice sample of the treatment group was observed to release significantly less glucose within 20 min than that in the placebo group rice. These results suggest that the combination of a small amount of lysolecithin and canola oil modulated the increase in postprandial blood glucose levels induced by the intake of cooked japonica rice in adult men with BMI ≥ 22. This clinical trial was registered with the University Hospital Medical Information Network (UMIN) Center, (UMIN000045744; registered on 15/10/2021).


Subject(s)
Blood Glucose , Cross-Over Studies , Oryza , Postprandial Period , Rapeseed Oil , Humans , Male , Rapeseed Oil/administration & dosage , Oryza/chemistry , Double-Blind Method , Blood Glucose/analysis , Adult , Triglycerides/blood , Middle Aged , Body Mass Index , Insulin/blood , Glycemic Index , Time Factors , East Asian People
2.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731587

ABSTRACT

We aimed to obtain the optimal formula for human milk fat substitute (HMFS) through a combination of software and an evaluation model and further verify its practicability through an animal experiment. The results showed that a total of 33 fatty acid (FA) and 63 triglyceride (TAG) molecular species were detected in vegetable oils. Palmitic acid, oleic acid, linoleic acid, 18:1/16:0/18:1, 18:2/16:0/18:2, 18:1/18:1/18:1 and 18:1/18:2/18:1, were the main molecular species among the FAs and TAGs in the vegetable oils. Based on the HMFS evaluation model, the optimal mixed vegetable oil formula was blended with 21.3% palm oil, 2.8% linseed oil, 2.6% soybean oil, 29.9% rapeseed oil and 43.4% maize oil, with the highest score of 83.146. Moreover, there was no difference in the weight, blood routine indices or calcium and magnesium concentrations in the feces of the mice between the homemade mixed vegetable oil (HMVO) group and the commercial mixed vegetable oil (CMVO) group, while nervonic acid (C24:1) and octanoic acid (C8:0) were absorbed easily in the HMVO group. Therefore, these results demonstrate that the mixing of the different vegetable oils was feasible via a combination of computer software and an evaluation model and provided a new way to produce HMFS.


Subject(s)
Fat Substitutes , Fatty Acids , Milk, Human , Plant Oils , Software , Triglycerides , Humans , Animals , Plant Oils/chemistry , Fatty Acids/chemistry , Milk, Human/chemistry , Mice , Triglycerides/chemistry , Fat Substitutes/chemistry , Palm Oil/chemistry , Soybean Oil/chemistry , Linseed Oil/chemistry , Rapeseed Oil/chemistry , Corn Oil/chemistry , Caprylates/chemistry , Palmitic Acid/chemistry , Oleic Acid/chemistry
3.
An Acad Bras Cienc ; 96(1): e20230859, 2024.
Article in English | MEDLINE | ID: mdl-38597501

ABSTRACT

This study aims to prepare oil-modified alkyd resins using a linseed oil/canola oil (LO/CO) blend and waste PET depolymerization product, suitable for environmentally friendly coating applications. Waste PET flakes obtained from grinding post-consumer water bottles were depolymerized by the aminoglycolysis reaction at high pressure. Raw depolymerization product (DP) was used in the synthesis of four components, 50% oil alkyd resins by monoglyceride method. DP has partly replaced the dibasic acid component in the PET-based alkyd formulations. Besides PET-based alkyds, reference alkyds without DP were also synthesized for comparison. Then, the surface coating properties and thermal behaviors of alkyd films were determined. The effect of DP usage and the changing ratios of LO/CO blend on coating properties and thermal behaviors of alkyd films were investigated. In addition, the optimum LO/CO blend ratio which is compatible with alkyd formulation was attempted to be determined. At the end of this study, glossy, soft/medium-hard films were obtained with excellent adhesion, impact strength, and chemical resistance. Thermal resistance and final thermal oxidative degradation temperature increased with adding DP to the alkyd formulation. Using LO/CO blend in the formulations affected oxidation rate and ratio, hence, drying time/degree and oxidative stability of alkyd films.


