Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.720
Filter
1.
Sci Rep ; 14(1): 16441, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013937

ABSTRACT

Cement mediated peri-implantitis accounts for 1.9-75% of dental implant failures associated with peri-implant diseases. This study evaluated the biological impact of dental cements on osseointegrated implants using Lewis rats. Twenty-two rats were distributed into 6 groups: negative control (NC) soft diet (SD), and hard diet (HD); positive control SD and HD (n = 3); Implant + bio-ceramic Cement (BC) SD and HD which included contralateral Sham sites (n = 5). Titanium implants were placed on either side of the maxillae and allowed to heal for 14 days. Later, both sides of experimental groups underwent a re-entry surgery to simulate clinical cementation. The right side received 0.60 mg of BC. At 14 days post cement application, maxillae were harvested for clinical, microtomographic, and histological evaluations. Clinical and microtomographic evaluations indicated evidence of extensive inflammation and circumferential bone resorption around BC implants in comparison to NC. Histology revealed cement particles surrounded by inflammatory infiltrate in the implant area accompanied by biofilm for SD groups. Both sides of BC indicated intensive bone resorption accompanied by signs of osteolysis when compared to NC. Cemented groups depicted significantly lower bone to implant contact when compared to NC. In conclusion, residual cement extravasation negatively impacted osseointegrated implants after re-entry surgeries.


Subject(s)
Dental Cements , Dental Implants , Peri-Implantitis , X-Ray Microtomography , Animals , Rats , Dental Implants/adverse effects , Peri-Implantitis/pathology , Peri-Implantitis/etiology , Male , Rats, Inbred Lew , Osseointegration , Titanium/adverse effects , Disease Models, Animal , Maxilla/surgery
2.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000529

ABSTRACT

Despite significant efforts toward improving therapy for septic shock, mortality remains high. Applying veno-arterial (V-A) extracorporeal membrane oxygenation (ECMO) in this context remains controversial. Since the cannulation of the femoral artery for V-A ECMO return leads to lower body hyperoxia, this study investigated the impact of V-A ECMO therapy on the intestinal and hepatic microcirculation during septic shock in a rodent model. Thirty male Lewis rats were randomly assigned to receive V-A ECMO therapy with low (60 mL/kg/min) or high (90 mL/kg/min) blood flow or a sham procedure. Hemodynamic data were collected through a pressure-volume catheter in the left ventricle and a catheter in the lateral tail artery. Septic shock was induced by intravenous administration of lipopolysaccharide (1 mg/kg). The rats received lung-protective ventilation during V-A ECMO therapy. The hepatic and intestinal microcirculation was measured by micro-lightguide spectrophotometry after median laparotomy for two hours. Systemic and pulmonary inflammation was detected via enzyme-linked immunosorbent assays (ELISA) of the plasma and bronchoalveolar lavage (BAL), respectively, measuring tumor necrosis factor-alpha (TNF-α), interleukins 6 (IL-6) and 10 (IL-10), and C-X-C motif ligands 2 (CXCL2) and 5 (CXCL5). Oxygen saturation and relative hemoglobin concentration were reduced in the hepatic and intestinal microcirculation during V-A ECMO therapy, independent of the blood flow rate. Further, rats treated with V-A ECMO therapy also presented elevated systolic, diastolic, and mean arterial blood pressure and increased stroke volume, cardiac output, and left ventricular end-diastolic volume. However, left ventricular end-diastolic pressure was only elevated during high-flow V-A ECMO therapy. Blood gas analysis revealed a dilutional anemia during V-A ECMO therapy. ELISA analysis showed an elevated plasma CXCL2 concentration only during high-flow V-A ECMO therapy and elevated BAL CXCL2 and CXCL5 concentrations only during low-flow V-A ECMO therapy. Rats undergoing V-A ECMO therapy exhibited impaired microcirculation of the intestine and liver during septic shock despite increased blood pressure and cardiac output. Increased pulmonary inflammation was detected only during low-flow V-A ECMO therapy in septic shock.


Subject(s)
Disease Models, Animal , Extracorporeal Membrane Oxygenation , Intestines , Liver , Microcirculation , Rats, Inbred Lew , Shock, Septic , Animals , Extracorporeal Membrane Oxygenation/methods , Male , Rats , Shock, Septic/therapy , Shock, Septic/physiopathology , Shock, Septic/metabolism , Liver/metabolism , Liver/blood supply , Intestines/blood supply , Pneumonia/therapy , Pneumonia/metabolism , Pneumonia/physiopathology , Hemodynamics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood
3.
Sci Rep ; 14(1): 15174, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956161

