Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Cell Death Dis ; 15(6): 409, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862475

ABSTRACT

Low glucose is a common microenvironment for rapidly growing solid tumors, which has developed multiple approaches to survive under glucose deprivation. However, the specific regulatory mechanism remains largely elusive. In this study, we demonstrate that glucose deprivation, while not amino acid or serum starvation, transactivates the expression of DCAF1. This enhances the K48-linked polyubiquitination and proteasome-dependent degradation of Rheb, inhibits mTORC1 activity, induces autophagy, and facilitates cancer cell survival under glucose deprivation conditions. This study identified DCAF1 as a new cellular glucose sensor and uncovered new insights into mechanism of DCAF1-mediated inactivation of Rheb-mTORC1 pathway for promoting cancer cell survival in response to glucose deprivation.


Subject(s)
Cell Survival , Glucose , Mechanistic Target of Rapamycin Complex 1 , Ras Homolog Enriched in Brain Protein , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Ras Homolog Enriched in Brain Protein/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Glucose/metabolism , Cell Line, Tumor , Autophagy , Ubiquitination , Signal Transduction , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Proteasome Endopeptidase Complex/metabolism , HEK293 Cells , Monomeric GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
2.
Biochem Biophys Res Commun ; 725: 150248, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38870847

ABSTRACT

The excessive migration and proliferation of vascular smooth muscle cells (VSMCs) plays a vital role in vascular intimal hyperplasia. CIRBP is involved in the proliferation of various cancer cells. This study was aimed to explore the role of CIRBP in the proliferation and migration of VSMCs. Adenovirus was used to interfere with cold-inducible RNA-binding protein (CIRBP) expression, while lentivirus was used to overexpress Ras homolog enriched in brain (Rheb). Western blotting and qRT-PCR were used to evaluate the expression of CIRBP, Rheb, and mechanistic target of rapamycin complex 1 (mTORC1) activity. The cell proliferation was determined by Ki67 immunofluorescence staining and CCK-8 assay. The wound healing assay was performed to assess cell migration. Additionally, immunohistochemistry was conducted to explore the role of CIRBP in intimal hyperplasia after vascular injury. We found that silencing CIRBP inhibited the proliferation and migration of VSMCs, decreased the expression of Rheb and mTORC1 activity. Restoration of mTORC1 activity via insulin or overexpression of Rheb via lentiviral transfection both attenuated the inhibitory effects of silencing CIRBP on the proliferation and migration of VSMCs. Moreover, Rheb overexpression abolished the inhibitory effect of silencing CIRBP on mTORC1 activity in VSMCs. CIRBP was upregulated in the injured carotid artery. Silencing CIRBP ameliorated intimal hyperplasia after vascular injury. In the summary, silencing CIRBP attenuates mTORC1 activity via reducing Rheb expression, thereby supressing the proliferation and migration of VSMCs and intimal hyperplasia after vascular injury.


Subject(s)
Cell Movement , Cell Proliferation , Mechanistic Target of Rapamycin Complex 1 , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , RNA-Binding Proteins , Ras Homolog Enriched in Brain Protein , Mechanistic Target of Rapamycin Complex 1/metabolism , Ras Homolog Enriched in Brain Protein/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/pathology , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/cytology , Cells, Cultured , Signal Transduction , Male , Rats , Rats, Sprague-Dawley , Humans
3.
Commun Biol ; 7(1): 756, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907105

