Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 289
Filter
1.
Environ Geochem Health ; 46(6): 180, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696107

ABSTRACT

Urban agriculture is common in fertile river floodplains of many developing countries. However, there is a risk of contamination in highly polluted regions. This study quantifies health risks associated with the consumption of vegetables grown in the floodplain of the urban river 'Yamuna' in the highly polluted yet data-scarce megacity Delhi, India. Six trace elements are analyzed in five kinds of vegetable samples. Soil samples from the cultivation area are also analyzed for elemental contamination. Ni, Mn, and Co are observed to be higher in leafy vegetables than others. Fruit and inflorescence vegetables are found to have higher concentrations of Cr, Pb, and Zn as compared to root vegetables. Transfer Factor indicates that Cr and Co have the highest and least mobility, respectively. Vegetable Pollution Index indicates that contamination levels follow as Cr > Ni > Pb > Zn. Higher Metal Pollution Index of leafy and inflorescence vegetables than root and fruit vegetables indicate that atmospheric deposition is the predominant source. Principal Component Analysis indicates that Pb and Cr have similar sources and patterns in accumulation. Among the analyzed vegetables, radish may pose a non-carcinogenic risk to the age group of 1-5 year. Carcinogenic risk is found to be potentially high due to Ni and Cr accumulation. Consumption of leafy vegetables was found to have relatively less risk than other vegetables due to lower Cr accumulation. Remediation of Cr and Ni in floodplain soil and regular monitoring of elemental contamination is a priority.


Subject(s)
Metals, Heavy , Rivers , Soil Pollutants , Trace Elements , Vegetables , India , Vegetables/chemistry , Risk Assessment , Trace Elements/analysis , Rivers/chemistry , Soil Pollutants/analysis , Metals, Heavy/analysis , Humans , Food Contamination/analysis , Environmental Monitoring , Principal Component Analysis , Raphanus/chemistry
2.
Food Chem ; 451: 139464, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38704990

ABSTRACT

Silver-metal organic framework (Ag@MOF) has exhibited outstanding antimicrobial activity in antimicrobial applications, and reducing the biotoxicity associated with silver has become a research priority. In this study, Ag@MOF was initially modified with sodium alginate (SA) to form SA-Ag@MOF. The results showed that SA could control the release of Ag+, reducing the release by about 8% at 24 h, and the biotoxicity was significantly reduced. Finally, SA-Ag@MOF was applied as an antimicrobial agent in citric acid-modified PVA film to develop a novel composite antimicrobial film. When added at 2 MIC, the CA3-M2 film can effectively inhibit the growth of E. coli and S. aureus, and the inhibition rate has reached 98%. For white radish packaging applications, CA3-M2 film inhibited the growth of surface microorganisms, while ensuring moisture and tissue hardness to extend shelf-life up to 7 days. Overall, the strategy conceived here can be a theoretical basis for novel antimicrobial packaging.


Subject(s)
Alginates , Citric Acid , Escherichia coli , Food Packaging , Metal-Organic Frameworks , Silver , Staphylococcus aureus , Alginates/chemistry , Alginates/pharmacology , Food Packaging/instrumentation , Citric Acid/chemistry , Citric Acid/pharmacology , Silver/chemistry , Silver/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Raphanus/chemistry , Raphanus/growth & development , Raphanus/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
3.
Int J Biol Macromol ; 269(Pt 1): 132001, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702007

ABSTRACT

Plant-derived bioactive macromolecules (i.e., proteins, lipids, and nucleic acids) were prepared as extracellular vesicles (EVs). Plant-derived EVs are gaining pharmaceutical research interest because of their bioactive components and delivery properties. The spherical nanosized EVs derived from Raphanus sativus L. var. caudatus Alef microgreens previously showed antiproliferative activity in HCT116 colon cancer cells from macromolecular compositions (predominantly proteins). To understand the mechanism of action, the biological activity studies, i.e., antiproliferation, cellular biochemical changes, DNA conformational changes, DNA damage, apoptotic nuclear morphological changes, apoptosis induction, and apoptotic pathways, were determined by neutral red uptake assay, synchrotron radiation-based Fourier transform infrared microspectroscopy, circular dichroism spectroscopy, comet assay, 4',6-diamidino-2-phenylindole (DAPI) staining, flow cytometry, and caspase activity assay, respectively. EVs inhibited HCT116 cell growth in concentration- and time-dependent manners, with a half-maximal inhibitory concentration of 675.4 ± 33.8 µg/ml at 48 h and a selectivity index of 1.5 ± 0.076. HCT116 treated with EVs mainly changed the cellular biochemical compositions in the nucleic acids and carbohydrates region. The DNA damage caused no changes in DNA conformation. The apoptotic nuclear morphological changes were associated with the increased apoptotic cell population. The apoptotic cell death was induced by both extrinsic and intrinsic pathways. EVs have potential as antiproliferative bioparticles.