ABSTRACT

Coronary artery bypass surgery can result in endothelial dysfunction due to ischemia/reperfusion (IR) injury. Previous studies have demonstrated that DuraGraft helps maintain endothelial integrity of saphenous vein grafts during ischemic conditions. In this study, we investigated the potential of DuraGraft to mitigate endothelial dysfunction in arterial grafts after IR injury using an aortic transplantation model. Lewis rats (n = 7-9/group) were divided in three groups. Aortic arches from the control group were prepared and rings were immediately placed in organ baths, while the aortic arches of IR and IR + DuraGraft rats were preserved in saline or DuraGraft, respectively, for 1 h before being transplanted heterotopically. After 1 h after reperfusion, the grafts were explanted, rings were prepared, and mounted in organ baths. Our results demonstrated that the maximum endothelium-dependent vasorelaxation to acetylcholine was significantly impaired in the IR group compared to the control group, but DuraGraft improved it (control: 89 ± 2%; IR: 24 ± 1%; IR + DuraGraft: 48 ± 1%, p < 0.05). Immunohistochemical analysis revealed decreased intercellular adhesion molecule-1, 4-hydroxy-2-nonenal, caspase-3 and caspase-8 expression, while endothelial cell adhesion molecule-1 immunoreactivity was increased in the IR + DuraGraft grafts compared to the IR-group. DuraGraft mitigates endothelial dysfunction following IR injury in a rat bypass model. Its protective effect may be attributed, at least in part, to its ability to reduce the inflammatory response, oxidative stress, and apoptosis.


Subject(s)
Endothelium, Vascular , Rats, Inbred Lew , Reperfusion Injury , Animals , Rats , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Reperfusion Injury/metabolism , Male , Coronary Artery Bypass/methods , Coronary Artery Bypass/adverse effects , Oxidative Stress/drug effects , Intercellular Adhesion Molecule-1/metabolism , Disease Models, Animal , Aldehydes/metabolism , Aldehydes/pharmacology , Caspase 3/metabolism , Vasodilation/drug effects , Apoptosis/drug effects , Acetylcholine/pharmacology
4.
Front Immunol ; 15: 1418594, 2024.
Article in English | MEDLINE | ID: mdl-38975337

ABSTRACT

Introduction: Maternal synbiotic supplementation during pregnancy and lactation can significantly influence the immune system. Prebiotics and probiotics have a positive impact on the immune system by preventing or ameliorating among others intestinal disorders. This study focused on the immunomodulatory effects of B. breve M-16V and short chain galacto-oligosaccharides (scGOS)/long chain fructo-oligosachairdes (lcFOS), including systemic and mucosal compartments and milk composition. Methods: Lewis rats were orally administered with the synbiotic or vehicle during pregnancy (21 days) and lactation (21 days). At the weaning day, small intestine (SI), mammary gland (MG), adipose tissue, milk, mesenteric lymph nodes (MLN), salivary gland (SG), feces and cecal content were collected from the mothers. Results: The immunoglobulinome profile showed increased IgG2c in plasma and milk, as well as elevated sIgA in feces at weaning. The supplementation improved lipid metabolism through enhanced brown adipose tissue activity and reinforced the intestinal barrier by increasing the expression of Muc3, Cldn4, and Ocln. The higher production of short chain fatty acids in the cecum and increased Bifidobacterium counts suggest a potential positive impact on the gastrointestinal tract. Discussion: These findings indicate that maternal synbiotic supplementation during gestation and lactation improves their immunological status and improved milk composition.


Subject(s)
Bifidobacterium breve , Lactation , Milk , Oligosaccharides , Animals , Female , Pregnancy , Bifidobacterium breve/immunology , Milk/immunology , Milk/chemistry , Rats , Rats, Inbred Lew , Dietary Supplements , Synbiotics/administration & dosage , Probiotics/administration & dosage , Probiotics/pharmacology
5.
Transpl Int ; 37: 11336, 2024.
Article in English | MEDLINE | ID: mdl-38962471

ABSTRACT

Segmental grafts from living donors have advantages over grafts from deceased donors when used for small intestine transplantation. However, storage time for small intestine grafts can be extremely short and optimal graft preservation conditions for short-term storage remain undetermined. Secreted factors from mesenchymal stem cells (MSCs) that allow direct activation of preserved small intestine grafts. Freshly excised Luc-Tg LEW rat tissues were incubated in preservation solutions containing MSC-conditioned medium (MSC-CM). Preserved Luc-Tg rat-derived grafts were then transplanted to wild-type recipients, after which survival, injury score, and tight junction protein expression were examined. Luminance for each graft was determined using in vivo imaging. The findings indicated that 30-100 and 3-10 kDa fractions of MSC-CM have superior activating effects for small intestine preservation. Expression of the tight-junction proteins claudin-3, and zonula occludens-1 preserved for 24 h in University of Wisconsin (UW) solution containing MSC-CM with 50-100 kDa, as shown by immunostaining, also indicated effectiveness. Reflecting the improved graft preservation, MSC-CM preloading of grafts increased survival rate from 0% to 87%. This is the first report of successful transplantation of small intestine grafts preserved for more than 24 h using a rodent model to evaluate graft preservation conditions that mimic clinical conditions.