ABSTRACT

Tuberous sclerosis complex 2 (TSC2) crucially suppresses Rheb activity to prevent mTORC1 activation. However, mutations in TSC genes lead to mTORC1 overactivation, thereby causing various developmental disorders and cancer. Therefore, the discovery of novel Rheb inhibitors is vital to prevent mTOR overactivation. Here, we reveals that the anti-inflammatory cytokine IL-37d can bind to lysosomal Rheb and suppress its activity independent of TSC2, thereby preventing mTORC1 activation. The binding of IL-37d to Rheb switch-II subregion destabilizes the Rheb-mTOR and mTOR-S6K interactions, further halting mTORC1 signaling. Unlike TSC2, IL-37d is reduced under ethanol stimulation, which results in mitigating the suppression of lysosomal Rheb-mTORC1 activity. Consequently, the recombinant human IL-37d protein (rh-IL-37d) with a TAT peptide greatly improves alcohol-induced liver disorders by hindering Rheb-mTORC1 axis overactivation in a TSC2- independent manner. Together, IL-37d emerges as a novel Rheb suppressor independent of TSC2 to terminate mTORC1 activation and improve abnormal lipid metabolism in the liver.


Subject(s)
Liver Diseases, Alcoholic , Mechanistic Target of Rapamycin Complex 1 , Ras Homolog Enriched in Brain Protein , Signal Transduction , Tuberous Sclerosis Complex 2 Protein , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Ras Homolog Enriched in Brain Protein/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Humans , Animals , Mice , Tuberous Sclerosis Complex 2 Protein/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/genetics , Interleukin-1/metabolism , Interleukin-1/genetics , Mice, Inbred C57BL , Male , HEK293 Cells
5.
Science ; 384(6693): eadk6742, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38669575

ABSTRACT

Drugs of abuse are thought to promote addiction in part by "hijacking" brain reward systems, but the underlying mechanisms remain undefined. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we found that drugs of abuse augment dopaminoceptive ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell type-specific manner. Combining FOS-Seq, CRISPR-perturbation, and single-nucleus RNA sequencing, we identified Rheb as a molecular substrate that regulates cell type-specific signal transduction in NAc while enabling drugs to suppress natural reward consumption. Mapping NAc-projecting regions activated by drugs of abuse revealed input-specific effects on natural reward consumption. These findings characterize the dynamic, molecular and circuit basis of a common reward pathway, wherein drugs of abuse interfere with the fulfillment of innate needs.


Subject(s)
Homeostasis , Nucleus Accumbens , Reward , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Animals , Mice , Neurons/metabolism , Illicit Drugs/adverse effects , Ras Homolog Enriched in Brain Protein/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Male , Mice, Inbred C57BL , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Signal Transduction , Substance-Related Disorders , Single-Cell Analysis , Cocaine/pharmacology , Calcium/metabolism
6.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338768

ABSTRACT

Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.


Subject(s)
Mechanistic Target of Rapamycin Complex 1 , Neoplasms , Ras Homolog Enriched in Brain Protein , Brain/metabolism , Neoplasms/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Ras Homolog Enriched in Brain Protein/metabolism , Sirolimus , Mechanistic Target of Rapamycin Complex 1/metabolism
7.
Curr Med Sci ; 43(6): 1195-1200, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38153629

ABSTRACT

OBJECTIVE: This study aimed to investigate the potential mechanisms by which lysyl oxidase like 3 (LOXL3) affects the autophagy in chondrocytes in osteoarthritis (OA), specifically through the activation of mammalian target of rapamycin complex 1 (mTORC1). METHODS: To establish an OA model, rats underwent anterior cruciate ligament transection (ACLT). Chondrocytes were isolated from cartilage tissues and cultured. Western blotting was performed to assess the expression of LOXL3, Rheb, phosphorylation of p70S6K (p-p70S6K, a downstream marker of mTORC1), and autophagy markers. The autophagy of chondrocytes was observed using an immunofluorescence assay. RESULTS: The expression levels of both LOXL3 and Rheb proteins were upregulated in chondrocytes isolated from the OA model cartilage, in comparison to those from the normal cartilage. The silencing of LOXL3 resulted in a decrease in the protein levels of Rheb and p-p70S6K, as well as an increase in the expression of autophagy-related proteins. Additionally, the effect of LOXL3 could be reversed through the silencing of Rheb. The results of the immunofluorescence assay confirmed the impact of LOXL3 and Rheb on chondrocyte autophagy. CONCLUSION: LOXL3 inhibits chondrocyte autophagy by activating the Rheb and mTORC1 signaling pathways.