Subject(s)
Linseed Oil , Resins, Plant , Rapeseed Oil , Temperature , Surface Properties
4.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612389

ABSTRACT

Alkaline earth metal oxide (MgO, CaO, SrO) catalysts supported on BEA zeolite were prepared by a wet impregnation method and tested in the transesterification reaction of rapeseed oil with methanol towards the formation of biodiesel (FAMEs-fatty acid methyl esters). To assess the influence of the SiO2/Al2O3 ratio on the catalytic activity in the tested reaction, a BEA zeolite carrier material with different Si/Al ratios was used. The prepared catalysts were tested in the transesterification reaction at temperatures of 180 °C and 220 °C using a molar ratio of methanol/oil reagents of 9:1. The transesterification process was carried out for 2 h with the catalyst mass of 0.5 g. The oil conversion value and efficiency towards FAME formation were determined using the HPLC technique. The physicochemical properties of the catalysts were determined using the following research techniques: CO2-TPD, XRD, BET, FTIR, and SEM-EDS. The results of the catalytic activity showed that higher activity in the tested process was confirmed for the catalysts supported on the BEA zeolite characterized by the highest silica/alumina ratio for the reaction carried out at a temperature of 220 °C. The most active zeolite catalyst was the 10% CaO/BEA system (Si/Al = 300), which showed the highest triglyceride (TG) conversion of 90.5% and the second highest FAME yield of 94.6% in the transesterification reaction carried out at 220 °C. The high activity of this system is associated with its alkalinity, high value of the specific surface area, the size of the active phase crystallites, and its characteristic sorption properties in relation to methanol.


Subject(s)
Biofuels , Zeolites , Magnesium Oxide , Methanol , Rapeseed Oil , Silicon Dioxide , Fatty Acids , Oxides
5.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38646666

ABSTRACT

Asparagopsis taxiformis (Asparagopsis) has been shown to be highly efficacious at inhibiting the production of methane (CH4) in ruminants. To date, Asparagopsis has been primarily produced as a dietary supplement by freeze-drying to retain the volatile bioactive compound bromoform (CHBr3) in the product. Steeping of Asparagopsis bioactive compounds into a vegetable oil carrier (Asp-Oil) is an alternative method of stabilizing Asparagopsis as a ruminant feed additive. A dose-response experimental design used 3 Asp-Oil-canola oil blends, low, medium, and high Asp-Oil which provided 17, 34, and 51 mg Asparagopsis derived CHBr3/kg dry matter intake (DMI), respectively (in addition to a zero CHBr3 canola oil control), in a tempered-barley based feedlot finisher diet, fed for 59 d to 20 Angus heifers (five replicates per treatment). On four occasions, live weight was measured and CH4 emissions were quantified in respiration chambers, and blood, rumen fluid, and fecal samples were collected. At the end of the experiment, all animals were slaughtered, with carcasses graded, and samples of meat and edible offal collected for testing of consumer sensory qualities and residues of CHBr3, bromide, and iodide. All Asp-Oil treatments reduced CH4 yield (g CH4/kg DMI, P = 0.008) from control levels, with the low, medium, and high Asp-Oil achieving 64%, 98%, and 99% reduction, respectively. Dissolved hydrogen increased linearly with increasing Asp-Oil inclusion, by more than 17-fold in the high Asp-Oil group (P = 0.017). There was no effect of Asp-Oil treatment on rumen temperature, pH, reduction potential, volatile fatty acid and ammonia production, rumen pathology, and histopathology (P > 0.10). There were no differences in animal production and carcass parameters (P > 0.10). There was no detectable CHBr3 in feces or any carcass samples (P > 0.10), and iodide and bromide residues in kidneys were at levels unlikely to lead to consumers exceeding recommended maximum intakes. Overall, Asp-Oil was found to be safe for animals and consumers of meat, and effective at reducing CH4 emissions and yield by up to 99% within the range of inclusion levels tested.