Subject(s)
Apoptosis , Cell Proliferation , DNA Damage , Extracellular Vesicles , Raphanus , Humans , Apoptosis/drug effects , Raphanus/chemistry , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , HCT116 Cells , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Protein Structure, Secondary , Macromolecular Substances/chemistry , Macromolecular Substances/pharmacology
4.
Food Funct ; 15(9): 4894-4904, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38597802

ABSTRACT

The contributions of cruciferous vegetables to human health are widely recognised, particularly at the molecular level, where their isothiocyanates play a significant role. However, compared to the well-studied isothiocyanate 4-(methylsulfinyl)butyl isothiocyanate (sulforaphane) produced from broccoli sprouts, less is known about the pharmacological effects of other isothiocyanates and the stage of vegetables preferable to obtain their benefits. We analysed the quantity and quality of isothiocyanates produced in both the sprouts and mature stages of eight cruciferous vegetables using gas chromatography-mass spectrometry (GC-MS). Additionally, we investigated the hepatoprotective effects of isothiocyanates in a mouse model of acute hepatitis induced by carbon tetrachloride (CCl4). Furthermore, we explored the detoxification enzyme-inducing activities of crude sprout extracts in normal rats. Among the eight cruciferous vegetables, daikon radish (Raphanus sativus L.) sprouts produced the highest amount of isothiocyanates, with 4-(methylsulfinyl)-3-butenyl isothiocyanate (sulforaphene) being the dominant compound. The amount of sulforaphene in daikon radish sprouts was approximately 30 times that of sulforaphane in broccoli sprouts. Sulforaphene demonstrated hepatoprotective effects similar to sulforaphane in ameliorating CCl4-induced hepatic injury in mice. A crude extract of 3-day-old daikon radish sprouts upregulated the detoxifying enzyme glutathione S-transferase (GST) in the liver, whereas the crude extract of broccoli sprouts showed limited upregulation. This study highlights that daikon radish sprouts and sulforaphene have the potential to serve as functional food materials with hepatoprotective effects. Furthermore, daikon radish sprouts may exhibit more potent hepatoprotective effects compared to broccoli sprouts.


Subject(s)
Isothiocyanates , Liver , Raphanus , Vegetables , Isothiocyanates/pharmacology , Animals , Mice , Raphanus/chemistry , Male , Vegetables/chemistry , Rats , Liver/drug effects , Liver/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Sulfoxides , Chemical and Drug Induced Liver Injury/prevention & control , Protective Agents/pharmacology , Protective Agents/chemistry , Brassica/chemistry , Humans , Rats, Sprague-Dawley , Brassicaceae/chemistry
5.
Braz J Biol ; 84: e281235, 2024.
Article in English | MEDLINE | ID: mdl-38656077

ABSTRACT

The increase in prices of fertilizers, energy and other materials necessary for the industry triggered a global economic crisis. Reason that was investigated on the biological and chemical characteristics in relation to the yield of radish nourished with humus from plant residue. The objective was to determine the appropriate dose of humus to obtain greater yield and its relationship with the chemical and biological characteristics of the radish. It is based on applied methodology with an experimental approach; Therefore, the Completely Random Block Design model was used, which consisted of 3 blocks and 5 treatments that were T1 with 0, T2 with 4, T3 with 6, T4 with 8 and T5 with 10 t/ha of humus and They applied 15 days after sowing. The physical characteristics of the radish were evaluated and processed using analysis of variance and Duncan. Concentration of elements in leaves and stomatal density were also analyzed. It was determined that T5 stood out in total plant length with 28.95 cm, plant weight with 76.87 g, equatorial diameter with 4,404 cm and commercial yield with 20,296 t/ha. Nitrogen consumption in relation to yield with 247.44 kg/ha. Stomatal density 459 stomata/mm2 and profitability with 150% and nutrient concentration in leaves highlighted T4 with N, K, Ca, Mg, Mo and Zn. It concludes that T5 stood out with 20,296 t/ha, which differed by 26.04% in relation to the control (T1) with 15,011 t/ha. Therefore, this dose added nutrients to the soil that improved the availability for plant absorption and this influenced the concentration of nutrients in leaves such as N, P and Fe and stomatal density with 459 stomata/mm2, which had a response in good development, strengthening against environmental stress and therefore greater performance.