Subject(s)
Intestine, Small , Mesenchymal Stem Cells , Organ Preservation , Rats, Inbred Lew , Animals , Intestine, Small/transplantation , Rats , Organ Preservation/methods , Male , Organ Preservation Solutions , Graft Survival , Culture Media, Conditioned , Zonula Occludens-1 Protein/metabolism , Claudin-3/metabolism , Rats, Transgenic , Glutathione , Raffinose , Allopurinol , Insulin , Adenosine
6.
Wounds ; 36(5): 177-182, 2024 05.
Article in English | MEDLINE | ID: mdl-38861214

ABSTRACT

BACKGROUND: Full-thickness skin defects often are managed with split-thickness skin grafting. The wound healing process, including formation of new vessels during the healing of skin grafts, is complex. OBJECTIVE: To evaluate the microcirculatory changes in the treated tissue after skin grafting to analyze perfusion dynamics during the wound healing process. MATERIALS AND METHODS: Fourteen full-thickness skin defects were created on the back of 14 adult male Lewis rats. All wounds were treated with autologous split-thickness skin grafts. The perfusion dynamics were assessed for 84 days with an O2C device that combines a laser light to determine blood flow and white light to determine postcapillary SO2 and the rHb. RESULTS: Blood flow increased for 50 days after grafting. SO2 decreased in superficial skin layers (depth of 2 mm) and increased in deep skin layers (depth of 8 mm) during the entire observation period. The rHb increased until day 10 in superficial layers and until day 20 in deep tissue layers. CONCLUSION: The microcirculatory changes reflect the different phases of wound healing. Long after the skin transplants were macroscopically healed, alterations in microcirculation were still detected. These alterations were caused by the long-lasting changes in tissue metabolism due to the formation, conversion, and degradation of the dermal matrix and vessels during wound healing and scar formation.


Subject(s)
Microcirculation , Rats, Inbred Lew , Skin Transplantation , Skin , Wound Healing , Animals , Wound Healing/physiology , Microcirculation/physiology , Skin Transplantation/methods , Rats , Male , Skin/blood supply , Disease Models, Animal
7.
Nutrients ; 16(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892716

ABSTRACT

Maternal breast milk plays a key role in providing newborns with passive immunity and stimulating the maturation of an infant's immune system, protecting them from many diseases. It is known that diet can influence the immune system of lactating mothers and the composition of their breast milk. The aim of this study was to establish if a supplementation during the gestation and lactation of Lewis rats with extra virgin olive oil (EVOO), due to the high proportion of antioxidant components in its composition, has an impact on the mother's immune system and on the breast milk's immune composition. For this, 10 mL/kg of either EVOO, refined oil (control oil) or water (REF group) were orally administered once a day to rats during gestation and lactation periods. Immunoglobulin (Ig) concentrations and gene expressions of immune molecules were quantified in several compartments of the mothers. The EVOO group showed higher IgA levels in both the breast milk and the mammary glands than the REF group. In addition, the gene expression of IgA in mammary glands was also boosted by EVOO consumption. Overall, EVOO supplementation during gestation and lactation is safe and does not negatively affect the mother's immune system while improving breast milk immune composition by increasing the presence of IgA, which could be critical for an offspring's immune health.


Subject(s)
Lactation , Olive Oil , Rats, Inbred Lew , Animals , Female , Pregnancy , Rats , Maternal Nutritional Physiological Phenomena , Immunoglobulin A/metabolism , Immunoglobulin A/analysis , Immune System/drug effects , Dietary Supplements , Mammary Glands, Animal/immunology , Mammary Glands, Animal/metabolism , Milk/chemistry , Milk/immunology , Milk, Human/chemistry , Milk, Human/immunology
8.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928327

ABSTRACT

Treatment of critically ill patients with venovenous (V-V) extracorporeal membrane oxygenation (ECMO) has gained wide acceptance in the last few decades. However, the use of V-V ECMO in septic shock remains controversial. The effect of ECMO-induced inflammation on the microcirculation of the intestine, liver, and critically damaged lungs is unknown. Therefore, the aim of this study was to measure the hepatic and intestinal microcirculation and pulmonary inflammatory response in a model of V-V ECMO and septic shock in the rat. Twenty male Lewis rats were randomly assigned to receive V-V ECMO therapy or a sham procedure. Hemodynamic data were measured by a pressure-volume catheter in the left ventricle and a catheter in the lateral tail artery. Septic shock was induced by the intravenous infusion of lipopolysaccharide (1 mg/kg). During V-V ECMO therapy, rats received lung-protective ventilation. The hepatic and intestinal microcirculation was assessed by micro-lightguide spectrophotometry after median laparotomy for 2 h. Systemic and pulmonary inflammation was measured by enzyme-linked immunosorbent assays of plasma and bronchoalveolar lavage (BAL), respectively, which included tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), IL-10, C-X-C motif ligand 2 (CXCL2), and CXCL5. Reduced oxygen saturation and relative hemoglobin concentration were measured in the hepatic and intestinal microcirculation during treatment with V-V ECMO. These animals also showed increased systolic, mean, and diastolic blood pressures. While no differences in left ventricular ejection fraction were observed, animals in the V-V ECMO group presented an increased heart rate, stroke volume, and cardiac output. Blood gas analysis showed dilutional anemia during V-V ECMO, whereas plasma analysis revealed a decreased concentration of IL-10 during V-V ECMO therapy, and BAL measurements showed increased concentrations of TNF-α, CXCL2, and CXCL5. Rats treated with V-V ECMO showed impaired microcirculation of the intestine and liver during septic shock despite increased blood pressure and cardiac output. Despite lung-protective ventilation, increased pulmonary inflammation was recognized during V-V ECMO therapy in septic shock.