Red seaweed, Asparagopsis taxiformis (Asparagopsis), has been shown to be highly effective at inhibiting the production of methane (CH4) in ruminants. An alternative to feeding whole, freeze-dried Asparagopsis is steeping the biomass in vegetable oil to stabilize the bioactive compounds (Asp-Oil) and feeding Asp-Oil to ruminants as a component of their dietary intake. This experiment measured the CH4 reduction potential and safety of Asp-Oil in a trial with 20 Angus heifers, fed iso-fat feedlot diets containing one of the three levels of Asp-Oil, or a control oil. Compared to the control, bromoform inclusion levels of 17, 34, and 51 mg/kg of dry matter (DM; low, medium, high) reduced CH4 yield (g CH4/kg DM intake) by 64%, 98%, and 99%, respectively. There were no effects on animal production or carcass characteristics. There were no impacts on animal health, welfare, or rumen function. Carcasses were safe for human consumption, and there was no bromoform detected in any carcass samples. Overall, Asp-Oil was found to effectively reduce CH4 emissions and is safe for animals and consumers of meat and edible offal.


Subject(s)
Animal Feed , Diet , Methane , Rapeseed Oil , Animals , Cattle , Animal Feed/analysis , Methane/metabolism , Diet/veterinary , Rapeseed Oil/chemistry , Rapeseed Oil/pharmacology , Female , Dietary Supplements/analysis , Rumen/metabolism , Rumen/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry
6.
Fish Shellfish Immunol ; 149: 109549, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599365

ABSTRACT

The study was designed to investigate the effects of replacing fish oil by algal oil and rapeseed oil on histomorphology indices of the intestine, skin and gill, mucosal barrier status and immune-related genes of mucin and antimicrobial peptide (AMP) genes in Atlantic salmon (Salmo salar). For these purposes, Atlantic salmon smolts were fed three different diets. The first was a control diet containing fish oil but no Schizochytrium oil. In the second diet, almost 50 % of the fish oil was replaced with algal oil, and in the third diet, fish oil was replaced entirely with algal oil. The algal oil contained mostly docosahexaenoic acid (DHA) and some eicosapentaenoic acid (EPA). The study lasted for 49 days in freshwater (FW), after which some fish from each diet group were transferred to seawater (SW) for a 48-h challenge test at 33 ppt to test their ability to tolerate high salinity. Samples of skin, gills, and mid intestine [both distal (DI) and anterior (AI) portions of the mid intestine] were collected after the feeding trial in FW and after the SW-challenge test to assess the effects of the diets on the structure and immune functions of the mucosal surfaces. The results showed that the 50 % VMO (Veramaris® algal oil) dietary group had improved intestinal, skin, and gill structures. Principal component analysis (PCA) of the histomorphological parameters demonstrated a significant effect of the algal oil on the intestine, skin, and gills. In particular, the mucosal barrier function of the intestine, skin, and gills was enhanced in the VMO 50 % dietary group after the SW challenge, as evidenced by increased mucous cell density. Immunolabelling of heat shock protein 70 (HSP70) in the intestine (both DI and AI) revealed downregulation of the protein expression in the 50 % VMO group and a corresponding upregulation in the 100 % VMO group compared to 0 % VMO. The reactivity of HSP70 in the epithelial cells was higher after the SW challenge compared to the FW phase. Immune-related genes related to mucosal defense, such as mucin genes [muc2, muc5ac1 (DI), muc5ac1 (AI), muc5ac2, muc5b (skin), and muc5ac1 (gills)], and antimicrobial peptide genes [def3 (DI), def3 (AI), and cath1 (skin)] were significantly upregulated in the 50 % VMO group. PCA of gene expression demonstrated the positive influences on gene regulation in the 50 % VMO dietary group. In conclusion, this study demonstrated the positive effect of substituting 50 % of fish oil with algal oil in the diets of Atlantic salmon. The findings of histomorphometry, mucosal mapping, immunohistochemistry, and immune-related genes connected to mucosal responses all support this conclusion.


Subject(s)
Animal Feed , Diet , Rapeseed Oil , Salmo salar , Animals , Salmo salar/immunology , Diet/veterinary , Rapeseed Oil/chemistry , Animal Feed/analysis , Mucous Membrane/immunology , Fish Oils/administration & dosage , Skin/immunology , Skin/drug effects , Seasons , Gills/immunology , Gills/drug effects , Intestines/drug effects , Intestines/immunology
7.
Molecules ; 29(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38611840