Subject(s)
Fertilizers , Raphanus , Raphanus/chemistry , Raphanus/growth & development , Fertilizers/analysis , Humic Substances/analysis , Plant Leaves/chemistry , Nitrogen/analysis , Nitrogen/metabolism , Biomass
6.
J Agric Food Chem ; 72(12): 6167-6177, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38500001

ABSTRACT

Antibiotics can be accidentally introduced into farmland by wastewater irrigation, and the environmental effects are still unclear. In this study, the effects of oxytetracycline on the residue of imidacloprid in soil and radishes were investigated. Besides, the rhizosphere microbiome and radish metabolome were analyzed. It showed that the persistence of imidacloprid in soil was unchanged, but the content of olefin-imidacloprid was increased by oxytetracycline. The residue of imidacloprid in radishes was increased by nearly 1.5 times, and the hazard index of imidacloprid was significantly raised by 1.5-4 times. Oxytetracycline remodeled the rhizosphere microbiome, including Actinobe, Elusimic, and Firmicutes, and influenced the metabolome of radishes. Especially, some amino acid metabolic pathways in radish were downregulated, which might be involved in imidacloprid degradation. It can be assumed that oxytetracycline increased the imidacloprid residue in radish through disturbing the plant-rhizosphere microbiome holobiont and, thus, increased the pesticide dietary risk.


Subject(s)
Microbiota , Neonicotinoids , Nitro Compounds , Oxytetracycline , Raphanus , Raphanus/chemistry , Oxytetracycline/metabolism , Oxytetracycline/pharmacology , Rhizosphere , Soil/chemistry
7.
Food Funct ; 15(9): 4773-4784, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38469873

ABSTRACT

Raphanus sativus L. cv. Sango, commonly known as red radish, is widely consumed around the world as a vegetable, but its benefit in pain relief is not sufficiently investigated. This study aimed to evaluate the antinociceptive effects of R. sativus and a possible mechanism of action. An aqueous extract of R. sativus sprouts (AERSS) was investigated by parenteral (10, 30, and 100 mg kg-1, i.p.) and enteral (500 mg kg-1, p.o.) administration in the neurogenic and inflammatory phases of the formalin test, where gastric damage was also evaluated as a possible adverse effect. Ketorolac (5 mg kg-1, i.p.) was used as the reference drug. Endogenous opioid and 5-HT1A serotonin receptors, as well as the cAMP/NO-cGMP pathways, were explored in the study of a possible mechanism of action by using their corresponding antagonists: naloxone, 1 mg kg-1, i.p., WAY100635, 1 mg kg-1, i.p., and enzymatic activators or inhibitors, respectively. Sulforaphane (SFN), a known bioactive metabolite, was analyzed using electroencephalography (EEG) to evidence its central involvement. A significant and dose-dependent antinociceptive activity was observed with the AERSS resembling the antinociceptive effect of the reference drug, with an equivalent significant response with a dose of 500 mg kg-1, p.o. without causing gastric damage. The participation of the endogenous opioid and 5-HT1A serotonin receptors at central and peripheral levels was also observed, with a differential participation of cAMP/NO-cGMP. SFN as one metabolite produced significant changes in the EEG analysis, reinforcing its effects on the CNS. Our preclinical evidence supports the benefits of consuming Raphanus sativus cv. Sango sprouts for pain relief.