Subject(s)
Amino Acid Oxidoreductases , Chondrocytes , Osteoarthritis , Animals , Rats , Autophagy/genetics , Mammals , Mechanistic Target of Rapamycin Complex 1/genetics , Osteoarthritis/genetics , Ras Homolog Enriched in Brain Protein/genetics , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Amino Acid Oxidoreductases/genetics
8.
Protein Sci ; 32(8): e4731, 2023 08.
Article in English | MEDLINE | ID: mdl-37462942

ABSTRACT

The mTORC1 signaling pathway regulates cell growth and metabolism in a variety of organisms from yeast to human, and inhibition of the mTORC1 pathway has the prospect to treat cancer or achieve longevity. The tuberous sclerosis protein complex (TSCC) is a master negative regulator of the mTORC1 signaling pathway through hydrolyzing the GTP loaded on the small GTPase Rheb, which is a key activator of mTOR. However, the large size (~700 kDa) and complex structural organization of TSCC render it vulnerable to degradation and inactivation, thus limiting its potential application. In this work, based on thorough analysis and understanding of the structural mechanism of how the stabilization domain of TSC2 secures the association of TSC2-GAP with Rheb and thus enhances its GAP activity, we designed two proteins, namely SSG-MTM (short stabilization domain and GAP domain-membrane targeting motif) and SSG-TSC1N, which were able to function like TSCC to negatively regulate Rheb and mTORC1, but with much-reduced sizes (~1/15 and ~ 1/9 of the size of TSCC, respectively). Biochemical and cell biological assays demonstrated that these designed proteins indeed could promote the GTPase activity of Rheb to hydrolyze GTP, inhibit the kinase activity of mTORC1, and prevent mTORC1 from down-regulating catabolism and autophagy.


Subject(s)
Mechanistic Target of Rapamycin Complex 1 , Neuropeptides , Tuberous Sclerosis Complex 2 Protein , Tuberous Sclerosis , Humans , Guanosine Triphosphate , Mechanistic Target of Rapamycin Complex 1/metabolism , Multiprotein Complexes/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Ras Homolog Enriched in Brain Protein/metabolism , Tuberous Sclerosis/genetics , Tuberous Sclerosis/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/metabolism , Tumor Suppressor Proteins
9.
Neurology ; 101(2): 78-82, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37015817

ABSTRACT

OBJECTIVE: To describe a child meeting diagnostic criteria for tuberous sclerosis complex (TSC) carrying a pathogenic somatic variant in RHEB, but no pathogenic variants in the 2 known TSC genes, TSC1 or TSC2. METHODS: We present the clinical and imaging findings in a child presenting with drug-resistant focal seizures and multiple cortical tubers, a subependymal giant cell astrocytoma and multiple subependymal nodules in 1 cerebral hemisphere. Targeted panel sequencing and exome sequencing were performed on genomic DNA derived from blood and resected tuber tissue. RESULTS: The child satisfied clinical diagnostic criteria for TSC, having 3 major features, only 2 of which are required for diagnosis. Genetic testing did not identify pathogenic variants or copy number variations in TSC1 or TSC2 but identified a pathogenic somatic RHEB variant (NM_005614.4:c.104_105delACinsTA [p.Tyr35Leu]) in the cortical tuber. DISCUSSION: RHEB is a partner of the TSC1/2 complex in the mechanistic target of rapamycin pathway. Somatic variants in RHEB are associated with focal cortical dysplasia and hemimegalencephaly. We propose that variants in RHEB may explain some of the genetically undiagnosed TSC cases and may be the third gene for TSC, or TSC3.