ABSTRACT

The aim of this study was to evaluate the effect of hop extracts on changes in the primary and secondary fat oxidation products, physicochemical properties, and microbiological quality of pâté-type offal sausages obtained through the partial replacement of animal fat with vegetable fat. This study demonstrated that the extraction efficiency varied among hop cone varieties, with the highest efficiency observed for the Lubelski variety and the lowest for the Magnum variety. The phenolic compound content was higher in the Magnum cones (2.74 ± 0.11 mg/g dry matter) compared to the Lubelska cones (2.27 ± 0.05 mg/g of product). Additionally, the DPPH radical scavenging activity was greater in the extract from the Magnum cones (4.21 ± 0.09 mg TE/g d.w.) than in the extract from the Lublelski cones (3.87 ± 0.05 mg TE/ g d.w.). Similarly, the extracts from the Lubelski cones exhibited a higher antiradical activity against the ABTS radical compared to the extract from Magnum cones. Throughout storage, a significant increase in the pH value was observed in the control sample and in the samples with a 20% replacement of animal fat with rapeseed oil and Magnum hop extract. However, the addition of Lubelski hop extract resulted in a decrease in the pH value during the 15-day storage period. The samples with a 20% replacement of animal fat with rapeseed oil and 0.1% Lubelski hop extract showed the least changes in water activity during storage. The samples with a 20% replacement of animal fat with rapeseed oil and the addition of 0.2% Lubelski hop extract had the lowest peroxide value and TBARS index throughout the storage period. The addition of hop extract inhibited the growth of the total number of microorganisms in the tested sausages. In the samples with a 20% replacement of animal fat with rapeseed oil, the content of aerobic microorganisms, compared to the control sample, was statistically significantly lower.


Subject(s)
Antioxidants , Humulus , Animals , Antioxidants/pharmacology , Rapeseed Oil , Meat , Phenols , Plant Extracts/pharmacology
8.
Food Chem ; 447: 139056, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38513495

ABSTRACT

Sinapic acid (SA), canolol (CAO) and canolol dimer (CAO dimer) are the main phenolic compounds in rapeseed oil. However, their possible efficacy against glycation remains unclear. This study aims to explore the impacts of these substances on the formation of advanced glycation end products (AGEs) based on chemical and cellular models in vitro. Based on fluorescence spectroscopy results, three chemical models of BSA-fructose, BSA-methylglyoxal (MGO), and arginine (Arg)-MGO showed that SA/CAO/CAO dimer could effectively reduce AGE formation but with different abilities. After SA/CAO/CAO dimer incubation, effective protection against BSA protein glycation was observed and three different MGO adducts were formed. In MGO-induced HUVEC cell models, only CAO and CAO dimer significantly inhibited oxidative stress and cell apoptosis, accompanied by the regulation of the Nrf2-HO-1 pathway. During the inhibition, 20 and 12 lipid mediators were reversed in the CAO and CAO dimer groups compared to the MGO group.


Subject(s)
Glycation End Products, Advanced , Magnesium Oxide , Vinyl Compounds , Glycation End Products, Advanced/chemistry , Rapeseed Oil , Phenols/chemistry , Pyruvaldehyde/chemistry
9.
Biomolecules ; 14(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38540690

ABSTRACT

This study explores the impact of rotational frying of three different food products on degradation of sterols, as well as their migration between frying oils and food. The research addresses a gap in the existing literature, which primarily focuses on changes in fat during the frying of single food items, providing limited information on the interaction of sterols from the frying medium with those from the food product. The frying was conducted at 185 ± 5 °C for up to 10 days where French fries, battered chicken, and fish sticks were fried in succession. The sterol content was determined by Gas Chromatography. This research is the first to highlight the influence of the type of oil on sterol degradation in both oils and food. Notably, sterols were found to be most stable when food products were fried in high-oleic low-linolenic rapeseed oil (HOLLRO). High-oleic soybean oil (HOSO) exhibited higher sterol degradation than high-oleic rapeseed oil (HORO). It was proven that cholesterol from fried chicken and fish sticks did not transfer to the fried oils or French fries. Despite initially having the highest sterol content in fish, the lowest sterol amount was recorded in fried fish, suggesting rapid degradation, possibly due to prefrying in oil with a high sterol content, regardless of the medium used.