Subject(s)
Analgesics , Cyclic AMP , Cyclic GMP , Isothiocyanates , Plant Extracts , Raphanus , Receptor, Serotonin, 5-HT1A , Sulfoxides , Animals , Receptor, Serotonin, 5-HT1A/metabolism , Isothiocyanates/pharmacology , Male , Raphanus/chemistry , Analgesics/pharmacology , Mice , Plant Extracts/pharmacology , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Sulfoxides/pharmacology , Receptors, Opioid/metabolism , Humans , Signal Transduction/drug effects , Pain/drug therapy
8.
J Agric Food Chem ; 72(9): 4947-4957, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38393752

ABSTRACT

The impact of selenium (Se) enrichment on bioactive compounds and sugars and Se speciation was assessed on different microgreens (green pea, red radish, and alfalfa). Sodium selenite and sodium selenate at a total concentration of 20 µM (1:1) lead to a noticeable Se biofortification (40-90 mg Se kg-1 DW). In green pea and alfalfa, Se did not negatively impact phenolics and antioxidant capacity, while in red radish, a significant decrease was found. Regarding photosynthetic parameters, Se notably increased the level of chlorophylls and carotenoids in green pea, decreased chlorophyll levels in alfalfa, and had no effect on red radish. Se treatment significantly increased sugar levels in green pea and alfalfa but not in red radish. Red radish had the highest Se amino acid content (59%), followed by alfalfa (34%) and green pea (28%). These findings suggest that Se-biofortified microgreens have the potential as functional foods to improve Se intake in humans.


Subject(s)
Raphanus , Selenium , Humans , Selenium/metabolism , Raphanus/chemistry , Pisum sativum , Medicago sativa/metabolism , Chlorophyll , Phytochemicals
9.
J Ethnopharmacol ; 325: 117851, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38336182

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Raphanus sativus L. is a well-known medicinal plant with traditional therapeutic applications in various common ailments including inflammation and asthma. AIMS OF THE STUDY: This study aimed to evaluate the chemical composition and anti-asthmatic potential of the hydro-methanolic extract of the leaves of R. sativus L. (Rs.Cr) using various in vitro and in vivo investigations. MATERIALS AND METHODS: The Rs.Cr was subjected to preliminary phytochemical analysis and HPLC profiling. The safety was assessed through oral acute toxicity tests in mice. The antiasthmatic effect of the extract was studied using milk-induced leukocytosis and ovalbumin (OVA)-induced allergic asthma models established in mice. While mast cell degranulation and passive paw anaphylaxis models were established in rats. Moreover, effect of the extract was studied on various oxidative and inflammatory makers. The antioxidant effect of the extract was also studied by in vitro DPPH method. RESULTS: The HPLC profiling of Rs.Cr showed the presence of important polyphenols in a considerable quantity. In toxicity evaluation, Rs.Cr showed no sign of morbidity or mortality with LD50 < 2000 mg/kg. The extract revealed significant mast cell disruption in a dose-dependent manner compared to the intoxicated group. Similarly, treatment with Rs.Cr and dexamethasone significantly (p < 0.001) reduced paw edema volume. Subcutaneous injection of milk at a dose of 4 mL/kg, after 24 h of its administration, showed an increase in the leukocyte count in the intoxicated group. Similarly, mice treated with dexamethasone and Rs.Cr respectively showed a significant decrease in leukocytes and eosinophils count in the ovalbumin-induced allergic asthma model. The extract presented a significant (p˂0.001) alleviative effect on the levels of SOD and GSH, MDA, IL-4, IL-5, and IL-13 in a dose-dependent manner as compared to the intoxicated group. Furthermore, the histological evaluation also revealed a notable decrease in inflammatory and goblet cell count with reduced mucus production. CONCLUSION: The current study highlights mechanism-based novel insights into the anti-asthmatic potential of R. sativus that also strongly supports its traditional use in asthma.


Subject(s)
Anti-Asthmatic Agents , Asthma , Raphanus , Rats , Mice , Animals , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use , Raphanus/chemistry , Raphanus/metabolism , Ovalbumin , Bronchoalveolar Lavage Fluid , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Seeds/metabolism , Dexamethasone/pharmacology , Disease Models, Animal , Mice, Inbred BALB C
10.
Plant Physiol Biochem ; 207: 108428, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38364633