Subject(s)
Disease Models, Animal , Extracorporeal Membrane Oxygenation , Intestines , Liver , Microcirculation , Rats, Inbred Lew , Shock, Septic , Animals , Extracorporeal Membrane Oxygenation/methods , Male , Rats , Shock, Septic/therapy , Shock, Septic/physiopathology , Shock, Septic/metabolism , Intestines/blood supply , Liver/metabolism , Liver/blood supply , Pneumonia/therapy , Pneumonia/metabolism , Pneumonia/physiopathology , Hemodynamics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood
9.
Sci Rep ; 14(1): 13969, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886503

ABSTRACT

Periodontitis is a chronic inflammatory disease that affects the periodontal tissues. Although it is associated with various systemic diseases, the impact of periodontitis on kidney transplantation (KT) outcomes, particularly allograft rejection, remains unclear. This study investigated the effect of periodontitis on transplant immunity, specifically examining Porphyromonas gingivalis-derived lipopolysaccharide (LPS-PG). In vitro experiments revealed that LPS-PG increased regulatory T cells (Tregs) in Lewis rat spleen cells. In a mixed lymphocyte reaction assay, concentrations of interferon-γ, indicative of alloreactivity, were lower than in controls when LPS-PG was added to the culture and when LPS-PG-administered Lewis rat spleen cells were used as responders. In a rat KT model, LPS-PG administration to recipients promoted mild tubulitis and low serum creatinine and blood urea nitrogen levels 5 days post-KT compared with PBS-administered controls. Furthermore, LPS-PG-administered recipients had an elevated Treg proportion in their peripheral blood and spleen cells, and increased infiltrating Tregs in kidney allografts, compared with controls. The elevated Treg proportion in peripheral blood and spleen cells had a significant negative correlation with serum creatinine, suggesting elevated Tregs modulated allograft rejection. These findings suggest that periodontitis might modulate alloimmune reactivity through LPS-PG and Tregs, offering insights to refine immunosuppressive strategies for KT recipients.


Subject(s)
Graft Rejection , Kidney Transplantation , Lipopolysaccharides , Porphyromonas gingivalis , Rats, Inbred Lew , T-Lymphocytes, Regulatory , Animals , Porphyromonas gingivalis/immunology , Kidney Transplantation/adverse effects , Rats , T-Lymphocytes, Regulatory/immunology , Male , Graft Rejection/immunology , Allografts , Periodontitis/immunology , Periodontitis/microbiology , Disease Models, Animal , Spleen/immunology
10.
J Biomed Mater Res B Appl Biomater ; 112(7): e35438, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923755

ABSTRACT

Volumetric muscle loss (VML) injury causes irreversible deficits in muscle mass and function, often resulting in permanent disability. The current standard of care is physical therapy, but it is limited in mitigating functional deficits. We have previously optimized a rehabilitation technique using electrically stimulated eccentric contraction training (EST) that improved muscle mass, strength, and size in VML-injured rats. A biosponge scaffold composed of extracellular matrix proteins has previously enhanced muscle function postVML. This study aimed to determine whether combining a regenerative therapy (i.e., biosponge) with a novel rehabilitation technique (i.e., EST) could enhance recovery in a rat model of VML. A VML defect was created by removing ~20% of muscle mass from the tibialis anterior muscle in adult male Lewis rats. Experimental groups included VML-injured rats treated with biosponge with EST or biosponge alone (n = 6/group). EST was implemented 2 weeks postinjury at 150 Hz and was continued for 4 weeks. A linear increase in eccentric torque over 4 weeks showed the adaptability of the VML-injured muscle to EST. Combining biosponge with EST improved peak isometric torque by ~52% compared with biosponge treatment alone at 6 weeks postinjury. Application of EST increased MyoD gene expression and the percentage of large (>2000 µm2) type 2B myofibers but reduced fibrotic tissue deposition in VML-injured muscles. Together, these changes may provide the basis for improved torque production. This study demonstrates the potential for combined regenerative and rehabilitative therapy to improve muscle recovery following VML.


Subject(s)
Muscle, Skeletal , Rats, Inbred Lew , Animals , Male , Rats , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Regeneration , Disease Models, Animal , Electric Stimulation Therapy , Muscle Contraction , Muscular Diseases/pathology , Muscular Diseases/rehabilitation
11.
Int J Pharm ; 657: 124178, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38692499

ABSTRACT

Noninfective uveitis is a major cause of vision impairment, and corticosteroid medication is a mainstay clinical strategy that causes severe side effects. Rapamycin (RAPA), a potent immunomodulator, is a promising treatment for noninfective uveitis. However, because high and frequent dosages are required, it is a great challenge to implement its clinical translation for noninfective uveitis therapy owing to its serious toxicity. In the present study, we engineered an injectable microparticulate drug delivery system based on biodegradable block polymers (i.e., polycaprolactone-poly (ethylene glycol)-polycaprolactone, PCEC) for efficient ocular delivery of RAPA via a subconjunctival injection route and investigated its therapeutic efficacy in an experimental autoimmune uveitis (EAU) rat model. RAPA-PCEC microparticles were fabricated using the emulsion-evaporation method and thoroughly characterized using scanning electron microscopy, fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. The formed microparticles exhibited slow in vitro degradation over 28 days, and provided both in vitro and in vivo sustained release of RAPA over 4 weeks. Additionally, a single subconjunctival injection of PCEC microparticles resulted in high ocular tolerance. More importantly, subconjunctival injection of RAPA-PCEC microparticles significantly attenuated the clinical signs of EAU in a dose-dependent manner by reducing inflammatory cell infiltration (i.e., CD45+ cells and Th17 cells) and inhibiting microglial activation. Overall, this injectable microparticulate system may be promising vehicle for intraocular delivery of RAPA for the treatment of noninfective uveitis.