Subject(s)
Brassica napus , Phytosterols , Animals , Soybean Oil , Rapeseed Oil , Sterols , Cooking/methods , Oils
10.
Carbohydr Polym ; 334: 122027, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553226

ABSTRACT

To investigate the effect of oil additives on improving the water resistance of corn starch straws, corn oil (CO), soybean oil (SO), rapeseed oil (RO), peanut oil (PO), lard (LD) and coconut oil (CCO) were chosen and compared the structure and properties of starch straws with different oil additives. Corn starch straws (CS), and starch straws supplemented with CO, SO, RO, PO, LD and CCO were prepared by thermoplastic extrusion. The results showed that the incorporation of oils effectively enhanced the water resistance of starch straws such as water absorption, water solubility and water swelling performance. Meanwhile, the flexural strength of starch straws significantly increased. There was no significant linear relationship among starch chain length, oil unsaturation and straw performance. Among seven starch straws, S-SO had the strongest hydrogen bond interaction (3289 cm-1) and relaxation time (0.96 ms). The S-CO had the highest relative crystallinity (16.82 %) and degree of double helix (1.535), hence resulting in the lowest water absorption and solubility values, the highest flexural strength (23.43 MPa), the highest ΔT value (9.93 °C) and ΔH value (4.79 J/g). S-RO had the highest thermal transition temperatures.


Subject(s)
Starch , Zea mays , Starch/chemistry , Zea mays/chemistry , Water/chemistry , Soybean Oil , Chemical Phenomena , Rapeseed Oil , Corn Oil
11.
Food Chem ; 447: 138953, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38479144

ABSTRACT

This study aimed to characterize the thermomechanical transitions of meat-analog (MA) based coated fried foods. Wheat and rice flour-based batters were used to coat the MA and fried at 180 °C in canola oil for 2, 4 and 6 min. Glass-transition-temperature (Tg) of the coatings were assessed by differential scanning calorimetry, directly after frying or after post-fry holding. Mechanical texture analyzer and X-ray microtomography were employed to assess textural attributes and internal microstructure, respectively. Batter-formulation substantially impacted the Tg of fried foods coating i.e., crust. Tg of fried foods crust were ranged between -20 °C to -24 °C. Tg was positively correlated with frying time and internal microporosity (%), whereas negatively correlated with moisture content. Internal microstructure greatly influenced the textural attributes (hardness, brittleness, crispiness). Post-fry textural stability considerably impacted by Tg. Negative Tg value explains post-fry textural changes (hard-to-soft, brittle-to-ductile, crispy-to-soggy) of MA-based coated products at room-temperature (25 °C) and under IR-heating (65 °C).


Subject(s)
Cooking , Flour , Cooking/methods , Flour/analysis , Food Handling/methods , Rapeseed Oil , Meat/analysis
12.
Food Res Int ; 178: 113906, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309900

ABSTRACT

Surface profiles are important evaluation indices for oil absorption behavior of fried foods. This research established two intelligent models of partial least-squares regression (PLSR) and back propagation artificial neural network (BP-ANN) for monitoring the oil absorption behavior of French fries based on the surface characteristics. Surface morphology and texture of French fries by rapeseed oil (RO) and high-oleic peanut oil (HOPO) at different temperatures were investigated. Results showed that oil content of samples increased with frying temperature, accounting for 37.7% and 41.4% of samples fried by RO and HOPO respectively. The increase of crust ratio, roughness and texture parameters (Fm, Nwr, fwr, Wc) and the decrease of uniformity were observed with the frying temperature. Coefficients of prediction set of PLSR and BP-ANN models were more than 0.93, which indicated that surface features combined with chemometrics were rapid and precise methods for determining the oil content of French fries.