ABSTRACT

Manganese (Mn) is one of the essential elements for plant growth and is involved in the process of photosynthesis and seed germination. Herein, we applied two Mn-based nanoparticles, MnO2 and Mn3O4, to the soil to investigate their effects on radish growth, antioxidant system, and nutrients. The radish plant height after treatment with 10 mg/kg of MnO2 and Mn3O4 NPs were increased, compare to the control. In radish's shoot, MnO2 NPs at high concentrations (100 mg/kg) increased MDA activity by 58 % compared to the control group, while exposure to Mn3O4 NPs at the same concentration decreased MDA activity by 14 %. The nutrient content of radishes, such as soluble sugar and vitamin C, was improved. Moreover, single particle inductively coupled plasma mass spectrometry (SP ICP-MS) was used to understand the patterns of migration of Mn-based NPs in radish and subsequent impact on nutrients. We found that Mn-based NPs accumulated mainly in the roots of radish. Interestingly, the accumulation characteristics of MnO2 NPs and Mn3O4 NPs were different. MnO2 NPs accumulated more in radish leaves than in fruits, while the accumulation of Mn3O4 NPs gradually decreased from roots to leaves. Finally, we determined the mineral element content of the leaves, fruits, and roots of radish, and found that the uptake of main metallic mineral elements (e.g. Cu, Fe, Mg, Zn, Na, K) was inhibited by the application of Mn-based NPs. These findings underscore the importance of considering species and multifaceted impacts of Mn-based NPs as nanofertilizers for their wide application in agriculture.


Subject(s)
Nanoparticles , Raphanus , Raphanus/chemistry , Manganese/pharmacology , Manganese Compounds/pharmacology , Oxides/pharmacology , Minerals/pharmacology
11.
Food Chem ; 446: 138832, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38412808

ABSTRACT

In this study, an efficient approach to preparation of different anthocyanins from Purple-heart Radish was developed by combining microwave-assisted extraction (MAE), macroporous resin purification (MRP) and ultrasound-assisted acid hydrolysis (UAAH) for evaluation of physicochemical stability and pancreatic lipase (PL) inhibitory activity. By optimization of MAE, MRP and UAAH processes, the anthocyanins reached the yield of 6.081 ± 0.106 mg/g, the purity of 78.54 ± 0.62 % (w/w) and the content of 76.29 ± 1.31 % (w/w), respectively. With high-resolution UHPLC-Q-Orbitrap/MS, 15 anthocyanins were identified as pelargonins with diverse glucosides and confirmed by pelargonidin standard. By glycosylation, pelargonins exhibited higher stability in different pH, temperature, light, metal ions environments than that of pelargonidin. However, PL inhibitory assay, kinetic analysis and molecular docking demonstrated that pelargonidin had higher PL inhibitory activity than pelargonins even though with similar binding sites and a dose-effect relationship. The above results revealed that the effect of glycosylation and deglycosylation on PL inhibitory activity and physicochemical stability.


Subject(s)
Anthocyanins , Raphanus , Anthocyanins/analysis , Raphanus/chemistry , Kinetics , Molecular Docking Simulation , Lipase , Plant Extracts/chemistry
12.
Molecules ; 28(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298743

ABSTRACT

Our research group previously found that broccoli sprouts possess neuroprotective effects during pregnancy. The active compound has been identified as sulforaphane (SFA), obtained from glucosinolate and glucoraphanin, which are also present in other crucifers, including kale. Sulforaphene (SFE), obtained from glucoraphenin in radish, also has numerous biological benefits, some of which supersede those of sulforaphane. It is likely that other components, such as phenolics, contribute to the biological activity of cruciferous vegetables. Notwithstanding their beneficial phytochemicals, crucifers are known to contain erucic acid, an antinutritional fatty acid. The aim of this research was to phytochemically examine broccoli, kale, and radish sprouts to determine good sources of SFA and SFE to inform future studies of the neuroprotective activity of cruciferous sprouts on the fetal brain, as well as product development. Three broccoli: Johnny's Sprouting Broccoli (JSB), Gypsy F1 (GYP), and Mumm's Sprouting Broccoli (MUM), one kale: Johnny's Toscano Kale (JTK), and three radish cultivars: Black Spanish Round (BSR), Miyashige (MIY), and Nero Tunda (NT), were analyzed. We first quantified the glucosinolate, isothiocyanate, phenolics, and DPPH free radical scavenging activity (AOC) of one-day-old dark- and light-grown sprouts by HPLC. Radish cultivars generally had the highest glucosinolate and isothiocyanate contents, and kale had higher glucoraphanin and significantly higher sulforaphane content than the broccoli cultivars. Lighting conditions did not significantly affect the phytochemistry of the one-day-old sprouts. Based on phytochemistry and economic factors, JSB, JTK, and BSR were chosen for further sprouting for three, five, and seven days and subsequently analyzed. The three-day-old JTK and radish cultivars were identified to be the best sources of SFA and SFE, respectively, both yielding the highest levels of the respective compound while retaining high levels of phenolics and AOC and markedly lower erucic acid levels compared to one-day-old sprouts.