Subject(s)
Tuberous Sclerosis , Tumor Suppressor Proteins , Humans , Child , Tumor Suppressor Proteins/genetics , Mutation/genetics , Tuberous Sclerosis/complications , Tuberous Sclerosis/diagnostic imaging , Tuberous Sclerosis/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , DNA Copy Number Variations , Ras Homolog Enriched in Brain Protein/genetics
10.
PLoS Genet ; 18(11): e1010483, 2022 11.
Article in English | MEDLINE | ID: mdl-36374919

ABSTRACT

The target of the rapamycin (TOR) signaling pathway plays a negative role in controlling virulence in phytopathogenic fungi. However, the actual targets involved in virulence are currently unknown. Using the corn smut fungus Ustilago maydis, we tried to address the effects of the ectopic activation of TOR on virulence. We obtained gain-of-function mutations in the Rheb GTPase, one of the conserved TOR kinase regulators. We have found that unscheduled activation of Rheb resulted in the alteration of the proper localization of the pheromone receptor, Pra1, and thereby pheromone insensitivity. Since pheromone signaling triggers virulence in Ustilaginales, we believe that the Rheb-induced pheromone blindness was responsible for the associated lack of virulence. Strikingly, although these effects required the concourse of the Rsp5 ubiquitin ligase and the Art3 α-arrestin, the TOR kinase was not involved. Several eukaryotic organisms have shown that Rheb transmits environmental information through TOR-dependent and -independent pathways. Therefore, our results expand the range of signaling manners at which environmental conditions could impinge on the virulence of phytopathogenic fungi.


Subject(s)
Ustilago , Ustilago/genetics , Pheromones/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Ras Homolog Enriched in Brain Protein/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Zea mays/metabolism , Fungi/metabolism , Blindness , Fungal Proteins/genetics , Fungal Proteins/metabolism
11.
Biochem Biophys Res Commun ; 621: 74-79, 2022 09 17.
Article in English | MEDLINE | ID: mdl-35810594

ABSTRACT

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature T lymphocytes. Although various therapeutic approaches have been developed, refractoriness of chemotherapy and relapse cause a poor prognosis of the disease and further therapeutic strategies are required. Here, we report that Ras homolog enriched in brain (RHEB), a critical regulator of mTOR complex 1 activity, is a potential target for T-ALL therapy. In this study, we established an sgRNA library that comprehensively targeted mTOR upstream and downstream pathways, including autophagy. CRISPR/Cas9 dropout screening revealed critical roles of mTOR-related molecules in T-ALL cell survival. Among the regulators, we focused on RHEB because we previously found that it is dispensable for normal hematopoiesis in mice. Transcriptome and metabolic analyses revealed that RHEB deficiency suppressed de novo nucleotide biosynthesis, leading to human T-ALL cell death. Importantly, RHEB deficiency suppressed tumor growth in both mouse and xenograft models. Our data provide a potential strategy for efficient therapy of T-ALL by RHEB-specific inhibition.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Ras Homolog Enriched in Brain Protein , Animals , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Ras Homolog Enriched in Brain Protein/genetics , Ras Homolog Enriched in Brain Protein/metabolism , Signal Transduction , T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases/metabolism
12.
DNA Cell Biol ; 41(7): 683-690, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35687365

ABSTRACT

Ras homologue enriched in brain 1 (Rheb1), an upstream activator of the mechanistic target of rapamycin complex 1 (mTORC1), is known to modulate various cellular processes. However, its impact on bone metabolism in vivo remains unknown. The study aimed at understanding the role of Rheb1 on bone homeostasis. We measured the serum parameters and performed histomorphometry, quantitative real-time polymerase chain reaction, and Western blotting, along with the generation of mouse gene knockout (KO) model, and conducted a microcomputed tomography analysis and tartrate-resistant acid phosphatase staining, to delineate the impacts of Rheb1 on bone homeostasis. In the Rheb1 KO mice, the results showed that Rheb1 KO caused significant damage to the bone microarchitecture, indicating that mTORC1 activity was essential for the regulation of bone homeostasis. Specifically, suppressed mineralization activity in primary osteoblasts and a decreased osteoblast number were observed in the Rheb1 KO mice, demonstrating that loss of Rheb1 led to impaired osteoblastic differentiation. Furthermore, the higher apoptotic ratio in Rheb1-null osteocytes could promote Tnfsf11 expression and lead to an increase in osteoclasts, indicating increased bone resorption activity in the KO mice. The findings confirmed that Rheb1 deletion in osteoblasts/osteocytes led to osteopenia due to impaired bone formation and enhanced bone resorption.