Subject(s)
Polyesters , Polyethylene Glycols , Sirolimus , Uveitis , Animals , Uveitis/drug therapy , Sirolimus/administration & dosage , Polyethylene Glycols/chemistry , Polyethylene Glycols/administration & dosage , Polyesters/chemistry , Polyesters/administration & dosage , Rats, Inbred Lew , Rats , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/chemistry , Female , Drug Liberation , Delayed-Action Preparations , Microspheres , Disease Models, Animal , Drug Delivery Systems , Conjunctiva/drug effects , Autoimmune Diseases/drug therapy , Drug Carriers/chemistry , Injections, Intraocular
12.
Brain Behav ; 14(5): e3482, 2024 May.
Article in English | MEDLINE | ID: mdl-38715397

ABSTRACT

INTRODUCTION: Chronic adolescent stress profoundly affects prefrontal cortical networks regulating top-down behavior control. However, the neurobiological pathways contributing to stress-induced alterations in the brain and behavior remain largely unknown. Chronic stress influences brain growth factors and immune responses, which may, in turn, disrupt the maturation and function of prefrontal cortical networks. The tumor necrosis factor alpha-converting enzyme/a disintegrin and metalloproteinase 17 (TACE/ADAM17) is a sheddase with essential functions in brain maturation, behavior, and inflammatory responses. This study aimed to determine the impact of stress on the prefrontal cortex and whether TACE/ADAM17 plays a role in these responses. METHODS: We used a Lewis rat model that incorporates critical elements of chronic psychosocial stress, such as uncontrollability, unpredictability, lack of social support, and re-experiencing of trauma. RESULTS: Chronic stress during adolescence reduced the acoustic startle reflex and social interactions while increasing extracellular free water content and TACE/ADAM17 mRNA levels in the medial prefrontal cortex. Chronic stress altered various ethological behavioral domains in the observation home cages (decreased ingestive behaviors and increased walking, grooming, and rearing behaviors). A group of rats was injected intracerebrally either with a novel Accell™ SMARTpool TACE/ADAM17 siRNA or a corresponding siRNA vehicle (control). The RNAscope Multiplex Fluorescent v2 Assay was used to visualize mRNA expression. Automated puncta quantification and analyses demonstrated that TACE/ADAM17 siRNA administration reduced TACE/ADAM17 mRNA levels in the medial prefrontal cortex (59% reduction relative to control). We found that the rats that received prefrontal cortical TACE/ADAM17 siRNA administration exhibited altered eating patterns (e.g., increased food intake and time in the feeding zone during the light cycle). CONCLUSION: This study supports that the prefrontal cortex is sensitive to adolescent chronic stress and suggests that TACE/ADAM17 may be involved in the brain responses to stress.


Subject(s)
ADAM17 Protein , Prefrontal Cortex , Rats, Inbred Lew , Stress, Psychological , Animals , Male , Rats , ADAM17 Protein/metabolism , Behavior, Animal/physiology , Prefrontal Cortex/metabolism , Reflex, Startle/physiology , Stress, Psychological/physiopathology , Stress, Psychological/metabolism , Female
13.
PLoS One ; 19(5): e0302991, 2024.
Article in English | MEDLINE | ID: mdl-38722855

ABSTRACT

Recessive dystrophic epidermolysis bullosa is a rare genodermatosis caused by a mutation of the Col7a1 gene. The Col7a1 gene codes for collagen type VII protein, a major component of anchoring fibrils. Mutations of the Col7a1 gene can cause aberrant collagen type VII formation, causing an associated lack or absence of anchoring fibrils. This presents clinically as chronic blistering, scarring, and fibrosis, often leading to the development of cutaneous squamous cell carcinoma. Patients also experience persistent pain and pruritus. Pain management and supportive bandaging remain the primary treatment options. The pathology of recessive dystrophic epidermolysis bullosa was first described in the 1980s, and there has since been a multitude of encouraging treatment options developed. However, in vivo research has been hindered by inadequate models of the disease. The various mouse models in existence possess longevity and surface area constraints, or do not adequately model a normal human disease state. In this paper, we describe a novel rat model of recessive dystrophic epidermolysis bullosa that offers an alternative to previous murine models. An 8-base pair deletion was induced in the Col7a1 gene of Lewis rats, which was subsequently found to cause a premature stop codon downstream. Homozygous mutants presented with a fragile and chronically blistered phenotype postnatally. Further histological analysis revealed subepidermal clefting and the absence of anchoring fibrils. The generation of this novel model offers researchers an easily maintained organism that possesses a larger surface area for experimental topical and transfused therapies to be tested, which may provide great utility in the future study of this debilitating disease.