Subject(s)
Cooking , Solanum tuberosum , Cooking/methods , Rapeseed Oil , Peanut Oil , Hot Temperature
13.
Food Res Int ; 179: 114012, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342536

ABSTRACT

Rice is one of the most consumed grains in the world. Rice protein has great nutritional value as a hypoallergenic protein and due to its high lysine content, a limiting amino acid in several other plant protein sources. However, rice protein has low solubility, hampering its use in many applications in the food industry. In this context, alkaline deamidation (0.5 h, 343 K, and pH 11) was applied to modify the protein structure of rice protein concentrate (RPC). After deamidation, two protein powders were produced: (i) one containing the whole protein fraction recovered after RPC deamidation (DT) and (ii) another containing only the soluble fraction recovered after RPC deamidation (DS). Protein dispersions were characterized by SDS-PAGE, zeta potential, solubility, surface hydrophobicity, and capacity to hold water and oil. RPC could not structure canola oil into a high internal phase emulsion (HIPE) due to its low solubility. DT and DS dispersions displayed solubility much higher than RPC and enabled the structuration of HIPEs with 75 % (w/w) canola oil and 25 % of DT or DS dispersions (2, 4, and 6 % w/w). HIPEs were characterized regarding particle size, microstructure, Turbiscan and oil loss stabilities, and rheological behavior for 60 days. Turbiscan analysis and oil loss measurements showed high stability, and the thixotropy tests showed high recovery in all HIPEs. Higher protein concentrations and DS dispersions produced HIPEs with smaller particle sizes. However, rheological measurements indicate that HIPEs produced with DT dispersions had better results, maintaining their structure over the 60 days. Furthermore, DT is cheaper to produce; therefore, DT 4 and 6 % w/w were the most promising for producing HIPEs. The HIPEs produced in this study displayed great potential as fat replacers.


Subject(s)
Oryza , Emulsions/chemistry , Oryza/metabolism , Rapeseed Oil , Particle Size
14.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 664-679, 2024 May.
Article in English | MEDLINE | ID: mdl-38223994

ABSTRACT

The objective of this study was to characterize ruminal degradation, intestinal digestion and total true nutrient supply to dairy cows from canola feedstock (canola seeds) and coproducts (meal and pellets) from bio-oil processing which were impacted by source origin. The feedstocks and coproducts (mash, pellet) were randomly collected from five different bio-oil processing plants with five different batches of samples in each bio-processing plant in Canada (CA) and China (CH). In situ rumen degradation kinetics were determined using four fistulated Holstein cows with incubation times at 0, 2, 4, 8, 12, 24 and 48 h. Intestinal digestions were determined using the three-step in vitro method with preincubation at 12 h. The DVE/OEB and National Research Council systems were applied to evaluate the truly absorbable nutrient supply to dairy cows and feed milk values (FMVs). The results showed that in situ undegradable fractions (U) (p = 0.025) were higher in CA meals, and potentially degradable fraction of D was higher (p = 0.016) in CH meals. CH meals had higher total digestible dry matter (TDDM, p = 0.018) and intestinal digestibility of protein (dIDP, p = 0.016). Canola meals from CA had lower MREE (microbial protein synthesized in the rumen based on available rumen degradable protein; p = 0.011) and DVME (rumen synthesized microbial protein digested in the small intestine; p = 0.011) and had higher ECP (endogenous protein in the small intestine, p = 0.001) and absorbed endogenous crude protein (truly absorbed ECP in the small intestine) than CH (p = 0.001). The FMV evaluated based on the metabolic protein and net energy showed no differences between CA and CH in both coproducts and feedstocks.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Digestion , Rumen , Animals , Cattle/physiology , Rumen/metabolism , Rumen/physiology , Animal Feed/analysis , Digestion/physiology , Female , Diet/veterinary , Rapeseed Oil/chemistry
15.
Article in English | MEDLINE | ID: mdl-38180769

ABSTRACT

Mustard and canola oils are commonly used cooking oils in Asian countries such as India, Nepal, and Bangladesh, making them prone to adulteration. Argemone is a well-known adulterant of mustard oil, and its alkaloid sanguinarine has been linked with health conditions such as glaucoma and dropsy. Utilising a non-destructive spectroscopic method coupled with a chemometric approach can serve better for the detection of adulterants. This work aimed to evaluate the performance of various regression algorithms for the detection of argemone in mustard and canola oils. The spectral dataset was acquired from fluorescence spectrometer analysis of pure as well as adulterated mustard and canola oils with some local and commercial samples also. The prediction performance of the eight regression algorithms for the detection of adulterants was evaluated. Extreme gradient boosting regressor (XGBR), Category gradient boosting regressor (CBR), and Random Forest (RF) demonstrate potential for predicting adulteration levels in both oils with high R2 values.