Subject(s)
Brassica , Raphanus , Glucosinolates/chemistry , Brassica/chemistry , Raphanus/chemistry , Isothiocyanates/pharmacology , Free Radicals/pharmacology
13.
J Hazard Mater ; 448: 130937, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36758439

ABSTRACT

Azole fungicides is one of the major fungicides in agricultural field. In this study, toxic effects of diniconazole (DIN), metconazole (MET), and tebuconazole (TEB) to radish leaves and roots were investigated using targeted metabolomics with gas chromatography-mass spectrometry (GC-MS/MS). Especially, the changes of functional chemicals, including phytosterols and glucosinolates evaluated. Radish leaves and roots were harvested after 7 days and 14 days from last exposure. In multivariate analysis, the experimental groups showed clear separation in PCA and PLS-DA score plots. Phytosterols and glucosinolates were significantly changed by azole fungicide. Six metabolic pathways which are affected by fungicides were selected and showed similar patterns regardless of the type of azole fungicide used. As a result, azole fungicide induces the defense mechanisms of plants and affects both primary and secondary metabolism.


Subject(s)
Fungicides, Industrial , Raphanus , Raphanus/chemistry , Raphanus/metabolism , Azoles/toxicity , Azoles/metabolism , Fungicides, Industrial/metabolism , Tandem Mass Spectrometry , Glucosinolates/chemistry , Glucosinolates/metabolism , Glucosinolates/pharmacology , Metabolomics/methods
14.
Int J Radiat Biol ; 99(9): 1413-1423, 2023.
Article in English | MEDLINE | ID: mdl-36731458

ABSTRACT

PURPOSE: A field experiment was performed to investigate the impact of low-dose gamma rays on growth parameters and bioactive compounds of white radish. MATERIALS AND METHODS: White radish seeds were irradiated by gamma rays dose levels (10, 20, 40 and 80 Gy) beside control. Physiological and biochemical markers were done to follow the effect of gamma rays on white radish. RESULTS: The results revealed that gamma rays increased growth parameters with increasing irradiation to a dose of 40 Gy. The maximum increments were found at 14.64 (cm), 48.30 (cm), 20.84 (cm) and 5.51 (cm) for leaves number, leaves length, roots length and roots diameter, respectively, with a dose of 40 Gy. By increasing the irradiation dose to 80 Gy, the results showed reduction in all parameters studied. Ascorbic acid gave the maximum increase with the dose of 40 Gy, while phenols, flavonoids, antioxidant activity, peroxidase, and polyphenol oxidase showed the highest increase with the dose 80 of Gy in radish leaves. Similar trend was observed for the radish roots. Furthermore, the protein and isoenzyme profiles of peroxidase and polyphenol oxidase changed and induced alteration by different irradiation dose levels. CONCLUSION: Gamma rays can be a useful tool for increasing the growth and biochemical content of white radish plants and perhaps other food crops.


Subject(s)
Raphanus , Raphanus/chemistry , Gamma Rays , Antioxidants/pharmacology , Biomarkers , Peroxidases/pharmacology
15.
J Food Sci ; 88(4): 1292-1307, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36815393