Subject(s)
Collagen Type VII , Disease Models, Animal , Epidermolysis Bullosa Dystrophica , Frameshift Mutation , Phenotype , Collagen Type VII/genetics , Animals , Epidermolysis Bullosa Dystrophica/genetics , Epidermolysis Bullosa Dystrophica/pathology , Rats , Genes, Recessive , Rats, Inbred Lew , Blister/genetics , Blister/pathology , Skin/pathology , Male
14.
Article in English | MEDLINE | ID: mdl-38782370

ABSTRACT

Current therapies for acute radiation syndrome (ARS) involve bone marrow transplantation (BMT), leading to graft-versus-host disease (GvHD). To address this challenge, we have developed a novel donor-recipient chimeric cell (DRCC) therapy to increase survival and prevent GvHD following total body irradiation (TBI)-induced hematopoietic injury without the need for immunosuppression. In this study, 20 Lewis rats were exposed to 7 Gy TBI to induce ARS, and we assessed the efficacy of various cellular therapies following systemic intraosseous administration. Twenty Lewis rats were randomly divided into four experimental groups (n = 5/group): saline control, allogeneic bone marrow transplantation (alloBMT), DRCC, and alloBMT + DRCC. DRCC were created by polyethylene glycol-mediated fusion of bone marrow cells from 24 ACI (RT1a) and 24 Lewis (RT11) rat donors. Fusion feasibility was confirmed by flow cytometry and confocal microscopy. The impact of different therapies on post-irradiation peripheral blood cell recovery was evaluated through complete blood count, while GvHD signs were monitored clinically and histopathologically. The chimeric state of DRCC was confirmed. Post-alloBMT mortality was 60%, whereas DRCC and alloBMT + DRCC therapies achieved 100% survival. DRCC therapy also led to the highest white blood cell counts and minimal GvHD changes in kidney and skin samples, in contrast to alloBMT treatment. In this study, transplantation of DRCC promoted the recovery of peripheral blood cell populations after TBI without the development of GVHD. This study introduces a novel and promising DRCC-based bridging therapy for treating ARS and extending survival without GvHD.


Subject(s)
Acute Radiation Syndrome , Bone Marrow Transplantation , Disease Models, Animal , Graft vs Host Disease , Rats, Inbred Lew , Whole-Body Irradiation , Animals , Rats , Graft vs Host Disease/therapy , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Bone Marrow Transplantation/methods , Acute Radiation Syndrome/therapy , Transplantation Chimera , Male , Transplantation, Homologous , Humans , Blood Cells
15.
Ann Plast Surg ; 93(1): 100-106, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38785378

ABSTRACT

BACKGROUND: Exposure to high doses of total body irradiation (TBI) may lead to the development of acute radiation syndrome (ARS). This study was conducted to establish an experimental rat model of TBI to assess the impact of different doses of TBI on survival and the kinetics of changes within the hematopoietic system in ARS. MATERIALS AND METHODS: In this study, 132 Lewis rats irradiated with a 5Gy or 7Gy dose served as experimental models to induce ARS and to evaluate the hematopoietic response of the bone marrow (BM) compartment. Animals were divided into 22 experimental groups (n = 6/group): groups 1-11 irradiated with 5Gy dose and groups 12-22 irradiated with 7Gy dose. The effects of TBI on the hematopoietic response were assessed at 2, 4, 6, 8 hours and 5, 10, 20, 30, 40, 60 and 90 days following TBI. Signs of ARS were evaluated by analyzing blood samples through complete blood count in addition to the clinical assessment. RESULTS: Groups irradiated with 5Gy TBI showed 100% survival, whereas after 7Gy dose, 1.6% mortality rate was observed. Assessment of the complete blood count revealed that lymphocytes were the first to be affected, regardless of the dose used, whereas an "abortive rise" of granulocytes was noted for both TBI doses. None of the animals exhibited signs of severe anemia or thrombocytopenia. All animals irradiated with 5Gy dose regained initial values for all blood cell subpopulations by the end of observation period. Body weight loss was reported to be dose-dependent and was more pronounced in the 7Gy groups. However, at the study end point at 90 days, all animals regained or exceeded the initial weight values. CONCLUSIONS: We have successfully established a rat experimental model of TBI. This study revealed a comparable hematopoietic response to the sublethal or potentially lethal doses of ionizing radiation. The experimental rat model of TBI may be used to assess different therapeutic approaches including BM-based cell therapies for long-term reconstitution of the hematopoietic and BM compartments allowing for comprehensive analysis of both the hematological and clinical symptoms associated with ARS.