Subject(s)
Bone Diseases, Metabolic , Bone Resorption , Osteocytes , Ras Homolog Enriched in Brain Protein , Animals , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/metabolism , Bone Diseases, Metabolic/pathology , Bone Resorption/genetics , Bone Resorption/metabolism , Cell Differentiation , Gene Deletion , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Knockout , Osteoblasts/metabolism , Osteoblasts/pathology , Osteocytes/metabolism , Osteocytes/pathology , Osteogenesis/genetics , Ras Homolog Enriched in Brain Protein/genetics , Ras Homolog Enriched in Brain Protein/metabolism , X-Ray Microtomography
13.
J Biol Chem ; 298(7): 102044, 2022 07.
Article in English | MEDLINE | ID: mdl-35595099

ABSTRACT

Eukaryotic translation initiation factor 3 subunit A (eIF3a), the largest subunit of the eIF3 complex, has been shown to be overexpressed in malignant cancer cells, potentially making it a proto-oncogene. eIF3a overexpression can drive cancer cell proliferation but contributes to better prognosis. While its contribution to prognosis was previously shown to be due to its function in suppressing synthesis of DNA damage repair proteins, it remains unclear how eIF3a regulates cancer cell proliferation. In this study, we show using genetic approaches that eIF3a controls cell proliferation by regulating glucose metabolism via the phosphorylation and activation of AMP-activated protein kinase alpha (AMPKα) at Thr172 in its kinase activation loop. We demonstrate that eIF3a regulates AMPK activation mainly by controlling synthesis of the small GTPase Rheb, largely independent of the well-known AMPK upstream liver kinase B1 and Ca2+/calmodulin-dependent protein kinase kinase 2, and also independent of mammalian target of rapamycin signaling and glucose levels. Our findings suggest that glucose metabolism in and proliferation of cancer cells may be translationally regulated via a novel eIF3a-Rheb-AMPK signaling axis.


Subject(s)
AMP-Activated Protein Kinases , Eukaryotic Initiation Factor-3 , Glucose , Ras Homolog Enriched in Brain Protein , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Cell Line, Tumor , Cell Proliferation , Eukaryotic Initiation Factor-3/genetics , Eukaryotic Initiation Factor-3/metabolism , Glucose/metabolism , Humans , Ras Homolog Enriched in Brain Protein/genetics , Ras Homolog Enriched in Brain Protein/metabolism
14.
Cell Chem Biol ; 29(6): 1037-1045.e4, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35294906

ABSTRACT

The small GTPase Ras homolog enriched in brain (Rheb) plays a critical role in activating the mechanistic target of rapamycin complex 1 (mTORC1), a signaling hub that regulates various cellular functions. We recently observed nuclear mTORC1 activity, raising an intriguing question as to how Rheb, which is known to be farnesylated and localized to intracellular membranes, regulates nuclear mTORC1. In this study, we found that active Rheb is present in the nucleus and required for nuclear mTORC1 activity. We showed that inhibition of farnesyltransferase reduced cytosolic, but not nuclear, mTORC1 activity. Furthermore, a farnesylation-deficient Rheb mutant, with preferential nuclear localization and specific lysosome tethering, enables nuclear and cytosolic mTORC1 activities, respectively. These data suggest that non-farnesylated Rheb is capable of interacting with and activating mTORC1, providing mechanistic insights into the molecular functioning of Rheb as well as regulation of the recently observed, active pool of nuclear mTORC1.