ABSTRACT

Spontaneously dried-fermented radishes have been consumed in China for hundreds of years and are usually fermented for a long time to acquire high quality. In this study, the spontaneously dried-fermented radishes with short-term manufacturing periods were made from five different varieties of radishes that grew in the same environment. In addition, the physicochemical characteristics (i.e., moisture content, soluble solid, and pH value), flavor profiles (i.e., free amino acids, organic acids, and volatile compounds), and functional properties (i.e., total phenolics content, total flavonoids content, sulforaphane content, and γ-aminobutyric acid [GABA] content) of these five raw radishes and spontaneously dried-fermented radishes were analyzed and compared. In detail, the content of volatile and nonvolatile compounds increased, especially in oxalic acid, succinic acid, and umami free amino acids. Furthermore, functional components, such as sulforaphane and GABA, were also enriched via spontaneous fermentation after drying. In addition, the results of principal component analysis, hierarchical clustering analysis, and redundancy analysis showed that there were significant discrepancies appeared when raw radishes were processed via spontaneous fermentation or not. These results suggested that the process of spontaneous fermentation after drying may contribute to improving the quality of fresh radishes. Notably, radishes with red skin and flesh were regarded as exceptional varieties for processing, because of the preferable flavor profiles and affluent functional substances via spontaneous fermentation after drying. Therefore, these findings could deliver a systematical insight into developing processed radishes with high quality. PRACTICAL APPLICATION: The spontaneously dried-fermented radishes were manufactured through the process of spontaneous fermentation after drying, which acquired tasty and healthy characteristics by accumulating the volatile and nonvolatile compounds as well as the functional components, like total phenolics, total flavonoids, sulforaphane, and γ-aminobutyric acid. Importantly, because of the excellent processing properties, the radishes with red skin and flesh could be more appropriate to produce spontaneously dried-fermented radishes. Our findings may provide a practical strategy for developing vegetable relishes with superb flavor profiles and good functional properties in pickled vegetables.


Subject(s)
Fermentation , Food Handling , Raphanus , Amino Acids/analysis , Flavonoids/analysis , gamma-Aminobutyric Acid/analysis , Raphanus/chemistry , Vegetables/chemistry , Food Handling/methods , China
16.
Food Chem ; 403: 134469, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36358102

ABSTRACT

Radishes are root vegetables that are rich in bioactive compounds and provide numerous health benefits, but the overall metabolic profiles of radish taproots and the metabolic differences among different edible types are not fully understood. In this research, we used UHPLC-Q-TOF-MS to identify the metabolites in cooked, processed and fruit radishes of ten varieties. In total, 264 metabolites belonging to 18 categories were detected. A multivariate analysis revealed that the metabolite composition differed among the three radish groups, and a comparative analysis showed that the significantly differentially accumulated metabolites were mainly amino acids and derivatives, lipids, flavonoids, hydroxycinnamate derivatives and carbohydrates. The accumulation of metabolites, particularly flavonoids, was greater in fruit radishes than in cooked and processed radishes. This work provides novel insights into the radish metabolomic profiles for assessment of the nutritional value of different edible radish types for humans.


Subject(s)
Raphanus , Humans , Raphanus/chemistry , Chromatography, High Pressure Liquid , Metabolome , Flavonoids/analysis , Metabolomics , Dietary Supplements
17.
Food Res Int ; 158: 111558, 2022 08.
Article in English | MEDLINE | ID: mdl-35840250

ABSTRACT

Selenium (Se) is critical for human health, but human intake of Se is often inadequate. Organic forms of dietary Se are considered safe and more bioavailable than inorganic forms. Along with a generally high nutritional value, sprouts are sensitive to Se treatment. This study used selenomethionine and methylselenocysteine solutions to cultivate Se-enriched sprouts under an optimized hydroponic condition. Content change and transformations of the selenoamino acids were analyzed by a developed HPLC-ESI-MS/MS method. Uptake of both selenomethionine and methylselenocysteine was dose-dependent and involved active transport and passive diffusion, as demonstrated by the respiratory and aquaporin inhibition assays. Passive diffusion played a dominant role. Free methylselenocysteine was the predominant form in samples. Selenomethionine and methylselenocysteine were capable of mutual transformation. Moreover, the selenoprotein generation was associated with the increasing Se concentration of the culture solutions. The results provided scientific references for the efficient utilization of organic Se in sprouts.


Subject(s)
Organoselenium Compounds , Raphanus , Antacids , Organoselenium Compounds/chemistry , Raphanus/chemistry , Selenomethionine/chemistry , Selenoproteins/chemistry , Tandem Mass Spectrometry , Vitamins/analysis
18.
J Food Sci ; 87(4): 1586-1600, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35262931