Subject(s)
Acute Radiation Syndrome , Rats, Inbred Lew , Whole-Body Irradiation , Animals , Rats , Dose-Response Relationship, Radiation , Disease Models, Animal , Male , Hematopoiesis/radiation effects , Radiation Injuries, Experimental , Bone Marrow/radiation effects
16.
J Neuroimmune Pharmacol ; 19(1): 26, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819756

ABSTRACT

BACKGROUND: The composition of gut microbiota plays a pivotal role in priming the immune system and thus impacts autoimmune diseases. Data on the effects of gut bacteria eradication via systemic antibiotics on immune neuropathies are currently lacking. This study therefore assessed the effects of antibiotics-induced gut microbiota alterations on the severity of experimental autoimmune neuritis (EAN), a rat model of Guillain-Barré Syndrome (GBS). Myelin P0 peptide 180-199 (P0 180-199)-induced EAN severity was compared between adult Lewis rats (12 weeks old) that received drinking water with or without antibiotics (colistin, metronidazole, vancomycin) and healthy rats, beginning antibiotics treatment immediately after immunization (day 0), and continuing treatment for 14 consecutive days. Neuropathy severity was assessed via a modified clinical score, and then related to gut microbiota alterations observed after fecal 16S rRNA gene sequencing at baseline and after EAN induction. Effectors of gut mucosal and endoneurial immunity were assessed via immunostaining. EAN rats showed increased gut mucosal permeability alongside increased mucosal CD8+ T cells compared to healthy controls. Antibiotics treatment alleviated clinical EAN severity and reduced endoneurial T cell infiltration, decreased gut mucosal CD8+ T cells and increased gut bacteria that may be associated with anti-inflammatory mechanisms, like Lactobacillus or Parasutterella. Our findings point out a relation between gut mucosal immunity and the pathogenesis of EAN, and indicate that antibiotics-induced intestinal immunomodulation might be a therapeutic approach to alleviate autoimmunity in immune neuropathies. Further studies are warranted to evaluate the clinical transferability of these findings to patients with GBS.


Subject(s)
Anti-Bacterial Agents , Gastrointestinal Microbiome , Immunomodulation , Neuritis, Autoimmune, Experimental , Rats, Inbred Lew , Animals , Neuritis, Autoimmune, Experimental/immunology , Neuritis, Autoimmune, Experimental/drug therapy , Rats , Gastrointestinal Microbiome/drug effects , Anti-Bacterial Agents/pharmacology , Immunomodulation/drug effects , Male
17.
In Vivo ; 38(3): 1049-1057, 2024.
Article in English | MEDLINE | ID: mdl-38688639

ABSTRACT

BACKGROUND/AIM: Acute and chronic kidney diseases are a major contributor to morbidity and mortality worldwide, with no specific treatments currently available for these. To enable understanding the pathophysiology of and testing novel treatments for acute and chronic kidney disease, a suitable in vivo model of kidney disease is essential. In this article, we describe two reliable rodent models (rats and mice) of efficacious kidney injury displaying acute to chronic kidney injury progression, which is also reversible through novel therapeutic strategies such as ischemic preconditioning (IPC). MATERIALS AND METHODS: We utilized adult male Lewis rats and adult male wildtype (C57BL/6) mice, performed a midline laparotomy, and induced warm ischemia to both kidneys by bilateral clamping of both renal vascular pedicles for a set time, to mimic the hypoxic etiology of disease commonly found in kidney injury. RESULTS: Bilateral ischemia reperfusion injury caused marked structural and functional kidney injury as exemplified by histology damage scores, serum creatinine levels, and kidney injury biomarker levels in both rodents. Furthermore, this effect displayed a dose-dependent response in the mouse model. CONCLUSION: These rodent models of bilateral kidney IRI are reliable, reproducible, and enable detailed mechanistic study of the underlying pathophysiology of both acute and chronic kidney disease. They have been carefully optimised for single operator use with a strong track record of training both surgically trained and surgically naïve operators.


Subject(s)
Acute Kidney Injury , Disease Models, Animal , Kidney , Reperfusion Injury , Animals , Reperfusion Injury/pathology , Mice , Rats , Male , Kidney/pathology , Kidney/blood supply , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Biomarkers , Rats, Inbred Lew , Mice, Inbred C57BL , Ischemic Preconditioning/methods , Creatinine/blood
18.
Transpl Int ; 37: 12556, 2024.
Article in English | MEDLINE | ID: mdl-38650846

ABSTRACT

Macrophages contribute to post-transplant lung rejection. Disulfiram (DSF), an anti-alcoholic drug, has an anti-inflammatory effect and regulates macrophage chemotactic activity. Here, we investigated DSF efficacy in suppressing acute rejection post-lung transplantation. Male Lewis rats (280-300 g) received orthotopic left lung transplants from Fisher 344 rats (minor histocompatibility antigen-mismatched transplantation). DSF (0.75 mg/h) monotherapy or co-solvent only (50% hydroxypropyl-ß-cyclodextrin) as control was subcutaneously administered for 7 days (n = 10/group). No post-transplant immunosuppressant was administered. Grades of acute rejection, infiltration of immune cells positive for CD68, CD3, or CD79a, and gene expression of monocyte chemoattractant protein and pro-inflammatory cytokines in the grafts were assessed 7 days post-transplantation. The DSF-treated group had significantly milder lymphocytic bronchiolitis than the control group. The infiltration levels of CD68+ or CD3+ cells to the peribronchial area were significantly lower in the DSF than in the control groups. The normalized expression of chemokine ligand 2 and interleukin-6 mRNA in allografts was lower in the DSF than in the control groups. Validation assay revealed interleukin-6 expression to be significantly lower in the DSF than in the control groups. DSF can alleviate acute rejection post-lung transplantation by reducing macrophage accumulation around peripheral bronchi and suppressing pro-inflammatory cytokine expression.