Subject(s)
Neuropeptides , TOR Serine-Threonine Kinases , Brain/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Multiprotein Complexes/metabolism , Neuropeptides/metabolism , Prenylation , Ras Homolog Enriched in Brain Protein/genetics , Ras Homolog Enriched in Brain Protein/metabolism , TOR Serine-Threonine Kinases/metabolism
15.
Oxid Med Cell Longev ; 2022: 8603427, 2022.
Article in English | MEDLINE | ID: mdl-35222806

ABSTRACT

Ischemic stroke is a common disease of the central nervous system, and ischemic brain injury (IBI) is its main manifestation. Recently, extracellular vesicles (EVs) have been strongly related to the diagnosis and treatment of IBI. However, the underlying mechanism of their effects remains enigmatic. In the present study, we aimed to study how miR-155-5p plays a role in choroid plexus epithelial (CPE) cell-derived EVs in IBI pathology. We found that miR-155-5p expression was enriched in CPE cell-derived EVs, which were subsequently internalized by neurons, enabling the delivery of miR-155-5p into neurons. An inducible oxygen and glucose deprivation and reoxygenation (OGD/R) cell model was developed to mimic ischemic neuronal injury in vitro. miR-155-5p overexpression led to reduced neuron viability, promoted apoptosis, elevated autophagic proteins' expression, and activated NLR family pyrin domain-containing 3- (NLRP3-) related inflammasomes, thereby aggravating OGD-induced neuronal injury. A dual-luciferase reporter assay exhibited that miR-155-5p could inhibit the Ras homolog enriched in brain (Rheb) expression, a mechanism critical for miR-155-5p-mediated neuronal injury. Furthermore, a mouse IBI model was developed using the transient middle cerebral artery occlusion (tMCAO) method. Animal experiments verified that miR-155p delivery via CPE cell-derived EVs aggravated IBI by suppressing Rheb expression. In conclusion, miR-155-5p in CPE-derived EVs can aggravate IBI pathology by suppressing Rheb expression and promoting NLRP3-mediated inflammasomes, suggesting its role as a potential therapeutic target in IBI.


Subject(s)
Autophagy , Brain Ischemia/pathology , Choroid Plexus/metabolism , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Animals , Apoptosis , Brain Ischemia/genetics , Brain Ischemia/metabolism , Extracellular Vesicles/genetics , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Inflammasomes/metabolism , Inflammation , Mice , MicroRNAs/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neurons/metabolism , Neurons/pathology , Ras Homolog Enriched in Brain Protein/genetics , Ras Homolog Enriched in Brain Protein/metabolism , Signal Transduction
16.
J Biol Chem ; 297(6): 101428, 2021 12.
Article in English | MEDLINE | ID: mdl-34801548

ABSTRACT

Small GTPases cycle between an inactive GDP-bound and an active GTP-bound state to control various cellular events, such as cell proliferation, cytoskeleton organization, and membrane trafficking. Clarifying the guanine nucleotide-bound states of small GTPases is vital for understanding the regulation of small GTPase functions and the subsequent cellular responses. Although several methods have been developed to analyze small GTPase activities, our knowledge of the activities for many small GTPases is limited, partly because of the lack of versatile methods to estimate small GTPase activity without unique probes and specialized equipment. In the present study, we developed a versatile and straightforward HPLC-based assay to analyze the activation status of small GTPases by directly quantifying the amounts of guanine nucleotides bound to them. This assay was validated by analyzing the RAS-subfamily GTPases, including HRAS, which showed that the ratios of GTP-bound forms were comparable with those obtained in previous studies. Furthermore, we applied this assay to the investigation of psychiatric disorder-associated mutations of RHEB (RHEB/P37L and RHEB/S68P), revealing that both mutations cause an increase in the ratio of the GTP-bound form in cells. Mechanistically, loss of sensitivity to TSC2 (a GTPase-activating protein for RHEB) for RHEB/P37L, as well as both decreased sensitivity to TSC2 and accelerated guanine-nucleotide exchange for RHEB/S68P, is involved in the increase of their GTP-bound forms, respectively. In summary, the HPLC-based assay developed in this study provides a valuable tool for analyzing small GTPases for which the activities and regulatory mechanisms are less well understood.