Subject(s)
Chemometrics , Mustard Plant , Rapeseed Oil , Spectrometry, Fluorescence/methods , Plant Oils/chemistry , Food Contamination/analysis
16.
J Oleo Sci ; 73(1): 45-53, 2024.
Article in English | MEDLINE | ID: mdl-38171730

ABSTRACT

Hot-pressed rapeseed oils with pleasant flavor, i.e., fragrant rapeseed oils, are favored by consumers, especially people from the southwest provinces of China. Although degumming is an important section in producing edible rapeseed oils, conventional degumming techniques are generally suffered from disadvantages such as moisture control, and large losses of micronutrients and flavors. In the present paper, hot-pressed rapeseed oils were treated with silica hydrogel to remove their gums, and changes in phospholipids, acid values, peroxide values, tocopherols, total phenols, and flavor compounds were analyzed to compare the silica hydrogel-degumming with conventional methods. The optimized conditions were suggested to be carried out at 45°C for 15 min, and the silica hydrogel dosage was 1.10%. More than 97.00% of phospholipids were removed after the degumming, and more than 85.00% of micronutrients, were retained in the treated oils. The degumming efficiency was therefore significantly higher than those operated by conventional acid degumming and soft degumming techniques. It was found that the dosage of the silica hydrogel significantly affected the removal rate of phospholipids compared with degumming time and temperature. There were nearly typical volatile compounds found in the rapeseed oils, while most of them kept almost stable after the silica hydrogel-degumming. In this regard, silica hydrogel adsorption exhibited little effect on volatile compounds, making it more suitable for the production of fragrant rapeseed oils.


Subject(s)
Hydrogels , Tocopherols , Humans , Rapeseed Oil , Temperature , Micronutrients , Plant Oils
17.
Food Res Int ; 176: 113842, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163733

ABSTRACT

Oil autoxidation is an early process of food deterioration, monitoring oil oxidation is therefore of great significance to ensure food quality and safety. In this study, a detection method of the primary and secondary oxidative products was developed by gas chromatography ion mobility spectrometry (GC-IMS).The secondary oxidative products was analyzed by GC-IMS. Then, the relationships between peroxide values and the contents of secondary oxidative products were investigated by constructing a prediction model of peroxide value of rapeseed oil with the help of secondary oxidative products and chemometrics. The coefficient of determination Q2 of the model validation set is 0.96, and the RMSECV is 0.1570 g/100 g. These validation results indicated that secondary oxidative products could also reflect the content of the primary oxidative products. Moreover, 10 characteristic markers related to oxidative rancidity were identified for monitoring edible oil rancidity and oxidative stability.


Subject(s)
Food Quality , Ion Mobility Spectrometry , Gas Chromatography-Mass Spectrometry/methods , Ion Mobility Spectrometry/methods , Rapeseed Oil , Peroxides
18.
Food Chem ; 439: 138116, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38064830

ABSTRACT

The strong-fragrant rapeseed oil (SFRO) is a popular rapeseed oil in China with a low refining degree only degumming with hot water, which remarkably affects its storage stability. The present study compared the overall changes of physical/chemical/nutrient quality of FROs at various temperatures, light wavelengths and headspace volumes. Results showed that red light (680 nm) had a most significant adverse effect on the overall quality of SFRO with the higher correlation coefficients to PV and TOTOX of 0.71 and 0.70, and lower correlation coefficients to chlorophyll and tocopherol of -0.95 and -0.53, respectively. Further studies revealed that red light accelerated the oxidation of fragrant rapeseed oils by degrading chlorophyll to initiate the photo-oxidation process and synthesize high amount of secondary oxidation products including aliphatic and aromatic oxidized compounds from linolenic acid. These findings provided a reference to control the deterioration of FROs by preventing the transmittance of red light.