Subject(s)
Disulfiram , Graft Rejection , Lung Transplantation , Macrophages , Rats, Inbred F344 , Rats, Inbred Lew , Animals , Lung Transplantation/adverse effects , Graft Rejection/prevention & control , Graft Rejection/immunology , Male , Disulfiram/pharmacology , Disulfiram/therapeutic use , Rats , Macrophages/drug effects , Macrophages/metabolism , Allografts , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Chemokine CCL2/metabolism , Lung/pathology , Lung/drug effects
19.
J Heart Lung Transplant ; 43(8): 1336-1347, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38670297

ABSTRACT

BACKGROUND: Cardiac allograft vasculopathy (CAV) remains the leading cause of long-term graft failure and mortality after heart transplantation. Effective preventive and treatment options are not available to date, largely because underlying mechanisms remain poorly understood. We studied the potential role of leukotriene B4 (LTB4), an inflammatory lipid mediator, in the development of CAV. METHODS: We used an established preclinical rat CAV model to study the role of LTB4 in CAV. We performed syngeneic and allogeneic orthotopic aortic transplantation, after which neointimal proliferation was quantified. Animals were then treated with Bestatin, an inhibitor of LTB4 synthesis, or vehicle control for 30 days post-transplant, and evidence of graft CAV was determined by histology. We also measured serial LTB4 levels in a cohort of 28 human heart transplant recipients with CAV, 17 matched transplant controls without CAV, and 20 healthy nontransplant controls. RESULTS: We showed that infiltration of the arterial wall with macrophages leads to neointimal thickening and a rise in serum LTB4 levels in our rat model of CAV. Inhibition of LTB4 production with the drug Bestatin prevents development of neointimal hyperplasia, suggesting that Bestatin may be effective therapy for CAV prevention. In a parallel study of heart transplant recipients, we found nonsignificantly elevated plasma LTB4 levels in patients with CAV, compared to patients without CAV and healthy, nontransplant controls. CONCLUSIONS: This study provides key evidence supporting the role of the inflammatory cytokine LTB4 as an important mediator of CAV development and provides preliminary data suggesting the clinical benefit of Bestatin for CAV prevention.


Subject(s)
Biomarkers , Heart Transplantation , Leukotriene B4 , Animals , Heart Transplantation/adverse effects , Leukotriene B4/blood , Leukotriene B4/metabolism , Rats , Male , Biomarkers/metabolism , Biomarkers/blood , Humans , Disease Models, Animal , Allografts , Middle Aged , Rats, Inbred Lew , Female , Neointima/pathology
20.
Br J Pharmacol ; 181(16): 2774-2793, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38644540

ABSTRACT

BACKGROUND AND PURPOSE: White adipose tissue (WAT) is involved in rheumatoid arthritis (RA). This study explored its potential as an antirheumatic target. EXPERIMENTAL APPROACH: WAT status of healthy and adjuvant-induced arthritis (AIA) rats were compared. The contribution of WAT to RA pathology was evaluated by pre-adipocyte transplant experiments and by dissecting perirenal fat pads of AIA rats. The impact of RA on WAT was investigated by culturing pre-adipocytes. Proteins differentially expressed in WAT of healthy and AIA rats were identified by the UPLC/MS2 method. These together with PPARγ siRNA and agonist were used to treat pre-adipocytes in vitro. The medium was used for THP-1 monocyte culture. KEY RESULTS: Compared with healthy controls, AIA WAT was smaller but secreted more leptin, eNAMPT, MCP-1, TNF-α, and IL-6. AIA rat pre-adipocytes increased the levels of these adipokines in healthy recipients. RA patients' serum induced a similar secretion change and impaired differentiation of pre-adipocytes. Adipectomy eased AIA-related immune abnormalities and arthritic manifestations. Hepatokines PON1, IGFBP4, and GPIHBP1 were among the differential proteins in high levels in RA blood, and induced inflammatory secretions by pre-adipocytes. GPIHBP1 inhibited PPARγ expression and caused differentiation impairment and inflammatory secretion by pre-adipocytes, a similar outcome to PPARγ-silencing. This endowed the cells with an ability to activate monocytes, which can be abrogated by rosiglitazone. CONCLUSION AND IMPLICATIONS: Certain hepatokines potentiate inflammatory secretions by pre-adipocytes and expedite RA progression by inhibiting PPARγ. Targeting this signalling or abnormal WAT secretion by various approaches may reduce RA severity.


Subject(s)
Adipose Tissue, White , Arthritis, Experimental , Arthritis, Rheumatoid , PPAR gamma , Animals , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Humans , Rats , Arthritis, Experimental/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Male , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/drug therapy , PPAR gamma/metabolism , PPAR gamma/agonists , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Female , Rats, Inbred Lew , Adipocytes/metabolism , Adipocytes/drug effects , Adipokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...