Subject(s)
Mental Disorders , Mutation, Missense , Ras Homolog Enriched in Brain Protein , Amino Acid Substitution , Chromatography, High Pressure Liquid , Enzyme Activation/genetics , HEK293 Cells , HeLa Cells , Humans , Mental Disorders/enzymology , Mental Disorders/genetics , Ras Homolog Enriched in Brain Protein/genetics , Ras Homolog Enriched in Brain Protein/metabolism
17.
Int J Mol Sci ; 22(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34445471

ABSTRACT

The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is activated by the small G-protein, Ras homolog enriched in brain (RHEB-GTPase). On lysosome, RHEB activates mTORC1 by binding the domains of N-heat, M-heat, and the focal adhesion targeting (FAT) domain, which allosterically regulates ATP binding in the active site for further phosphorylation. The crucial role of RHEB in regulating growth and survival through mTORC1 makes it a targetable site for anti-cancer therapeutics. However, the binding kinetics of RHEB to mTORC1 is still unknown at the molecular level. Therefore, we studied the kinetics by in vitro and in-cell protein-protein interaction (PPI) assays. To this end, we used the split-luciferase system (NanoBiT®) for in-cell studies and prepared proteins for the in vitro measurements. Consequently, we demonstrated that RHEB binds to the whole mTOR both in the presence or absence of GTPγS, with five-fold weaker affinity in the presence of GTPγS. In addition, RHEB bound to the truncated mTOR fragments of N-heat domain (∆N, aa 60-167) or M-heat domain (∆M, aa 967-1023) with the same affinity in the absence of GTP. The reconstructed binding site of RHEB, ∆N-FAT-M, however, bound to RHEB with the same affinity as ∆N-M, indicating that the FAT domain (∆FAT, aa 1240-1360) is dispensable for RHEB binding. Furthermore, RHEB bound to the truncated kinase domain (∆ATP, aa 2148-2300) with higher affinity than to ∆N-FAT-M. In conclusion, RHEB engages two different binding sites of mTOR, ∆N-FAT-M and ∆ATP, with higher affinity for ∆ATP, which likely regulates the kinase activity of mTOR through multiple different biding modes.


Subject(s)
Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Interaction Domains and Motifs , Ras Homolog Enriched in Brain Protein/metabolism , Binding Sites , HEK293 Cells , Humans , In Vitro Techniques , Kinetics , Mechanistic Target of Rapamycin Complex 1/genetics , Phosphorylation , Ras Homolog Enriched in Brain Protein/genetics
18.
Life Sci ; 277: 119462, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33831427

ABSTRACT

AIMS: Mammalian/mechanistic target of rapamycin (mTOR) is essential in the progression of pancreatic adenocarcinoma (PAAD). But the role of Ras homolog enriched in brain (RHEB), a key activator of mTORC1, is unclear in this disease. This work aims to clarify the function of RHEB in PAAD. MATERIALS AND METHODS: A pan-cancer analysis of RHEB was conducted by using data from several public available databases. Immunohistochemical (IHC) staining on a tissue microarray was used to validate the expression of RHEB in PAAD. In vitro experiments were conducted to explore the function of RHEB in the disease. An integrated bioinformatics tools were used to understand the mechanism of RHEB and construct a RHEB-related prognostic signature. KEY FINDINGS: RHEB was significantly overexpressed in PAAD and high expression of the gene was associated with poor prognosis. RHEB promoted proliferation, migration and invasion of pancreatic cancer cells. Gene set enrichment analysis (GSEA) showed that RHEB participated in cell cycle progression and WNT signaling pathway. A RHEB-related prognostic signature was developed, and PAAD patients with high risk score had a significantly shorter overall survival. SIGNIFICANCE: RHEB was up-regulated in PAAD and might be a useful therapeutic target.