Subject(s)
Brassica napus , Rapeseed Oil , Oxidation-Reduction , Tocopherols , Chlorophyll , Plant Oils
19.
Eur J Nutr ; 63(2): 425-433, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37971692

ABSTRACT

PURPOSE: This study was conducted to examine the effects of daily intake of γ-oryzanol (ORZ)-fortified canola oil, as compared with plain canola and sunflower oils, on certain inflammatory and oxidative stress biomarkers in adult subjects with Type 2 Diabetes (T2D). METHODS: We randomly allocated 92 adult subjects with T2D from both sexes to one of the following groups to receive: (a) ORZ-fortified canola oil (ORZO; n1 = 30); (b) unfortified canola oil (CANO; n2 = 32); or (c) sunflower oil (SUFO; n3 = 30) for 12 weeks. Dietary and laboratory evaluations were performed initially and finally. RESULTS: Serum hs-CRP concentrations significantly decreased in ORZO group (from 3.1 ± 0.2 to 1.2 ± 0.2 mg/L), as compared with CANO (p = 0.003) and SUFO (p < 0.001) groups. Serum IL-6 significantly decreased just in ORZO (- 22.8%, p = 0.042) and CANO groups (- 19.8%, p = 0.038). However, the between-group differences were not significant. Serum IL-1ß slightly decreased in ORZO (- 28.1%, p = 0.11) and increased in SUFO (+ 20.6%, p = 0.079) but between-group difference was statistically significant (p = 0.017). Serum IFN-γ concentrations decreased significantly only in ORZO (from 3.3 ± 0.08 to 2.9 ± 0.21 IU/mL, p = 0.044). Salivary IgA concentrations increased significantly in all three intervention groups. Notwithstanding, only the difference between ORZO and CANO groups was statistically significant (p = 0.042). Similarly, circulating malondialdehyde concentrations significantly decreased in all three groups but with no between-group significant difference. CONCLUSIONS: Daily consumption of ORZ-fortified canola oil, compared with unfortified canola and sunflower oils, for 12 weeks resulted in boosting of certain anti-inflammatory effects of canola oil. These findings may have preventive implications for both clinicians and policy makers. This clinical trial was registered at clinicaltrials.gov (03.08.2022; NCT05271045).


Subject(s)
Diabetes Mellitus, Type 2 , Phenylpropionates , Adult , Male , Female , Humans , Rapeseed Oil , Diabetes Mellitus, Type 2/drug therapy , Sunflower Oil , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
20.
Eur J Clin Nutr ; 78(1): 6-18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37740067

ABSTRACT

To investigate the effects of rapeseed oil on body composition, blood glucose and lipid metabolism in people with overweight and obesity compared to other cooking oils. We searched eight databases for randomized controlled studies (including randomized crossover trials). The risk of bias for the included studies was assessed using the Cochrane Risk of Bias 2.0 tool. The Grading of Recommendations Assessment Development and Evaluation (GRADE) criteria were used to evaluate the quality of the outcomes. The methodological quality of the included studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. Sensitivity analysis was used to check the stability of the pooled results. Statistical analysis was carried out using Review Manager 5.3 software. As a result, fifteen randomized controlled studies (including six parallel studies and nine crossover studies) were included in this study. Compared to other edible oils, rapeseed oil significantly reduced low density lipoprotein cholesterol (LDL-C) (MD = -0.14 mmol/L, 95% CI: -0.21, -0.08, I2 = 0%, P < 0.0001), apolipoprotein B (ApoB) (MD = -0.03 g/L, 95% CI: -0.05, -0.01, I2 = 0%, P = 0.0003), ApoB/ApoA1 (MD = -0.02, 95% CI: -0.04, -0.00, I2 = 0%, P = 0.02) and insulin (MD = -12.45 pmol/L, 95% CI: -19.61, -5.29, I2 = 37%, P = 0.0007) levels, and increased fasting glucose (MD = 0.16 mmol/L, 95% CI: 0.05, 0.27, I2 = 27%, P = 0.003) levels. However, the differences in body weight and body composition between rapeseed oil and control oils were not significant. In a word, rapeseed oil is effective in reducing LDL-C, ApoB and ApoB/ApoA1 levels in people with overweight and obesity, which is helpful in preventing and reducing the risk of atherosclerosis. PROSPERO registration number: CRD42022333436.


Subject(s)
Obesity , Overweight , Humans , Rapeseed Oil , Cholesterol, LDL , Body Composition , Apolipoproteins B
SELECTION OF CITATIONS
SEARCH DETAIL
...