ABSTRACT

This study employed the "two-step dialysis" method and AB-8 or D101 macroporous resin chromatography to isolate the anthocyanins in red radishes (ARR). The red radish juice was dialyzed twice at 3000 and 500 Da, respectively. UHPLC-QqQ-MS/MS revealed 24 types of ARRs, of which pelargonidin (Pg)-3-diglucoside-5-(malonyl)glucoside (P3D5MG), Pg-3-diglucoside-5-glucoside (P3D5G), Pg-3-(feruloyl)diglucoside-5-(malonyl)glucoside (P3FD5MG), Pg, and malvidin (Mv) represented the main compounds. The total anthocyanin content in the ARR prepared via the "two-step dialysis" method was 29.69% and 18.44% higher than that obtained using AB-8 and D101 macroporous resins, respectively. The ARRs inhibited heat-induced ß-lactoglobulin (ß-Lg) oxidation. The amino acid residue microenvironment and secondary ß-Lg structure were modified via ARR binding. The energy involved in P3D5MG and ß-Lg binding was -392 kJ/mol, which was significantly lower than that during the binding process of P3D5M, P3FD5MG, Pg, and Mv to ß-Lg (-338 to -168 kJ/mol). These results indicated that "two-step dialysis" was a promising method for deriving natural pigment with strong antioxidant activity from red radishes. PRACTICAL APPLICATION: As a natural food colorant, anthocyanins have attracted increasing attention in the food industry in recent years. This study used "two-step dialysis" to effectively separate ARRs. Moreover, the anthocyanins in ARR can bind to ß-Lg to protect against heating-induced oxidation. Therefore, ARRs may not only act as a food pigment but also as antioxidants.


Subject(s)
Brassicaceae , Raphanus , Anthocyanins/chemistry , Glucosides/metabolism , Hot Temperature , Lactoglobulins , Raphanus/chemistry , Tandem Mass Spectrometry
19.
Food Res Int ; 152: 110906, 2022 02.
Article in English | MEDLINE | ID: mdl-35181078

ABSTRACT

Salted radish is a popular high-salinity table food in China, and nitrite is always generated during the associated pickling process. However, this nitrite can be naturally degraded, and the underlying mechanism is unknown. Here, we identified the microbial groups that dominate the natural degradation of nitrite in salted radish and clarified the related metabolic mechanism. Based on dynamic monitoring of pH and the concentrations of nitrogen compounds as well as high-throughput sequencing analysis of the structural succession of microbial communities in the tested salted radish, we determined that the halophilic archaea derived from pickling salt dominate the natural degradation of nitrite via denitrification. Based on isolation, identification, nitrite reduction assays, and genome annotation, we further determined that Haloarcula, Halolamina, and Halobacterium were the key genera. These halophilic archaea might cope with high salt stress through the "salt-in" mechanism with the assistance of the accumulation of potassium ions, obtain electrons necessary for "truncated denitrification" from the metabolism of extracellular glucose absorbed from salted radish, and efficiently reduce nitrite to nitrogen, bypassing nitrite generation from nitrate reduction. The present study provides important information for the prevention and control of nitrite hazards in salted vegetables with high salinity, such as salted radish.


Subject(s)
Nitrites , Raphanus , China , Nitrates , Nitrites/metabolism , Nitrogen/metabolism , Raphanus/chemistry
20.
Nutrients ; 13(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34959999

ABSTRACT

In this study, we investigated the pharmacological effect of a water extract of Raphani Semen (RSWE) on alcoholic fatty liver disease (AFLD) using ethanol-induced AFLD mice (the NIAAA model) and palmitic acid (PA)-induced steatosis HepG2 cells. An RSWE supplement improved serum and hepatic triglyceride (TG) levels of AFLD mice, as well as their liver histological structure. To explore the molecular action of RSWE in the improvement of AFLD, we investigated the effect of RSWE on four major pathways for lipid homeostasis in the liver: free fatty acid transport, lipogenesis, lipolysis, and ß-oxidation. Importantly, RSWE decreased the mRNA expression of de novo lipogenesis-related genes, such as Srebf1, Cebpa, Pparg, and Lpin1, as well as the protein levels of these factors, in the liver of AFLD mice. That these actions of RSWE affect lipogenesis was confirmed using PA-induced steatosis HepG2 cells. Overall, our findings suggest that RSWE has the potential for improvement of AFLD by inhibiting de novo lipogenesis.


Subject(s)
Fatty Liver, Alcoholic/drug therapy , Lipogenesis/drug effects , Plant Extracts/pharmacology , Raphanus/chemistry , Seeds/chemistry , Animals , Ethanol/adverse effects , Fatty Acids, Nonesterified/metabolism , Fatty Liver, Alcoholic/metabolism , Hep G2 Cells , Humans , Lipid Metabolism/drug effects , Lipolysis/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction/drug effects , Palmitic Acid/adverse effects , Phosphatidate Phosphatase/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...