Subject(s)
Adenoma/metabolism , Pancreatic Neoplasms/metabolism , Ras Homolog Enriched in Brain Protein/metabolism , Adenocarcinoma/pathology , Adenoma/genetics , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Databases, Genetic , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Pancreas/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Prognosis , Ras Homolog Enriched in Brain Protein/genetics , Signal Transduction/genetics , Pancreatic Neoplasms
19.
Cell Mol Life Sci ; 78(8): 4035-4052, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33834258

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) is an important regulator of cellular metabolism that is commonly hyperactivated in cancer. Recent cancer genome screens have identified multiple mutations in Ras-homolog enriched in brain (Rheb), the primary activator of mTORC1 that might act as driver oncogenes by causing hyperactivation of mTORC1. Here, we show that a number of recurrently occurring Rheb mutants drive hyperactive mTORC1 signalling through differing levels of insensitivity to the primary inactivator of Rheb, tuberous sclerosis complex. We show that two activated mutants, Rheb-T23M and E40K, strongly drive increased cell growth, proliferation and anchorage-independent growth resulting in enhanced tumour growth in vivo. Proteomic analysis of cells expressing the mutations revealed, surprisingly, that these two mutants promote distinct oncogenic pathways with Rheb-T23M driving an increased rate of anaerobic glycolysis, while Rheb-E40K regulates the translation factor eEF2 and autophagy, likely through differential interactions with 5' AMP-activated protein kinase (AMPK) which modulate its activity. Our findings suggest that unique, personalized, combination therapies may be utilised to treat cancers according to which Rheb mutant they harbour.


Subject(s)
Mechanistic Target of Rapamycin Complex 1/metabolism , Neoplasms/genetics , Point Mutation , Ras Homolog Enriched in Brain Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism , Tuberous Sclerosis Complex 2 Protein/metabolism , Animals , HEK293 Cells , HeLa Cells , Humans , Mice , Models, Molecular , NIH 3T3 Cells , Neoplasms/metabolism , Proteome/metabolism , Proteomics , Ras Homolog Enriched in Brain Protein/metabolism , Signal Transduction
20.
Biotechnol Bioeng ; 118(7): 2422-2434, 2021 07.
Article in English | MEDLINE | ID: mdl-33694218

ABSTRACT

Monoclonal antibodies (mAbs) are high value agents used for disease therapy ("biologic drugs") or as diagnostic tools which are widely used in the healthcare sector. They are generally manufactured in mammalian cells, in particular Chinese hamster ovary (CHO) cells cultured in defined media, and are harvested from the medium. Rheb is a small GTPase which, when bound to GTP, activates mechanistic target of rapamycin complex 1, a protein kinase that drives anabolic processes including protein synthesis and ribosome biogenesis. Here, we show that certain constitutively active mutants of Rheb drive faster protein synthesis in CHO cells and increase the expression of proteins involved in the processing of secreted proteins in the endoplasmic reticulum, which expands in response to expression of Rheb mutants. Active Rheb mutants, in particular Rheb[T23M], drive increased cell number under serum-free conditions similar to those used in the biotechnology industry. Rheb[T23M] also enhances the expression of the reporter protein luciferase and, especially strongly, the secreted Gaussia luciferase. Moreover, Rheb[T23M] markedly (2-3 fold) enhances the amount of this luciferase and of a model immunoglobulin secreted into the medium. Our data clearly demonstrate that expressing Rheb[T23M] in CHO cells provides a simple approach to promoting their growth in defined medium and the production of secreted proteins of high commercial value.


Subject(s)
Amino Acid Substitution , Mutation, Missense , Ras Homolog Enriched in Brain Protein , Animals , CHO Cells , Cricetulus , HEK293 Cells , Humans , Ras Homolog Enriched in Brain Protein/genetics , Ras Homolog Enriched in Brain Protein/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...